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Abstract

A convex triangular grid is represented by a planar digraph G embedded in the plane so
that (a) each bounded face is surrounded by three edges and forms an equilateral triangle, and
(b) the union R of bounded faces is a convex polygon. A real-valued function h on the edges
of G is called a concave cocirculation if h(e) = g(v)− g(u) for each edge e = (u, v), where g is
a concave function on R which is affinely linear within each bounded face of G.

Knutson and Tao [4] proved an integrality theorem for so-called honeycombs, which is
equivalent to the assertion that an integer-valued function on the boundary edges of G is
extendable to an integer concave cocirculation if it is extendable to a concave cocirculation at
all.

In this paper we show a sharper property: for any concave cocirculation h in G, there exists
an integer concave cocirculation h′ satisfying h′(e) = h(e) for each boundary edge e with h(e)
integer and for each edge e contained in a bounded face where h takes integer values on all
edges.

On the other hand, we explain that for a 3-side grid G of size n, the polytope of concave
cocirculations with fixed integer values on two sides of G can have a vertex h whose entries
are integers on the third side but h(e) has denominator Ω(n) for some interior edge e. Also
some algorithmic aspects and related results on honeycombs are discussed.
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1 Introduction

Knutson and Tao [4] proved a conjecture concerning highest weight representations of GLn(C).
They used one combinatorial model, so-called honeycombs, and an essential part of the whole proof
was to show the existence of an integer honeycomb under prescribed integer boundary data. The
obtained integrality result for honeycombs admits a re-formulation in terms of discrete concave
functions on triangular grids in the plane.

The purpose of this paper is to show a sharper integrality property for discrete concave func-
tions.

We start with basic definitions. Let ξ1, ξ2, ξ3 be three affinely independent vectors in the
euclidean plane R2, whose sum is the zero vector. By a convex (triangular) grid we mean a finite
planar digraph G = (V (G), E(G)) embedded in the plane such that: (a) each bounded face of
G is a triangle surrounded by three edges and each edge (u, v) satisfies v − u ∈ {ξ1, ξ2, ξ3}; and
(b) the region R = R(G) of the plane spanned by G is a convex polygon. In this paper a convex
grid can be considered up to an affine transformation, and to visualize objects and constructions
in what follows, we will fix the generating vectors ξ1, ξ2, ξ3 as (1, 0), (−1,

√
3)/2, (−1,−√3)/2,

respectively. Then each bounded face is an equilateral triangle (a little triangle of G) surrounded
by a directed circuit with three edges (a 3-circuit). When R forms a (big) triangle, we call G a
3-side grid (this case is most popular in applications).

A real-valued function h on the edges of G is called a cocirculation if the equality h(e)+h(e′)+
h(e′′) = 0 holds for each 3-circuit formed by edges e, e′, e′′. This is equivalent to the existence of a
function g on R which is affinely linear within each bounded face and satisfies h(e) = g(v)− g(u)
for each edge e = (u, v). Such a g is determined up to adding a constant, and we refer to h as
a concave cocirculation if g is concave. (The restriction of such a g to V (G) is usually called a
discrete concave function.) It is easy to see that a cocirculation h is concave if and only if each
little rhombus ρ (the union of two little triangles sharing a common edge) satisfies the following
rhombus condition:

(1.1) h(e) ≥ h(e′), where e, e′ are non-adjacent (parallel) edges in ρ, and e enters an obtuse
vertex of ρ.
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Let B(G) denote the set of edges in the boundary of G. Concave cocirculations are closely
related (via Fenchel’s type transformations) to honeycombs, and Knutson and Tao’s integrality
result on the latter is equivalent to the following.

Theorem 1.1 [4] For a convex grid G and a function h0 : B(G) → Z, there exists an integer
concave cocirculation in G coinciding with h0 on B(G) if h0 is extendable to a concave cocirculation
in G at all.
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For a direct proof of this theorem for 3-side grids, without appealing to honeycombs, see
Buch [1]. (Note also that for a 3-side grid G, a combinatorial characterization for the set of
functions h0 on B(G) extendable to concave cocirculations is given in [5]: it is a polyhedral cone
in RB(G) whose nontrivial facets are described by Horn’s type inequalities with respect to so-called
puzzles; for an alternative proof and an extension to arbitrary convex grids, see [3].)

In this paper we extend Theorem 1.1 as follows.

Theorem 1.2 Let h be a concave cocirculation in a convex grid G. There exists an integer
concave cocirculation h′ in G such that h′(e) = h(e) for all edges e ∈ Oh ∪ Ih. Here Oh is the set
of boundary edges e where h(e) is an integer, and Ih is the set of edges contained in little triangles
∆ such that h takes integer values on the three edges of ∆.

Remark 1. One could attempt to further strengthen Theorem 1.1 by asking: can one improve
any concave cocirculation h to an integer concave cocirculation preserving the values on all edges
where h is integral? In general, the answer is negative; a counterexample will be given in the end
of this paper.

Our method of proof of Theorem 1.2 is constructive and based on iteratively transforming
the current concave cocirculation until the desired integer concave cocirculation is found. As a
consequence, we obtain a polynomial-time combinatorial algorithm to improve h to h′ as required.
(The idea of proof of Theorem 1.1 in [1] is to show the existence of a concave cocirculation
coinciding with h0 on B(G) whose values are expressed as integer combinations of values of h0;
[4] establishes an analogous property for honeycombs. Our approach is different.) We prefer to
describe an iteration by considering a corresponding task on the related honeycomb model and
then translating the output to the language of cocirculations in G, as this makes our description
technically simpler and more enlightening.

The above theorems admit a re-formulation in polyhedral terms. Given a subset F ⊆ E(G)
and a function h0 : F → R, let C(G,h0) denote the set of concave cocirculations in G such that
h(e) = h0(e) for all e ∈ F . Since concave cocirculations are described by linear constraints,
C(G,h0) forms a (possibly empty) polyhedron in RE(G). Then Theorem 1.1 says that such a
polyhedron (if nonempty) has an integer point h in the case h0 is an integer-valued function
on B(G), whereas Theorem 1.2 is equivalent to saying that a similar property takes place if
h0 : F → Z and F = B′ ∪ ∪(E(∆) : ∆ ∈ T ), where B′ ⊆ B(G) and T is a set of little triangles.
(Note that when F = B(G) and whenR(G) is not a hexagon, one can conclude from the concavity
that C(G,h0) is bounded, i.e., it is a polytope.)

On the “negative” side, it turned out that C(G,h0) with h0 : B(G) → Z need not be an integer
polytope; an example with a half-integer but not integer vertex is given in [4] (and in [1]). One can
show that the class of such polyhedra has “unbounded fractionality”. Moreover, denominators
of vertex entries can be arbitrarily increasing as the size of G grows even if functions h0 with
smaller domains are considered. Hereinafter by the size of G we mean its maximum side length
(=number of edges). We show the following.
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Theorem 1.3 For any positive integer k, there exists a 3-side grid G of size O(k) and a function
h0 : F → Z, where F is the set of edges of two sides of G, such that the polyhedron C(G,h0) has a
vertex h satisfying: (a) h(e) has denominator k for some edge e ∈ E(G), and (b) h takes integer
values on all boundary edges.

