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Abstract

In this paper we study functions on a subset B ⊂ Zn that obey tropical
analogs of classical Plücker relations on minors of a matrix. The most general set
B that we deal with is of the form {x ∈ Zn : 0 ≤ x ≤ a, m ≤ x1 + . . .+xn ≤ m′}
(a rectangular integer box ‘truncated from below and above’). We construct
a basis for the set T P of tropical Plücker functions on B, a subset B ⊆ B
such that the restriction map T P → RB is bijective. Also we characterize, in
terms of the restriction to the basis, the classes of submodular, so-called skew-
submodular, and discrete concave functions in T P, discuss a tropical analogue
of the Laurentness property, and present other results.
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1 Introduction

There are well-known algebraic relations on minors of a matrix. For a positive integer
n, let [n] denote the ordered set {1, 2, . . . , n}. For an n×n matrix M and a set J ⊆ [n],
let ∆J denote the determinant of the submatrix of M formed by the column set J and
the row set {1, . . . , |J |}. Then: (i) for any triple i < j < k of elements of [n] and any
subset X ⊆ [n]− {i, j, k},

∆Xik∆Xj = ∆Xij∆Xk + ∆Xi∆Xjk;

and (ii) for any quadruple i < j < k < ` in [n] and any X ⊆ [n]− {i, j, k, `},

∆Xik∆Xj` = ∆Xij∆Xk` + ∆Xi`∆Xjk,
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where for brevity we write Xij instead of X ∪ {i} ∪ {j} and so on. These equalities
represent simplest cases of so-called Plücker’s relations. (About classical Plücker’s
relations see, e.g., [9]).

Relations as above can be stated in an abstract form; namely, one can consider a
function g on the Boolean cube {0, 1}[n] (or on an appropriate part of it) and impose
the conditions

g(Xik)g(Xj) = g(Xij)g(Xk) + g(Xi)g(Xjk),

and/or
g(Xik)g(Xjl) = g(Xij)g(Xk`) + g(Xi`)g(Xjk),

for X, i, j, k, ` as above (identifying a subset of [n] with the corresponding (0,1)-vector).
Such a function is said to be an algebraic Plücker function, or an AP-function.

Tropical analogs of these relations appear when multiplication is replaced by addi-
tion and addition is replaced by taking maximum; they are viewed as

f(Xik) + f(Xj) = max{f(Xij) + f(Xk), f(Xi) + f(Xjk)}, (1)

and
f(Xik) + f(Xjl) = max{f(Xij) + f(Xk`), f(Xi`) + f(Xjk)}, (2)

(see, e.g., [1, Sec. 2]), and a function f obeying (1) and (2) is said to be a tropical
Plücker function, or a TP-function.

In this paper we do not restrict ourselves by merely the Boolean cube case. We will
also deal with functions defined on more general sets, namely: truncated Boolean cubes
(generalizing both Boolean cubes and hyper-simplexes), integer boxes, and truncated
integer boxes, in which cases relations (1) and (2) are generalized in a natural way (the
definitions will be given later).

Functions satisfying algebraic or tropical Plücker relations have been studied in
literature. Such functions on Boolean cubes are considered by Berenstein, Fomin and
Zelevinsky [1] in connection with the total positivity and Lusztig’s canonical bases;
see also [12]. Henriques [10] considers AP-functions on the set of integer solutions
of the system 0 ≤ xi ≤ m − 1, x1 + . . . + xn = m, and refers to the work of Fock
and Goncharov [7] for results on such functions. The tropical analogs of certain AP-
functions form a subclass of polymatroidal concave functions, or M -functions, studied
by Murota [16]; see also [14]. Tropical Plücker functions in dimensions 3 and 4 are
considered in [3, 13, 20] in connection with the so-called octahedron recurrence. (In
fact, a general TP-function is related to a multi-dimensional analog of the octahedron
recurrence.) An instance of Plücker relations is a relation on six lengths between four
horocycles in the hyperbolic plane with distinct centers at infinity [17]. TP-functions
on a hyper-simplex form a special case of so-called valuated matroids introduced by
Dress and Wenzel [4].