(One can see that in this case C(G,h0) is also a polytope. Note also that if h′0 is the restriction
of h to a set F ′ ⊃ F , then h is, obviously, a vertex of the polytope C(G,h′0) as well.)

This paper is organized as follows. In Section 2 we explain the notion of honeycomb and a
relationship between honeycombs and concave cocirculations. Sections 3 and 4 consider special
paths (open and closed) in a honeycomb and describe a certain transformation of the honeycomb
in a neighbourhood of such a path. Section 5 explains how to “improve” the honeycomb by
use of such transformations and eventually proves Theorem 1.2. A construction of G,h0 proving
Theorem 1.3 is given in Section 6; it relies on an approach involving honeycombs as well. We also
explain there (in Remark 3) that the set F in this theorem can be reduced further. The concluding
Section 7 discusses algorithmic aspects, suggests a slight strengthening of Theorem 1.2, gives a
counterexample mentioned in Remark 1, and raises an open question.

2 Honeycombs

For technical needs of this paper, our definition of honeycombs will be somewhat different from,
though equivalent to, that given in [4]. It is based on a notion of pre-honeycombs, and before
introducing the latter, we clarify some terminology and notation user later on. Let ξ1, ξ2, ξ3 be
the generating vectors as above (note that they follow anticlockwise around the origin).

The term line is applied to (fully) infinite, semiinfinite, and finite lines, i.e., to sets of the
form a + Rb, a + R+b, and {a + λb : 0 ≤ λ ≤ 1}, respectively, where a ∈ R2 and b ∈ R2 \ {0}.
For a vector (point) v ∈ R2 and i = 1, 2, 3, we denote by Ξi(v) the infinite line containing v and
perpendicular to ξi, i.e., the set of points u with (u − v) · ξi = 0. (Hereinafter x · y denotes the
inner product of vectors x, y.) The line Ξi(v) is the union of two semiinfinite lines Ξ+

i (v) and
Ξ−i (v) with the end v, where the rays Ξ+

i (v)− v, R+ξi and Ξ−i (v)− v follow in the anticlockwise
order around the origin. Any line perpendicular to ξi is called a Ξi-line.

By a Ξ-system we mean a finite set L of Ξi-lines (i ∈ {1, 2, 3}) along with an integer weighting
w on them. For a point v ∈ R2, a “sign” s ∈ {+,−}, and i = 1, 2, 3, define ws

i (v) to be the sum
of weights w(L) of the lines L ∈ L whose intersection with Ξs

i (v) contains v and is a line (not
a point). We call a Ξ-system (L, w) a pre-honeycomb if for any point v, the numbers ws

i (v) are
nonnegative and satisfy the condition

(2.1) w+
1 (v)− w−1 (v) = w+

2 (v)− w−2 (v) = w+
3 (v)− w−3 (v) =: divw(v);

divw(v) is called the divergency at v.
Now a honeycomb is a certain non-standard edge-weighted planar graph H = (V, E , w) with

vertex set V 6= ∅ and edge set E in which non-finite edges are allowed. More precisely: (i) each
vertex is incident with at least 3 edges; (ii) each edge is a line with no interior point contained in
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Figure 1: Generating vectors, lines Ξ+
i (v), and a honeycomb instance

another edge; (iii) w(e) is a positive integer for each e ∈ E ; and (iv) (E , w) is a pre-honeycomb.
Then each vertex v has degree at most 6, and for i = 1, 2, 3 and s ∈ {+,−}, we denote by es

i (v)
the edge incident to v and contained in Ξs

i (v) when such an edge exists, and say that this edge
has sign s at v. In [4] the condition on a vertex v of a honeycomb similar to (2.1) is called the
zero-tension condition, motivated by the observation that if each edge incident to v pulls on v

with a tension equal to its weight, then the total force applied to v is zero. Figure 1 illustrates a
honeycomb with three vertices u, v, z and ten edges of which seven are semiinfinite.

We will take advantage of the fact that any pre-honeycomb (L, w) determines, in a natural
way, a unique honeycomb H = (V, E , w′) with ws

i (v) = (w′)s
i (v) for all v, s, i. Here V is the set of

points v for which at least three numbers among ws
i (v)’s are nonzero. The set E consists of all

maximal Ξi-lines e for i = 1, 2, 3 such that any interior point v on e satisfies w+
i (v) > 0 and does

not belong to V; the weight w′(e) is defined to be just this number w+
i (v) (=w−i (v)), which does

not depend on v.
Since V 6= ∅, one can conclude from (2.1) that a honeycomb has no fully infinite edge but

the set of semiinfinite edges in it is nonempty. This set, called the boundary of H and denoted
by B(H), is naturally partitioned into subsets Bs

i consisting of the semiinfinite edges of the form
Ξs

i (·). Then (2.1) implies that w(B+
i ) − w(B−i ) is the same for i = 1, 2, 3. (For a subset E′ ⊆ E

and a function c : E → R, c(E′) stands for
∑

(c(e) : e ∈ E′).)
Let us introduce the dual coordinates d1, d2, d3 of a point x ∈ R2 by setting

di(x) := −x · ξi, i = 1, 2, 3.

Since ξ1 + ξ2 + ξ3 = 0, one has

(2.2) d1(x) + d2(x) + d3(x) = 0 for each x ∈ R2.

When one traverses an edge e of a honeycomb, one dual coordinate remains constant while the
other two trade off; this constant dual coordinate is denoted by dc(e).

Next we explain that the honeycombs one-to-one correspond to the concave cocirculations via
a sort of planar duality. Consider a honeycomb H = (V, E , w). Let v ∈ V. Since the numbers
ws

i (v) are nonnegative, condition (2.1) is equivalent to the existence of a (unique) grid Gv whose
boundary is formed, in the anticlockwise order, by w+

1 (v) edges parallel to ξ1, followed by w−3 (v)
edges parallel to ξ3, followed by w+

2 (v) edges parallel to ξ2, and so on, as illustrated in the picture.
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For an edge e incident to v, label e∗ the corresponding side of Gv. For each finite edge e = uv of
H, glue together the grids Gu and Gv by identifying the sides labelled e∗ in both. One can see that
the resulting graph G is a convex grid. Also each nonempty set Bs

i one-to-one corresponds to a
side of G, denoted by Bs

i ; it is formed by w(Bs
i ) edges parallel to ξi, and the outward normal at Bs

i

points at the direction (i, s). The picture below illustrates the grid generated by the honeycomb
in Fig. 1.
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The dual coordinates of vertices of H generate the function h on E(G) defined by:

(2.3) h(e) := di(v), where v ∈ V, i = 1, 2, 3, and e is an edge in Gv parallel to ξi.

Then (2.2) implies h(e) + h(e′) + h(e′′) = 0 for any little triangle with edges e, e′, e′′ in G,
i.e., h is a cocirculation. To see that h is concave, it suffices to check (1.1) for a little rhombus ρ

formed by little triangles lying in different graphs Gu and Gv. Then ẽ = uv is an edge of H; let
ẽ be perpendicular to ξi and assume ẽ = e−i (u) = e+

i (v). Observe that di+1(u) > di+1(v) (taking
indices modulo 3) and that the side-edge e of ρ lying in Gu and parallel to ξi+1 enters an obtuse
vertex of ρ. Therefore, h(e) = di+1(u) > di+1(v) = h(e′), where e′ is the side-edge of ρ parallel to
e (lying in G(v)), as required.

Conversely, let h be a concave cocirculation in a convex grid G. Subdivide G into maximal
subgraphs G1, . . . , Gk, each being the union of little triangles where, for each i = 1, 2, 3, all
edges parallel to ξi have the same value of h. The concavity of h implies that each Gj is again
a convex grid; it spans a maximal region where the corresponding function g on R is affinely
linear, called a flatspace of h. For j = 1, . . . , k, take the point vj in the plane defined by the dual
coordinates di(vj) = h(ei), i = 1, 2, 3, where ei is an edge of Gj parallel to ξi. (The property
h(e1)+h(e2)+h(e3) = 0 implies (2.2), so vj exists; also the points vj are different). For each pair
of graphs Gj , Gj′ having a common side S, connect vj and vj′ by line (finite edge) `; observe that
` is perpendicular to S. And if a graph Gj has a side S contained in the boundary of G, assign
the semiinfinite edge ` = Ξs

i (vj) whose direction (i, s) corresponds to the outward normal at S. In
all cases the weight of ` is assigned to be the number of edges in S. One can check (by reversing
the argument above) that the obtained sets of points and weighted lines constitute a honeycomb
H, and that the above construction for H returns G,h.
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3 Legal Paths and Cycles

In this section we consider certain paths (possibly cycles) in a honeycomb H = (V, E , w). A
transformation of H with respect to such a path, described in the next section, “improves” the
honeycomb, in a certain sense, and we will show that a number of such improvements results in
a honeycomb determining an integer concave cocirculation as required in Theorem 1.2. First of
all we need some definitions and notation.

Let V• denote the set of vertices v ∈ V having at least one nonintegral dual coordinate di(v),
and E• the set of edges e ∈ E whose constant coordinate dc(e) is nonintegral. For brevity we call
such vertices and edges nonintegral.

For s ∈ {+,−}, −s denotes the sign opposite to s. Let v ∈ V. An edge es
i (v) is called

dominating at v if ws
i (v) > w−s

i (v). By (2.1), v has either none or three dominating edges,
each pair forming an angle of 120◦. A pair {es

i (v), es′
j (v)} of distinct nonintegral edges is called

legal if either they are opposite to each other at v, i.e., j = i and s′ = −s, or both edges are
dominating at v (then j 6= i and s′ = s). By a path in H we mean a finite alternating sequence
P = (v0, q1, v1, . . . , qk, vk), k ≥ 1, of vertices and edges where: for i = 2, . . . , k − 1, qi is a finite
edge and vi−1, vi are its ends; q1 is either a finite edge with the ends v0, v1, or a semiinfinite
edge with the end v1; similarly, if k > 1 then qk is either a finite edge with the ends vk−1, vk,
or a semiinfinite edge with the end vk−1. When q1 is semiinfinite, v0 is thought of as a dummy
(“infinite”) vertex, and we write v0 = {∅}; similarly, vk = {∅} when qk is semiinfinite and k > 1.
Self-intersecting paths are admitted. We call P

(i) an open path if k > 1 and both edges q1, qk are semiinfinite;
(ii) a legal path if each pair of consecutive edges qi, qi+1 is legal;
(iii) a legal cycle if it is a legal path, v0 = vk 6= {∅} and {qk, q1} is a legal pair.
A legal cycle P is usually considered up to shifting cyclically and the indices are taken modulo

k. We say that a legal path P turns at v ∈ V if, for some i with vi = v, the (existing) edges
qi, qi+1 are not opposite at vi (then qi, qi+1 are different dominating edges at vi). We also call
such a triple (qi, vi, qi+1) a bend of P at v.

Assume V• is nonempty. (When V• = ∅, the concave cocirculation in G determined by H
is already integral.) A trivial but important observation from (2.2) is that if a vertex v has a
nonintegral dual coordinate, then it has at least two nonintegral dual coordinates. This implies
E• 6= ∅. Moreover, if e is a nonintegral edge dominating at v, then e forms a legal pair with
another nonintegral edge dominating at v.

Our method of proof of Theorem 1.2 will rely on the existence of a legal path with some
additional properties, as follows.

Lemma 3.1 There exists an open legal path or a legal cycle P = (v0, q1, v1, . . . , qk, vk) such that:
(i) each edge e of H occurs in P at most twice, and if it occurs exactly twice, then P traverses

e in both directions, i.e., e = qi = qj and i < j imply vi = vj−1;
(ii) if an edge e occurs in P twice, then w(e) > 1;
(iii) for each vertex v of H, the number of times P turns at v does not exceed min{2, |divw(v)|}.
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Proof. We grow a legal path P , step by step, by the following process. Initially, choose a
nonintegral semiinfinite edge e if it exists, and set P = (v0, q1, v1), where v0 := {∅}, q1 := e, and
v1 is the end of e. Otherwise we start with P = (v0, q1, v1), where q1 is an arbitrary nonintegral
finite edge and v0, v1 are its ends. Let P = (v0, q1, v1 . . . , qi, vi) be a current legal path with
v := vi ∈ V satisfying (i),(ii),(iii). At an iteration, we wish either to increase P by adding some
qi+1, vi+1 (maintaining (i),(ii),(iii)) or to form the desired cycle.

By the above observation, e := qi forms a legal pair with at least one edge e′ incident to v.
We select such an e′ by rules specified later and act as follows. Suppose e′ occurs in P and is
traversed from v, i.e., v = vj−1 and e′ = ej for some j < i. Then the part of P from vj−1 to vi

forms a legal cycle; we finish the process and output this cycle. Clearly it satisfies (i) and (ii)
(but the number of bends at v may increase). Now suppose e′ is not traversed from v. Then we
grow P by adding e′ as the new last edge qi+1 and adding vi+1 to be the end of e′ different from
v if e′ is finite, and to be {∅} if e′ is semiinfinite. In the latter case, the new P is an open legal
path (taking into account the choice of the first edge q1); we finish and output this P . And in the
former case, we continue the process with the new current P . Clearly property (i) is maintained.