Main results in this paper concern so-called bases of TP-functions. To explain this
notion, consider two special cases: the Boolean cube Cn := 2[n] and a hyper-simplex
∆m

n := {S ⊂ [n] : |S| = m}, where m ∈ {1, . . . , n − 1} (in a general case, a basis is
defined in a similar way; a precise definition will be given later). Let T P(Cn) and
T P(∆m

n ) denote the sets of TP-functions on Cn and ∆m
n , respectively.
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Definition. For B = Cn or B = ∆m
n , a subset B ⊆ B is called a TP-basis, or

simply a basis, if the restriction map res : T P(B) → RB is a bijection. In other words,
each TP-function on B is determined by its values on B, and moreover, values on B
can be chosen arbitrarily.

Note that if B is a basis, then the polyhedral conic complex T P(B) is PL-isomorphic
to the vector space of dimension |B|. In particular, all bases have the same cardinality.

In both cases TP-bases do exist. For the Boolean cube Cn, there is a basis of a
quite simple form, namely, the set Int of intervals in [n] (so the dimension of T P(Cn)

is |Int| = n(n+1)
2

+ 1). For a hyper-simplex ∆n
m, instances of TP-bases are indicated

in [18] (see also [19, 21]); one of them is the collection of all sets S ∈ ∆m
n that are

representable as the union of two disjoint intervals I, I ′ such that I either is empty or
contains the element 1.

(Note that an algebraic analog of the notion of bases for AP-functions has encoun-
tered in literature as well. A construction of such a basis was announced in [10] for the
case of a ‘simplicial slice’ {x ∈ Zn

+ :
∑

xi = m}, with a claim that it could be derived
from results on cluster algebras in [7].)

Our main theorem in this paper (Theorem 1) exhibits a TP-basis for a truncated
integer box, the most general case of our study. This basis is obtained as a natural
generalization of the above-mentioned bases for Cn and ∆m

n ; we call it the standard
basis.

The proof of Theorem 1 uses only combinatorial tools, and a central role in it is
played by a certain flow model, which goes back to a method of constructing TP-
functions on the Boolean cube in [1]. This model generates any TP-function f by use
of maximum weight flows on a certain weighted digraph. As a by-product, for each set
S ⊆ [n], the flow model enables us to represent the value f(S) as a piece-wise linear
convex function

f(S) = max
F

(∑
I∈Int

αF,If(I)
)

,

where F runs over the flows concerning S. (Here for simplicity we consider the Boolean
cube case.) Moreover, the coefficients αF,I belong to {−1, 0, 1, 2}. This can be regarded
as a tropical analogue of the so-called Laurent phenomenon (for the algebraic or tropical
Laurent phenomenon under the octahedron or cube recurrences, see [8, 11, 20]).

In the integer box case, the standard basis, as well as many other (but not all)
ones, can be associated with rhombus tilings of the regular 2n-gone, giving a nice
visualization of the basis. (For various aspects of rhombus tilings, see, e.g., [5, 6, 11].)
For an illustration, let us consider the cube {0, 1}3. The standard basis B consists of
seven intervals, which can be denoted as ∅, 1, 2, 3, 12, 23, 123. There is only one basis
B′ different from B; it is obtained from B by the replacement (mutation) 2 Ã 13. The
cube and the rhombus tilings for B and B′ are drawn in the picture:
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The last group of our results concerns characterizations of special classes of TP-
functions. Using the correspondence between certain bases and rhombus tilings, we
study the classes of submodular and skew-submodular TP-functions f on a box {x ∈
Zn : 0 ≤ x ≤ a}, which means that f satisfies the inequalities of the form

f(x + 1i) + f(x + 1j) ≥ f(x) + f(x + 1i + 1j)

in the former case, and of the form

f(x + 1i + 1j) + f(x + 1j) ≥ f(x + 1i) + f(x + 2 · 1j)

in the latter case, where 1q denotes q-th unit base vector in Zn. It turns out that
each class admits a characterization in terms of the restriction of f to the standard
basis. More precisely, we show that, for a TP-function f , the above submodular (skew-
submodular) inequalities are propagated by the TP3-recurrence, starting from such
inequalities within the standard basis.

The paper is organized as follows. In Section 2 we give necessary definitions and
preliminary facts about TP-functions on boxes and truncated boxes. The main The-
orem 1 is formulated in Section 3. Its proof is long enough and is lasted throughout
this section, Section 4 and the Appendix. The proof of injectivity in the theorem and
a reduction of truncated boxes to boxes are given in Section 3, while Section 4 in-
troduces the flow model and proves the surjectivity (with one assertion postponed to
the Appendix). The Laurent phenomenon for TP-functions is discussed in Section 5.
Relations between bases and rhombus tilings are explained in Section 6. Sections 7, 8
and 9 are devoted, respectively, to submodular, skew-submodular and discrete concave
TP-functions.