We have to show that e′ can be chosen so as to maintain the remaining properties (concerning
e′ and v). Consider two cases.

Case 1. e is not dominating at v. Then e′ is opposite to e at v (as the choice is unique), and
(iii) remains valid as no new bend at v arises. If e′ is dominating at v, then w(e′) > w(e) ≥ 1,
implying (ii). And if e′ is not dominating at v, then w(e′) = w(e) and, obviously, the new P

traverses e′ as many times as it traverses e, implying (ii) as well.

Case 2. e is dominating at v. Let the old P turn b times at v. First suppose P has a bend
β = (qj , vj , qj+1) at v not using the edge e. Since the edges occurring in any bend are nonintegral
and dominating at the corresponding vertex, {e, qj+1} is a legal pair. We choose e′ to be qj+1.
This leads to forming a cycle with b bends at v as before (as the bend β is destroyed while the
only bend (e, v, e′) is added), implying (iii).

So assume β as above does not exist. Then the old P can have at most one bend at v, namely,
one of the form β′ = (q, v, e), whence b ≤ 1. If b < |divw(v)|, then taking as e′ a nonintegral
edge dominating at v and different from e maintains both (ii) and (iii) (to see (ii), observe that
the number of times P traverses e′ is less than w(e′)). Now let b = |divw(v)|. Then b = 1 (as
divw(v) 6= 0) and P has the bend β′ as above. Therefore, P traverses e twice (in β′ and as qi),
and we conclude from this fact together with |divw(v)| = 1 that e has the opposite edge e at v.
Moreover, e cannot occur in P . For otherwise P would traverse e more than twice, taking into
account that e forms a legal pair only with e (as e is non-dominating at v). Thus, the choice of
e′ to be e maintains (ii) and (iii), completing the proof of the lemma.

4 ε-Deformation

Let P = (v0, q1, v1, . . . , qk, vk) be as in Lemma 3.1. Our transformation of the honeycomb H =
(V, E , w) in question is, roughly speaking, a result of “moving a unit weight copy of P in a normal
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direction” (considering P as a curve in the plane); this is analogous to an operation on more
elementary paths or cycles of honeycombs in [4, 5]. It is technically easier for us to describe
such a transformation by handling a pre-honeycomb behind H in which the line set include the
maximal straight subpaths of P .

When (qi, vi, qi+1) is a bend, we say that vi is a bend vertex of P . We assume that v0 is a
bend vertex if P is a cycle. For a bend vertex vi, we will distinguish between the cases when
P turns right and turns left at vi, defined in a natural way regarding the orientation of P . Let
vt(0), vt(1), . . . , vt(r) (0 = t(0) < t(1) < . . . < t(r) = k) be the sequence of bend or dummy vertices
of P . Then for i = 1, . . . , r, the union of edges qt(i−1)+1, . . . , qt(i) is a (finite, semiinfinite or even
fully infinite) line, denoted by Li. For brevity vt(i) is denoted by ui.

Our transformation of H depends on a real parameter ε > 0 measuring the distance of moving
P and on a direction of moving; let for definiteness we wish to move P “to the right” (moving “to
the left” is symmetric). We assume that ε is small enough; an upper bound on ε will be discussed
later. By the transformation, a unit weight copy of each line Li (considered as oriented from ui−1

to ui) is split off the honeycomb and moves (possibly extending or shrinking) at distance ε to the
right, turning into a parallel line L′i connecting u′i−1 and u′i. Let us describe this construction
more formally. First, for a bend vertex ui, let the constant coordinates of the lines Li and Li+1

be p-th and p′-th dual coordinates, respectively. Then the point u′i is defined by

(4.1) dp(u′i) := dp(ui) − ε and dp′(u′i) := dp′(ui) + ε if both Li, Li+1 have sign + at v, and
dp(u′i) := dp(ui) + ε and dp′(u′i) := dp′(ui)− ε if Li, Li+1 have sign − at v,

where, similar to the edges, a Ξi-line is said to have sign s at its end v if it is contained in Ξs
i (v).

Possible cases are illustrated in the picture.
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Second, for i = 1, . . . , r, define L′i to be the line connecting u′i−1 and u′i (when P is an open
path, u′0 and u′r are dummy points and the non-finite lines L′1, L

′
r are defined in a natural way).

Denoting by `(L) the euclidean length (scalled by 2/
√

3) of a line L, one can see that if a line Li

is finite and ε ≤ `(Li), then

(4.2) `(L′i) = `(Li)− ε if P turns right at both ui−1 and ui, and `(L′i) ≥ `(Li) otherwise.

This motivates a reasonable upper bound on ε, to be the minimum length ε0 of an Li such that
P turns right at both ui−1, ui (ε0 = ∞ when no such Li exists).

Third, consider the Ξ-system P = ({L1, . . . , Lr} ∪ E , w̃), where w̃(Li) = 1 for i = 1, . . . , r,
and w̃(e) is equal to w(e) minus the number of occurrencies of e ∈ E in L1, . . . , Lr. This P is a
pre-honeycomb representing H, i.e., satisfying ws

i (v) = w̃s
i (v) for all v, i, s. We replace in P the

lines L1, . . . , Lr by the lines L′1, . . . , L
′
r with unit weight each. (When ε = ε0 < ∞, the length of
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at least one line L′i reduces to zero, by (4.2), and this line vanishes in P ′.) Also for each bend
vertex ui, we add line Ri connecting ui and u′i. We assign to Ri weight 1 if P turns right at ui,
and −1 otherwise. Let P ′ = (L′, w′) be the resulting Ξ-system.

The transformation in a neighbourhood of a bend vertex v = ui is illustrated in the picture;
here the numbers on edges indicate their original weights or the changes due to the transformation,
and (for simplicity) P passes v only once.
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Lemma 4.1 There exists ε1, 0 < ε1 ≤ ε0 such that P ′ is a pre-honeycomb for any nonnegative
real ε ≤ ε1.

Proof. Let 0 < ε < ε0. To see that P ′ has zero tension everywhere, it suffices to check this
property at the bend vertices ui of P and their “copies” u′i. For a bend vertex ui, let Pi be the
Ξ-system formed by the lines Li, Li+1, Ri with weights −1,−1, w′(Ri), respectively, and P ′i the
Ξ-system formed by the lines L′i, L

′
i+1, Ri with weights 1, 1, w′(Ri), respectively. One can see that

Pi has zero tension at ui and P ′i has zero tension at u′i, wherever (right or left) P turns at ui.
This implies the zero tension property for P ′, taking into account that P has this property (as Pi

and P ′i describe the corresponding local changes concerning ui, u
′
i when P turns into P ′).

It remains to explain that the numbers (w′)s
j(v) are nonnegative for all corresponding v, j, s

when ε > 0 is sufficiently small.
By (i),(ii) in Lemma 3.1, w̃ ≥ 0 for all e ∈ E . So the only case when (w′)s

p(v) might be
negative is when v lies on a line Ri with weight −1 and Ri is a Ξp-line. Note that if uj = uj′

for some j 6= j′, i.e., P turns at the corresponding vertex v of H twice, then the points u′j and
u′j′ move along different rays out of v (this can be concluded from (4.1), taking into account (i)
in Lemma 3.1). Hence we can choose ε > 0 such that the interiors of the lines Ri are pairwise
disjoint.

Consider Ri with w′(Ri) = −1, and let e be the edge dominating at the vertex v = ui and
different from qt(i) and qt(i)+1. Observe that the point u′i moves just along e, so the line Ri is
entirely contained in e when ε does not exceed the length of e. We show that w̃(e) > 0, whence
the result follows. This is equivalent to saying that the number α of lines among L1, . . . , Lr that
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contain e (equal to 0,1 or 2) is strictly less than w(e). For a contradiction, suppose α = w(e) (as
α ≤ w(e), by Lemma 3.1). This implies that the number of bends of P at v using the edge e

(equal to the number of lines Lj that contain e and have one end at v) is at least |divw(v)|. Then
the total number of bends at v is greater than |divw(v)| (as the bend (qt(i), ui, qt(i)+1) does not
use e), contradicting (iii) in Lemma 3.1. So α < w(e), as required.

For ε as in the lemma, P ′ determines a honeycomb H′, as explained in Section 2. We say that
H′ is obtained from H by the right ε-deformation of P .

5 Proof of the Theorem

In what follows, given a honeycomb with edge weights w′′, we say that vertices u, v have the same
sign if divw′′(u)divw′′(v) ≥ 0, and call |divw′′(v)| the excess at v.

Consider a concave cocirculation h in a convex grid G and the honeycomb H = (V, E , w)
determined by h. Define β = βH to be the total weight of nonintegral semiinfinite edges of H,
δ = δH to be the total excess of nonintegral vertices of H, and ω = ωH to be the total weight of
edges incident to integral vertices. We prove Theorem 1.2 by induction on

η := ηH := β + δ − ω,

considering all concave cocirculations h in the given G. Observe that ω does not exceed the
number of edges of G; hence η is bounded from below. Note also that in the case β = δ = 0, all
edges of H are integral (whence h is integral as well). Indeed, suppose the set E• of nonintegral
edges of H is nonempty, and let e ∈ E•. Take the maximal line L that contains e and is covered
by edges of H. Since dc(L) = dc(e) is not an integer and β = 0, L contains no semiinfinite edge;
so L is finite. The maximality of L implies that each end v of L is a vertex of H and, moreover,
divw(v) 6= 0. Also v ∈ V•. Then δ 6= 0; a contradiction.

Thus, we may assume that β+δ > 0 and that the theorem is valid for all concave cocirculations
on G whose corresponding honeycombs H′ satisfy ηH′ < ηH. We use notation, constructions and
facts from Sections 3,4.

Choose P = (v0, q1, v1, . . . , qk, vk) as in Lemma 3.1. Note that if P is a cycle, then the fact that
all bends of P are of the same degree 120◦ implies that there are two consecutive bend vertices
ui, ui+1 where the direction of turn of P is the same. We are going to apply to P the right
ε-deformation, assuming that either P is an open path, or P is a cycle having two consecutive
bend vertices where it turns right (for P can be considered up to reversing).

We gradually grow the parameter ε from zero, obtaining the (parameteric) honeycomb H′ =
(V ′, E ′, w′) as described in Section 4. Let ε1 be specified as the maximum real or +∞, with ε1 ≤ ε0,
satisfying the assertion of Lemma 4.1. (Such an ε1 exists, as if ε′ > 0 and if P ′ is a pre-honeycomb
for any 0 < ε < ε′, then P ′ is a pre-honeycomb for ε = ε′ either, by continuity and compactness.)
We stop growing ε as soon as it reaches the bound ε1 or at least one of the following events
happens:

(E1) when P is an open path, the constant coordinate of some of the (semiinfinite or infinite)
lines L′1 and L′r becomes an integer;

11



(E2) two vertices of H′ with different signs meet (merge);
(E3) some line L′i meets an integer vertex v of the original H.
By the above assumption, if P is a cycle, then ε1 ≤ ε0 < ∞ (cf. (4.2)). And if P is an open

path, then the growth of ε is bounded because of (E1). So we always finish with a finite ε; let
ε and H denote the resulting ε and honeycomb, respectively. We assert that ηH < ηH. First of
all notice that βH ≤ βH (in view of (E1) and since the edges of P are nonintegral). Our further
analysis relies on the following observations.

(i) When ε grows, each point u′i uniformly moves along a ray from ui, and each line L′i
uniformly moves in a normal direction to Li. This implies that one can select a finite sequence
0 = ε(0) < ε(1) < . . . < ε(N) = ε such that N = O(|V|2), and for t = 0, . . . , N−1, the honeycomb
H′ does not change topologically when the parameter ε ranges over the open interval (ε(t), ε(t+1)).

(ii) When ε starts growing from zero, each vertex v of H occurring in P splits into several
vertices whose total divergency is equal to the original divergency at v. By the construction of
P ′ and (iii) in Lemma 3.1, these vertices have the same sign. This implies that the total excess
of these vertices is equal to the original excess at v. Each arising vertex u′i has excess 1, which
preserves during the process except possibly for those moments ε(t) when u′i can meet another
vertex of H′. When two or more vertices meet, their divergencies are added up. Therefore, the
sum of their excesses (before the meeting) is strictly more than the resulting excess if some of
these vertices have different signs. This implies that δ reduces if (E2) happens, or if ε reaches ε0
(since the ends of any finite line L′i have different signs, and the vertices u′i−1 and u′i meet when
L′i vanishes). The latter situation is illustrated in the picture.
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(iii) Let v be an integral vertex of the initial honeycomb H and let W be the total weight of
its incident edges in a current honeycomb H′ (depending on ε). If, at some moment, the point v is
captured by the interior of some line L′i, this increases W by 2. Now suppose some vertex u′i meets
v. If P turns right at ui, then W increases by at least w′(Ri) = 1. And if P turns left at ui, then
the lines L′i, L

′
i+1 do not vanish (cf. (4.2)), whence W increases by w′(L′i)+w′(L′i+1)+w′(Ri) = 1.

Therefore, ω increases when (E3) happens.