It should be noted that some steps in the proof of Theorem 1 in this paper are
alternative to those contained in the preliminary version [2], in which also additional
results on rhombus tilings are presented.

2 Definition and properties of TP-functions

We start with extending the notion of a tropical Plücker function to sets of integer
vectors.

Definition. A function f : D → R defined on a subset D ⊂ Zn is said to be a
TP-function if it satisfies the following TP3- and TP4-relations.
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The TP3-relation has the form

f(x + 1i + 1k) + f(x + 1j) (3)

= max{f(x + 1i + 1j) + f(x + 1k), f(x + 1j + 1k) + f(x + 1i)}

for any x and 1 ≤ i < j < k ≤ n. As before, 1q denotes q-th unit base vector in Zn.
The TP4-relations have the form

f(x + 1i + 1k) + f(x + 1j + 1`) (4)

= max{f(x + 1i + 1j) + f(x + 1k + 1`), f(x + 1i + 1`) + f(x + 1j + 1k)}
for any x and 1 ≤ i < j < k < ` ≤ n. Everywhere in the above we assume that all six
vectors occurring in these relations belong to D.

Remark 1. Instead of R in the definition, one can consider an arbitrary lattice-
ordered Abelian group R, e.g., the group RS for a set S. All subsequent results remain
true for this more general setting. However, for simplicity, we will work with real-valued
functions only.

Example. A function f on Zn is said to be quasi-separable if it is representable as
ϕ1(x1) + . . . + ϕn(xn) + ϕ0(x1 + . . . + xn), where ϕ0, ϕ1, . . . , ϕn are arbitrary functions
in one variable. Clearly any quasi-separable function is a TP-function. Moreover,
addition of any quasi-separable function to a TP-function maintains the TP-relations.

In what follows we assume that the domain D in the above definition of a TP-
function is a so-called truncated box, defined as follows.

For an n-tuple a = (a1, . . . , an) of integers, we refer to |a| := a1 + . . . + an as the
size of a. Let a′ and a′′ be two n-tuples a′ with a′ ≤ a′′. The box B(a′, a′′) consists of
the integer vectors x = (x1, . . . , xn) satisfying the box constraints a′i ≤ xi ≤ a′′i for
all i ∈ [n]. Given integers m′ and m′′ with m′ ≤ m′′, by the truncated box Bm′′

m′ (a′, a′′)
we mean the subset of vectors x ∈ B(a′, a′′) such that m′ ≤ |x| ≤ m′′. The number
m′′ −m′ is regarded as the width of the truncated box. For m′ ≤ m ≤ m′′, the m-th
layer of Bm′′

m′ (a′, a′′) is formed by the vectors of the size m.

If s ∈ Zn then the shift Bm′′
m′ (a′, a′′)+s is a truncated box as well. By this reason, we

usually assume that a′ = 0, denote a′′ simply as a, and write B(a) instead of B(0, a).
Note that the Boolean cube 2[n] is just the box B(1), where 1 = 1n is the all-unit
vector.

We also usually assume, w.l.o.g., that all ai are strictly positive. For if ai = 0, then
the variable i is redundant and can be excluded.

One more observation is useful. For a truncated box B = Bm′′
m′ (a′, a′′), we can form

the reflected box B∗ = B−m′
−m′′(−a′′,−a′). For a TP-function f on B, take the reflected

function f ∗ on B∗, defined by the relations f ∗(x) = f(−x). Then f ∗ is a TP-function
as well.

Three special cases will be important to us. When a is all-unit, we obtain the
truncated Boolean cube Bm′

m (1). When m = m′, we obtain a truncated box Bm
m(a)

with zero width; it is called a slice. When, in addition, a = 1, the slice turns into the
hyper-simplex {S ⊆ [n] : |S| = m}.
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The set of TP-functions on a truncated box B is denoted by T P(B). This is a
cone in the space RB of all functions on B, containing a large lineal formed by the
quasi-separable functions.