(iv) Let ε = ε1 < ε0. By the maximality of ε1 and reasonings in the proof of Lemma 4.1, a
growth of ε beyond ε1 would make some value (w′)s

i (v) be negative. This can happen only in two
cases: (a) some line Rj with weight −1 is covered by edges of H when ε = ε1, and not covered
when ε > ε1; or (b) some Rj , Rj′ with weight −1 each lie on the same infinite line, the points
u′j and u′j′ move toward each other when ε < ε1 and these points meet when ε reaches ε1 (then
Rj , Rj′ become overlapping for ε > ε1). One can see that, in case (a), u′j meets a vertex v of H
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(when ε = ε1) and the signs of v, uj are different, and in case (b), the signs of uj , uj′ are different
as well. In both cases, δ decreases (cf. (ii)). Case (b) is illustrated in the picture.
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Using these observations, one can conclude that, during the process, β and δ are monotone
nonincreasing and ω is monotone nondecreasing. Moreover, at least one of these values must
change. Hence ηH < ηH, as required. (We leave it to the reader to examine details more carefully
where needed.)

Let h be the concave cocirculation in G determined by H. (The graph G does not change as
it is determined by the list of numbers w(Bs

i ), defined in Section 2, and this list preserves.) To
justify the induction and finish the proof of the theorem, it remains to explain that

(5.1) Ih ⊆ Ih and Oh ⊆ Oh.

Denote by Hε and hε the current honeycomb H′ and the induced concave cocirculation h′ at
a moment ε in the process, respectively. The correspondence between the vertices of Hε and the
flatspaces of hε (explained in Section 2) implies that for each edge e ∈ E(G), the function hε(e)
is continuous within each interval (ε(t), ε(t + 1)) (cf. (i) in the above analysis). We assert that
h′ = hε is continuous in the entire segment [0, ε] as well.

To see the latter, consider the honeycomb Hε(t) for 0 ≤ t < N . When ε starts growing from
ε(t) (i.e., ε(t) < ε < ε(t + 1) and ε− ε(t) is small) the set Q(v) of vertices of H′ = Hε arising from
a vertex v of Hε(t) (by splitting or moving or preserving v) is located in a small neighbourhood
of v. Moreover, for two distinct vertices u, v of Hε(t), the total weight of edges of Hε connecting
Q(u) and Q(v) is equal to the weight of the edge between u and v in Hε(t) (which is zero when
the edge does not exist), and all these edges are parallel. This implies that for each vertex v of
Hε(t), the arising subgrids Gv′ , v′ ∈ Q(v), in G (concerning hε) give a partition of the subgrid Gv

(concerning hε(t)), i.e., the set of little triangles of G contained in these Gv′ coincides with the set
of little triangles occurring in Gv. So h′ is continuous within [ε(t), ε(t + 1)).

Similarly, for each vertex v of Hε(t) (0 < t ≤ N), the subgrid Gv is obtained by gluing together
the subgrids Gv′ , v′ ∈ Q′(v), where Q′(v′) is the set of vertices of Hε (with ε(t − 1) < ε < ε(t))
which produce v when ε tends to ε(t). So h′ is continuous globally. Now since no integral vertex
of the initial honeycomb can move or split during the process (but merely merge with another
vertex of H′ if (E3) happens), we conclude that the cocirculation preserves in all little triangles
where it is integral initially, yielding the first inclusion in (5.1).

The second inclusion in (5.1) is shown in a similar fashion, relying on (E1).
This completes the proof of Theorem 1.2.
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6 Polyhedra C(G, h0) Having Vertices with Big Denominators

In this section we describe a construction proving Theorem 1.3. We start with some definitions
and auxiliary statements.

Given a concave cocirculation h in a concave grid G, the tiling τh is the subdivision of the
polygon R(G) spanned by G into the flatspaces T of h. We also call T a tile in τh. The following
elementary property of tilings will be important for us.

Lemma 6.1 Let F ⊆ E(G), h0 : F → R, and h ∈ C(G, h0) =: C. Then h is a vertex of C if and
only if h is uniquely determined by its tiling, i.e., h′ ∈ C and τh′ = τh imply h′ = h.

Proof. For a little rhombus ρ of G, the fact that the sum of values of h over each of the two
3-circuits in ρ is zero implies that if rhombus inequality (1.1) turns into equality for one pair of
parallel edges in ρ, then it does so for the other pair. Since C is described by a system of linear
constraints where the inequalities are exactly of the form (1.1), h is a vertex of C if and only if
it is uniquely determined by the set Q of little rhombi for which (1.1) turns into equality. Now
observe that each tile in τh one-to-one corresponds to a component of the graph whose vertices
are the little triangles of G and whose edges are the pairs of little triangles forming rhombi in Q.
This implies the lemma.

We will use a re-formulation of this lemma involving honeycombs. Let us say that honeycombs
H = (V, E , w) andH′ = (V ′, E ′, w′) are conformable if |V| = |V ′|, |E| = |E ′|, and there are bijections
α : V → V ′ and β : E → E ′ such that: for each vertex v ∈ V and each edge e ∈ E incident to
v, the edge β(e) is incident to α(v), w(e) = w′(β(e)), and if e is contained in Ξs

i (v), then β(e) is
contained in Ξs

i (α(v)). (This matches the situation when two concave cocirculations in G have
the same tiling.)

Next, for F ⊆ E , we call H extreme with respect to F , or F-extreme, if there is no honeycomb
H′ 6= H such that H′ is conformable to H and satisfies dc(β(e)) = dc(e) for all e ∈ F , where β is
the corresponding bijection. Then the relationship between the tiling of concave cocirculations
and the vertex sets of honeycombs leads to the following re-formulation of Lemma 6.1.

Corollary 6.2 Let F ⊆ E(G), h0 : F → R, and h ∈ C(G,h0). Let H be the honeycomb deter-
mined by h and let F be the subset of edges of H corresponding to sides of tiles in τh that contain
at least one edge from F . Then h is a vertex of C(G,h0) if and only if H is F-extreme.

One sufficient condition on extreme honeycombs will be used later. Let us say that a line ` in
R2 is a line of H if ` is covered by edges of H. Then

(C) H is F-extreme if each vertex of H is contained in at least two maximal lines of H, each
containing an edge from F .

Indeed, if two different maximal lines L,L′ of H intersect at a vertex v, then the constant coor-
dinates of L,L′ determine the dual coordinates of v. One can see that if H′ is conformable to H,
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then the images of L,L′ in H′ are maximal lines there and they intersect at the image of v. This
easily implies (C).

The idea of our construction is as follows. Given a positive integer k, we will devise two
honeycombs. The first honeycomb H′ = (V ′, E ′, w′) has the following properties:

(P1) (i) the boundary B(H′) is partitioned into three sets B′1,B′2,B′3, where B′i consists of the
semiinfinite edges of the form Ξ+

i (·), and w′(B′i) ≤ Ck, where C is a constant;

(ii) the constant coordinates of all edges of H′ are integral;

(iii) H′ is extreme with respect to B′1 ∪ B′2.
The second honeycomb H′′ = (V ′′, E ′′, w′′) has the following properties:

(P2) (i) each semiinfinite edge of H′′ is contained in a line of H′ (in particular, dc(e) is an
integer for each e ∈ B(H′′)), and w′′(B(H′′)) ≤ w′(B(H′));

(ii) there is e ∈ E ′′ such that the denominator of dc(e) is equal to k;

(iii) H′ is extreme with respect to its boundary B(H′′).
Define the sum H′+H′′ to be the honeycomb H = (V, E , w) determined by the pre-honeycomb

in which the line set is the (disjoint) union of E ′ and E ′′, and the weight of a line e is equal to
w′(e) for e ∈ E ′, and w′′(e) for e ∈ E ′′. Then each edge of H is contained in an edge of H′ or H′′,
and conversely, each edge of H′ or H′′ is contained in a line of H. Using this, one can derive from
(P1) and (P2) that

(P3) (i) the boundary B(H) is partitioned into three sets B1,B2,B3, where Bi consists of the
semiinfinite edges of the form Ξ+

i (·), and w(Bi) ≤ 2Ck;

(ii) dc(e) ∈ Z for all e ∈ B(H), and dc(e) has denominator k for some edge e of H;

(iii) H is extreme with respect to B1 ∪ B2.

(Property (iii) follows from (P1)(iii) and (P2)(i),(iii).)
Now consider the grid G and the concave cocirculation h in it determined by H. By (P3)(i), G

is a 3-side grid of size at most 2Ck, with sides B1, B2, B3 corresponding to B1,B2,B3, respectively.
Let F := B1 ∪ B2 and let h0 be the restriction of h to F (considering a side as edge set). Then
(P3) together with Corollary 6.2 implies that G, h0, h are as required in Theorem 1.3.

It remains to devise H′ and H′′ as above. To devise H′ is rather easy. It can be produced by
truncating the dual grid formed by all lines with integer constant coordinates. More precisely, let
n be a positive integer (it will depend on k). For a point x ∈ R2 and i = 1, 2, 3, let xi stand for
the dual coordinate di(x). The vertex set V ′ consists of the points v such that

vi ∈ Z and |vi| < n, i = 1, 2, 3,

v1 − v2 ≤ n, v2 − v3 ≤ n, v3 − v1 ≤ n.

The finite edges of H′ have unit weights and connect the pairs u, v ∈ V ′ such that

|u1 − v1|+ |u2 − v2|+ |u3 − v3| = 2.

The semiinfinite edges and their weights are assigned as follows (taking indices modulo 3):
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• if v ∈ V ′, i ∈ {1, 2, 3}, and vi − vi+1 ∈ {n, n − 1}, then H′ has edge e = Ξ+
i−1(v), and the

weight of e is equal to 1 if vi − vi+1 = n− 1 and vi, vi+1 6= 0, and equal to 2 otherwise.

The case n = 3 is illustrated in the picture, where the semiinfinite edges with weight 2 are drawn
in bold.
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One can check that H′ is indeed a honeycomb and satisfies (P1)(i),(ii) (when n = O(k)).
Also each vertex belongs to two lines of H′, one containing a semiinfinite edge in B′1, and the
other in B′2. Then H′ is (B′1 ∪ B′2)-expreme, by assertion (C). So H′ satisfies (P1)(iii) as well.
Note that the set of semiinfinite edges of H′ is dense, in the sense that for each i = 1, 2, 3 and
d = −n + 1, . . . , n− 1, there is a boundary edge e of the form Ξ+

i (·) such that dc(e) = d.

Next we have to devise H′′ satisfying (P2), which is less trivial. In order to facilitate the
description and technical details, we go in reverse direction: we construct a certain concave
cocirculation h̃ is a convex grid G̃ and then transform it into the desired honeycomb.

The grid G̃ spans a hexagon with S- and N-sides of length 1 and with SW-, NW-, SE-, and
NE-sides of length k. We denote the vertices in the big sides (in the order as they follow in the
side-path) by:

v1. xk, xk−1, . . . , x0 for the SW-side;

v2. x′k, x
′
k−1, . . . , x

′
0 for the NW-side;

v3. y0, y1, . . . , yk for the SE-side;

v4. y′0, y
′
1, . . . , y

′
k for the NE-side.

(Then x0 = x′0 and y0 = y′0.) We also distinguish the vertices zi := xi + ξ1 and z′i := x′i + ξ1

for i = 1, . . . , k (then z0 = z′0, zk = yk, z′k = y′k.) We arrange an (abstract) tiling τ in G̃. It is
symmetric w.r.t. the horizontal line x0y0 and consists of

t1. 2k−2 trapezoids and two little triangles obtained by subdividing the rhombus R := yky0y
′
kz0

(labeled via its vertices) by the horizontal lines passing yk−1, . . . , y0, y
′
1, . . . , y

′
k−1;

t2. the little rhombus ρ := x1z0x
′
1x0;

t3. 4k − 2 little triangles ∆i := xizizi−1, ∇′i := x′iz
′
i−1z

′
i for i = 1, . . . , k, and ∇j := xjxj+1zj ,

∆′
j := x′jz

′
jx
′
j+1 for j = 1, . . . , k − 1.
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Define the function h0 : B(G̃) → Z by:

h1. h0(xixi−1) := h0(x′ix
′
i−1) := i− 1 for i = 2, . . . , k;

h2. h0(x1x0) := h0(x′1x
′
0) := −1 and h0(xkyk) := h0(x′ky

′
k) := 0;

h3. h0(yi−1yi) := h0(y′i−1y
′
i) := −i + 1 for i = 1, . . . , k.

The constructed τ and h0 for k = 3 are illustrated in the picture (the numbers of the boundary
edges indicate the values of h0).
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The tiling τ has the property that h0 (as well as any function on B(G̃)) is extendable to at
most one cocirculation h̃ in G̃ such that h̃ is flat within each tile T in τ , i.e., satisfies h̃(e) = h̃(e′)
for any parallel edges e, e′ in T . This is because we can compute h̃, step by step, using two
observations: (i) the values of h̃ on two nonparallel edges in a tile T determine h̃ on all edges in
T , and (ii) if a side S of a polygon P in G̃ (spanned by a subgraph of G̃) is entirely contained in
a tile, then the values of h̃ on the edges of S are detemined by the values on the other sides of P

(since h̃ is constant on S and h̃(Qc) = h̃(Qa), where Qc (Qa) is the set of boundary edges of P

oriented clockwise (resp. anticlockwise) around P ).
We assign h̃ as follows. First assign h̃(e) := h0(e) for all e ∈ B(G̃). Second assign h̃(z0x1) :=

h̃(z0x
′
1) := −1 (by (i) for the rhombus ρ in τ). Third, for an edge e in the horizontal line z0y0,

assign

h̃(e) :=
1
k

(
h̃(z0x1)− h̃(xkx1) + h̃(xkyk)− h̃(y0yk)

)

=
1
k

(
− 1− (1 + . . . + (k − 1)) + 0− (0− 1− . . .− (k − 1))

)
=

1
k
(−1) = −1/k

(by (ii) for the pentagon z0x1xkyky0, taking into account that the side z0y0 contains k edges),
where h̃(uv) is the sum of values of h̃ on the edges of a side uv. Therefore, h̃(e) = −1/k for all
horizontal edges in the big rhombus R, and we then can assign h̃(zi+1zi) := h̃(z′i+1z

′
i) := i + 1/k

for i = 0, . . . , k − 1 (by applying (i) to the trapezoids and little triangles of τ in R). Fourth,
repeatedly applying (i) to the little triangles ∆1,∇1,∆2, . . . ,∇k−1, ∆k (in this order) that form

17



the trapezoid x1xkykz0 in which h̃ is already known on all side edges, we determine h̃ on all edges
in this trapezoid; and similarly for the symmetric trapezoid z′0y

′
kx
′
kx
′
1.