To illustrate, let us consider the simplest nontrivial hyper-simplex B2
2(1, 1, 1, 1). It

consists of six two-element subsets in {1, 2, 3, 4}, which may be denoted as 12, 13, 14,
23, 24, 34. By adding an appropriate quasi-separable function, we can assume that a
TP-function is equal to 0 at the points 12,13,14 and 24. Then the unique TP4-relation
takes the form max{f(23), f(34)} = 0. That is, modulo the lineal, the cone of TP-
functions is represented as the union of two rays in R2, namely, R−×{0} and {0}×R−.
In particular, the cone is piecewise-linear-morphic to R5. As we shall see, the latter
property holds in a general case: the set T P(B) is a polyhedral cone PL-morphic to a
vector space.

Next we discuss an interrelation between TP3- and TP4-relations. Each TP4-
relation concerns vectors of the same layer, while each TP3-one ‘connects’ vectors of
two neighboring layers. We assert that the TP4-relations are consequences of TP3-
relations provided that the width of the truncated box is nonzero.

Proposition 1. Let f be a function on a truncated box B = Bm′
m (a) and m < m′.

Suppose f satisfies all TP3-conditions on B. Then f satisfies the TP4-conditions as
well.

Proof First we show validity of (4) for a cortege (x; i, j, k, `) with m < |x|+ 2 ≤ m′.
We are going to deal with only vectors of the form x + 1i′ or x + 1i′ + 1j′ , where
i′, j′ ∈ {i, j, k, `} (i′ 6= j′). For this reason and to simplify notation, one may assume,
w.l.o.g., that x = 0 and (i, j, k, `) = (1, 2, 3, 4) (in which case we, in fact, deal with the
truncated Boolean cube {S ⊂ [4] : 1 ≤ |S| ≤ 2}). So we have to prove that

f(13) + f(24) = max{f(12) + f(34), f(14) + f(23)} (5)

(where for brevity qr stands for 1q + 1r).

We use the following three TP3-relations for f :

f(24) + f(3) = max{f(2) + f(34), f(4) + f(23)}; (6)

f(13) + f(2) = max{f(1) + f(23), f(3) + f(12)}; (7)

f(14) + f(2) = max{f(1) + f(24), f(4) + f(12)}. (8)

Adding f(12) to both sides of (6) gives

f(24) + f(3) + f(12) = max{f(2) + f(34) + f(12), f(4) + f(23) + f(12)}.

If in each side of this relation we take the maximum of the expression there and
f(1) + f(23) + f(24), we obtain

max{f(24) + f(3) + f(12), f(1) + f(23) + f(24)}
= max{f(2) + f(34) + f(12), f(4) + f(23) + f(12), f(1) + f(23) + f(24)}.
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This can be re-written as

max{f(3) + f(12), f(1) + f(23)}+ f(24)

= max{f(2) + f(34) + f(12), max{f(4) + f(12), f(1) + f(24)}+ f(23)}.
The maximum in the left hand side is equal to f(13) + f(2), by (7), and the interior
maximum in the right hand side is equal to f(14) + f(2), by (8). Therefore, we have

f(13) + f(2) + f(24) = max{f(2) + f(34) + f(12), f(14) + f(2) + f(23)}
= max{f(34) + f(12), f(14) + f(23)}+ f(2).

Canceling out f(2) in the left and right sides, we obtain the required equality (5).

Next, let |x|+ 2 = m. This case is reduced to the previous one by considering the
function f ∗ on the reversed box. ¤

Thus, in the definition of TP-functions, explicitly imposed TP4-relations are impor-
tant only when we deal with a slice Bm

m(a), in which case TP3-relations vanish. Note,
however, that in this case we could eliminate the variable xn and obtain a new func-
tion f ′ (of the variables x1, . . . , xn−1) on the new truncated box Bm

m−an
((a1, . . . , an−1)).

This new function f ′ is a TP-function if and only if f is such. Since an > 0, the
new truncated box has a nonzero width, and we again can restrict ourselves by only
TP3-relations. Eventually, only TP3-relations are left.

We conclude this section with one more remark. Let B, B′ be truncated boxes such
that B ⊂ B′, and f ′ a TP-function on B′. Obviously, the restriction of f ′ to B is a
TP-function. We shall see later (in Corollary 1 and Proposition 10) that the converse
property is also true: any TP-function on B can be extended to a TP-function on B′.

3 Main theorem

Let B = Bm′
m (a) be a truncated box. We now introduce an important subset B of B

that we call the standard basis. We need some terminology and notations.