One can check that the obtained cocirculation h̃ is well-defined, and moreover, it is a concave
cocirculation with tiling τ (a careful examination of the corresponding rhombus inequalities is left
to the reader). Since h̃ is computed uniquely in the process, it is a vertex of C(G̃, h0). Also h̃ is
integral on the boundary of G̃, has an entry with denominator k, and satisfies |h̃(e)| < 2k for all
e ∈ E(G̃). The picture indicates the values of h̃ in the horizontal stripe between the lines xiyi

and xi+1yi+1 for 1 ≤ i ≤ k − 2, and in the horizontal stripe between x1y1 and x′1y
′
1.
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Let H̃ be the honeycomb determined by (G̃, h̃). It is B(H̃)-extreme, by Corollary 6.2, has
all boundary edges integral and has a finite edge with constant coordinate 1/k. We slightly
modify H̃ in order to get rid of the semiinfinite edges e of the form Ξ−i (v) in it. This is done by
truncating such an e to finite edge e′ = vu and adding two semiinfinite edges a := Ξ+

i−1(u) and
b := Ξ+

i+1(u), all with the weight equal to that of e (which is 1 in our case). Here u is the integer
point in Ξ−i (v) \{v} closest to v. (Strictly speaking, when applying this operation simultaneously
to all such edges e, we should handle the corresponding pre-honeycomb, as some added edge may
intersect another edge at an interior point.) The obtained honeycomb H′′ = (V ′′, E ′′, w′′) has all
semiinfinite edges e of the form Ξ+

i (·), with dc(e) being an integer between −2k and 2k. Also
w′′(B(H′′)) < 2|B(G̃)|. This honeycomb is extreme with respect to its boundary since so is H̃ and
since for e′, a, b as above, the constant coordinate of e′ is determined by the constant coordinates
of a, b. Thus, H′′ satisfies (P2) when n > 2k (to ensure that each semiinfinite edge of H′′ is
contained in a line of H′).

Now (G, h) determined by the honeycomb H′ +H′′ is as required in Theorem 1.3.

Remark 2. In our construction of vertex h̃ of C(G̃, h0), the design of tiling τ is borrowed from one
fragment in a construction in [2] where one shows that (in our terms) the polytope of semiconcave
cocirculations in a 3-side grid with fixed integer values on the boundary can have a vertex with
denominator k. Here we call a cocirculation h semiconcave if the inequality (1.1) holds for each
rhombus ρ whose diagonal edge d is parallel to ξ2 or ξ3 (but may be violated if d is parallel to ξ1).

Remark 3. The first honeycomb H′ in our construction turns out to be F ′-extreme for many
proper subsets F ′ of B(H′) and even of B′1 ∪B′2. For example, one can take F ′ := B′1 ∪{e}, where
e is an arbitrary edge in B′2 (a check-up is left to the reader). Moreover, it is not difficult to
produce triples of boundary edges that possess such a property. For each of these sets F ′, the
honeycomb H = H′+H′′ is F-extreme, where F consists of the semiinfinite edges of H contained
in members of F ′. Then, by Corollary 6.2, the constructed concave cocirculation h is a vertex of
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the polyhedron C(G,h
F
) as well, where F is a subset of boundary edges of G whose images in H

cover F (i.e., for each edge ` ∈ F of the form Ξ+
i (·), there is an e ∈ F ∩ Bi with h(e) = dc(`)).

This gives a strengthening of Theorem 1.3.

Remark 4. One can try to describe the above construction implying Theorem 1.3 so as to use
the language of concave cocirculations everywhere. However, this seems to be a more intricate
way. In particular, the operation on a pair h′, h′′ of concave cocirculations analogous to taking the
sum of honeycombs H′,H′′ is less transparent (it is related to taking the convolution of concave
functions behind h′, h′′). This is why we prefer to argue in terms of honeycombs.

7 Concluding Remarks

The proof of Theorem 1.2 in Section 5 provides a strongly polynomial algorithm which, given G

and h, finds h′ as required in this theorem. Indeed, each parameter β, δ, ω is bounded by the
number of edges of G, so the number of iterations (viz. applications of the induction) is O(n),
where n := |E(G)|. As was explained, the number of moments ε when some line L′i captures a
vertex of H or when two vertices u′i, u

′
j meet is O(|V|2), or O(n2), and these moments can be

computed easily. To find ε1 is easy as well. Hence an iteration is performed in time polynomial
in n.

As a consequence, we obtain a strongly polynomial algorithm to solve the following problem:
given a convex grid G and a function h0 : B(G) → Z, decide whether h0 is extendable to a concave
cocirculation in G, and if so, find an integer concave cocirculation h with h

B(G)
= h0. This is

because the problem of finding a concave cocirculation having prescribed values on the boundary
can be written as a linear program of size O(n).

In view of the relationship of concave cocirculations and honeycombs, one can give an analog
of Theorem 1.2 for honeycombs; we omit it here.

In fact, one can slightly modify the method of proof of Theorem 1.2 so as to obtain the
following strengthening: for a concave cocirculation h in a convex grid G, there exists an integer
concave cocirculation h′ satisfying h′(e) = h(e) for each edge e ∈ Oh ∪ I ′h, where I ′h is the set of
edges contained in circuits C of G such that h takes integer values on all edges of edges C. We
omit the proof here.

Next, as mentioned in the Introduction, a cocirculation h in a convex grid G need not ad-
mit an improvement to an integer concave cocirculation in G preserving the values on all edges
where h is integral. (Note that in our proof of Theorem 1.2, a vertex of the original honeycomb
having only one integer dual coordinate may split into vertices not preserving this coordinate.)
A counterexample (G,h) is shown in the picture (the right figure illustrates the corresponding
honeycomb; here all edge weights are ones, the integral edges are drawn in bold, and each of the
vertices u, v, z has one integer dual coordinate).
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One can check that h is determined uniquely by its integer values, i.e., C(G, h
F
) = {h}, where F

is the set of edges where h is integral.

We finish with the following question motivated by some aspects in Section 6. For a convex grid
G, can one give a “combinatorial characterization” for the set of tilings of concave cocirculations
h such that h is a vertex of the polytope C(G,h

B(G)
)?
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