For a nonzero vector x ∈ B(a), let c(x) and d(x) denote, respectively, the first and
last elements (w.r.t. the order in [n]) in the support supp(x) = {i ∈ [n] : xi 6= 0} of x.
We say that x is a fuzzy-interval, or, briefly, a fint, if xi = ai for all c(x) < i < d(x). We
say that x is a sesquialteral fuzzy-interval, or a sint, if x is not a fint and is representable
as the sum of two fints x′, x′′ such that d(x′) < c(x′′), and x′i = ai for i = 1, . . . , d(x′)−1.
When a = 1, a fint turns into an interval {c, c+1, . . . , d} in [n], denoted as [c..d], and a
sint turns into a sesquialteral interval, a set of the form [1..d1]∪ [c2..d2] with c2 > d1+1.

Let Int(a; p) and Sint(a; p) denote the sets of fints and sints of size p in B(a),
respectively. Also we assume by definition that Int(a; 0) = {0} and SInt(a; 0) = ∅.

Definition. The standard basis for a truncated box B = Bm′
m (a) is the set B =

Sint(a; m) ∪ Int(a; m) ∪ Int(a; m + 1) ∪ . . . ∪ I(a; m′).

Observe that the standard basis involves sints only from the lowest layer. In par-
ticular, the set Int(a) := Int(a; 0) ∪ . . . ∪ Int(a; |a|) is the standard basis for the box
B(a), and Sint(a; m) ∪ Int(a; m) is the standard basis for the slice Bm

m(a).
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Theorem 1. The standard basis B for a truncated box B = Bm′
m (a) is indeed a basis

of the set T P(B) of TP-functions on B, i.e., the restriction map res : T P(B) → RB
is a bijection.

In other words, each TP-function on B is determined by its values on B, and
moreover, values on B can be assigned arbitrarily. (This reminds a classical property
of bases of vector spaces with respect to linear mappings. Later, in Section 6, we will
also meet another sort of bases.) Thus, Theorem 1 gives a (piece-wise linear) bijection
between the fan (polyhedral cone) T P(B) and the real vector space RB.

Corollary 1. Any TP-function f on a truncated box Bm′
m (a) can be extended to a

TP-function on the entire box B(a).

Indeed, first we take the restriction of f to the standard basis for Bm′
m (a) and extend

it to the standard basis for B
|a|
m (a) by assigning arbitrary values on Int(a; m′ + 1) ∪

. . . ∪ Int(a; |a|). This determines a TP-function g on B
|a|
m (a) coinciding with f on

Bm′
m (a). Then we consider the reversed function g∗ for g; clearly g∗ is a TP-function on

B−m
−|a|(−a, 0). As above, we can extend g∗ into a TP-function h on the box B(−a, 0).

Now h∗ is the desired extension of f to B(a).

Our proof of Theorem 1 consists of several stages. First we prove injectivity of the
restriction map res (Subsection 3.1), which is relatively easy. The proof of the other
direction in the theorem, that res is surjective, is more complicated. First of all, we
reduce the task to the case of an entire (non-truncated) box (Subsection 3.2). Next we
have to show, in this special case, that an arbitrary function f0 on the standard basis
is extendable to a TP-function f on the box. A naive approach is to try to propagate
f0 to the box, step by step, by using TP3- or TP4-equalities (when, for some x, i, j, k,
the values of f are already constructed for the four arguments in the right hand side
of (3) and for one argument in the left hand side, one can determine the value for
the remaining argument in the left hand side). By such an approach, a difficulty is
to show that the arising function does not depend on the way (route) of propagation
(and therefore, the process terminates with a well-defined TP-function). The approach
we apply in Section 4 is different; it is based on a certain flow model for constructing
TP-functions, which is the core of the whole proof.

3.1 Injectivity

Here we show the easier direction in Theorem 1.

Proposition 2. For B = Bm′
m (a), the restriction map res : T P(B) → RB

is injective, i.e., any TP-function on B is determined by its values within B =
Sint(a; m) ∪ Int(a; m) ∪ Int(a; m + 1) ∪ . . . ∪ I(a; m′).

Proof Let f ∈ T P(B) and x ∈ B. Using relations TP3 and TP4, we show that f(x)
can be expressed via the values of f on B. To provide induction, we assign to x the
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following four numbers:

α(x) is the maximal i ∈ [n] such that xi > 0;

β(x) is the maximal i ∈ [n] such that i < α(x) and xi < ai; (9)

γ(x) is the maximal i ∈ [n] such that i < β(x) and xi > 0;

δ(x) is the maximal i ∈ [n] such that i < γ(x) and xi < ai;

Observe that all these numbers exist if x is neither a fint (fuzzy-interval) nor a sint
(sesquialteral fuzzy-interval), and that α(x) and β(x) exist if x is not a fint. Assuming
that x 6∈ B, define

η(x) := |a|(γ(x) + α(x)) + xγ(x) + xα(x), (10)

Consider two cases.

Case 1 : |x| = m. We show that f(x) is determined, via TP4-relations, by the
values of f within Sint(a; m) ∪ Int(a; m).

Put i := δ(x), j := γ(x), k := β(x), and ` := α(x). Then i < j < k < `. Put
x′ := x−1j−1` and form five vectors B := x′+1i+1k, C := x′+1i+1j, D := x′+1k+1`,
E := x′ + 1i + 1`, and F := x′ + 1j + 1k. From the definitions in (9) it follows that
these vectors belong to B (and are of size m). By (4) (with x′ instead of x), f(x) is
computed from the values of f on B,C,D,E, F . Also one can check that each of the
latter vectors either is a fint or is a sint or the value of η on it is strictly less than η(x).

So we can apply induction on η (the inductive process of computing f on the lowest
layer Bm(a) has as a base the family Sint(a; m) ∪ Int(a; m)).

Case 2 : |x| > m. We show that f(x) is determined, via TP3-relations, by the values
of f within Sint(a; m) ∪ Int(a; m) ∪ . . . ∪ Int(a; |x|). We may assume that x is not a
fint. Put i := γ(x), j := β(x), and k := α(x); then i < j < k. Put x′ := x − 1i − 1k.
By (3) (with x′ instead of x), f(x) is computed via the values of f on the vectors

B := x′ + 1j, C := x′ + 1i + 1j, D := x′ + 1k, E := x′ + 1j + 1k, F := x′ + 1i

(each of which belongs to B, in view of (9) and |x| > m). One can check that, for
each of B, C, D, E, F , at least one of the following is true: it is a fint; it belongs to the
preceding layer; the value of η on it is less than η(x). So we can apply induction on
the layer number and on η. ¤

3.2 Surjectivity: a reduction to entire box

We start proving the other direction in Theorem 1, i.e., that the restriction map

res : T P(Bm′
m (a)) → RB

is surjective, where B = Sint(a; m)∪Int(a; m)∪Int(a; m+1)∪ . . .∪Int(a; m′). Denote
this statement as Surj(m,m′).

Observe that Surj(m, |a|) implies Surj(m,m′). Indeed, let f0 be a function on
Sint(a; m)∪Int(a; m)∪. . .∪I(a; m′). Extend it arbitrarily to the larger set Sint(a; m)∪
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Int(a; m) ∪ . . . ∪ I(a; |a|). Assuming that Surj(m, |a|) is valid, this extension can be

further extended into a TP-function f on B
|a|
m (a). Then the restriction of f to Bm′

m (a)
is a TP-extension of f0, yielding Surj(m,m′).

Thus, it suffices to prove validity of Surj(m, |a|), which we now denote simply as
Surj(m). We prove it by induction on m. The base Surj(0) of the induction will be
proved in the next section, and now we perform an induction step.

Lemma 1. Surj(m− 1) implies Surj(m).

Proof Let f0 be a function on Sint(a; m)∪ Int(a; m)∪ Int(a; m+1)∪ . . .. Our aim is
to construct a function g0 on Sint(a; m− 1)∪ Int(a; m− 1)∪ Int(a; m)∪ . . . satisfying
the following conditions:

(a) g0 and f0 are equal on the set Int(a; m) ∪ . . . ∪ Int(a; |a|); and

(b) the TP-function g on Bm−1(a) with res(g) = g0 (which exists due to validity of
Surj(m− 1) and is unique due to Proposition 2) satisfies

g(x) = f0(x) for each x ∈ Sint(a; m). (11)

Then (a),(b) imply that the restriction f of g to Bm(a) is a TP-function possessing the
desired property res(f) = f0.

We define the function g0 as follows.

For y ∈ Sint(a; m − 1) ∪ Int(a; m − 1), let p = p(y) denote the minimal number
such that yp < ap. We refer to p(y) as the insertion point for y and denote the vector
y + 1p by y↑. The vector y↑ has the size m and lies in Bm(a). Moreover, y↑ is either a
fint or a sint. Define

g0(y) := f0(y
↑) + Mt(y),

where M is a large positive number (w.r.t. f0) and t(y) := yp+1 + . . . + yn.

We assert that g0 defined this way satisfies (11). To show this, consider x ∈
Sint(a; m). Let α(x), β(x), γ(x) be defined as in (9) (they exist, since x is not a
fint), and assign the parameter η(x) as in (10). Put i := γ(x), j := β(x) and k = α(x).
By the TP3-relation for the function g and the cortege (x− 1i − 1k; i, j, k), we have

g(x) = max{g(C) + g(D), g(E) + g(F )} − g(B), (12)

where B := x−1i +1j−1k, C := x+1j−1k, D := x−1i, E := x−1i +1j, F := x−1k.
We observe the following, letting Σ := xi+1 + . . . + xn.

(i) The vectors C and E have the size m, C is either a fint or a sint with η(C) <
η(x), and similarly for E. So, applying induction on η, we have g(C) = f0(C) and
g(E) = f0(E).

(ii) The vector B has the size m−1 and its insertion point is i. Then B↑ = B+1i =
C. Also t(B) = Σ + 1− 1 = Σ, whence g(B) = f0(C) + MΣ.

(iii) The vector D has the size m−1 and its insertion point is i. Then D↑ = D+1i =
x. Also t(D) = Σ, whence g(D) = f0(x) + MΣ.

(iv) The vector F has the size m− 1 and its insertion point is at least i. This and
Fk = xk − 1 imply t(F ) ≤ Σ− 1, whence g(F ) ≤ f0(F

↑) + MΣ−M .

10



Since M is large and t(D) ≥ t(F ) + M (by (iii),(iv)), the maximum in (12) is
attained by the first sum occurring there. Therefore, in view of (i)–(iii),

g(x) = g(C) + g(D)− g(B) = f0(C) + (f0(x) + MΣ)− (f0(C) + MΣ) = f0(x),

as required, yielding the lemma. ¤

4 Flow model

In this section we prove surjectivity of the restriction map res in Theorem 1 for the
case of an entire box (then surjectivity in a general case follows by explanations in
Subsection 3.2). The goal is to show that any function on the standard basis can be
extended to a TP-function on the box. To construct the required TP-functions we
develop a certain flow model.

We first describe the model for the case when a box is the Boolean cube C := 2[n] =
B(1, . . . , 1). Our flow method in this case has as a source a construction of instances
of tropical Plücker functions in [1].

4.1 The case of Boolean cube

We form the following directed graph (digraph) Γ = Γn = (V, E). The vertex set V
consists of elements vpq for p, q ∈ [n] such that q ≤ p. The edge set E consists of the
pairs (vpq, vp′q′) such that either p′ = p − 1 and q′ = q, or p′ = p and q′ = q + 1. We
visualize this digraph by identifying each vertex vpq with the point (p, q) in the plane.
The vertices v11, . . . , vn,1, located in the bottommost horizontal line of Γ, are referred
to as the sources and denoted by s1, . . . , sn, respectively. The vertices v11, . . . , vn,n,
located in the diagonal of Γ, are referred to as the sinks and denoted by t1, . . . , tn,
respectively. Note that Γ is acyclic and any maximal path in it goes from a source to
a sink. The digraph Γ5 is illustrated in the picture:

d d d d d

d d d d

d d d

d d

d
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Definition. By an (admissible) flow we mean a collection F = (P1, . . . , Pk) of
pairwise disjoint paths P1, . . . , Pk in Γ, each path beginning at a source and ending at
a sink among the first |F| sinks t1, . . . , tk.

Consider a weighting w : V → R on the vertices; the weight w(vpq) of a vertex
vpq is also denoted as wpq. The weight w(P ) of a path P is defined to be the sum of
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weights w(v) of the vertices v of P , and the weight w(F) of a flow F = (P1, . . . , Pk) is
w(P1) + . . . + w(Pk). For a subset S ⊆ [n], define

fw(S) := max{w(F)}, (13)

where the maximum is taken over all admissible flows F in Γ beginning at the set
{sp : p ∈ S}.

The following assertion (generalized by Theorem 2′ in Section 4) plays the key role.

Theorem 2. Let w be a weighting on the vertex set V of Γ as above. Then fw

defined by (13) is a TP-function on the Boolean cube C = 2[n].

This is a special case of Theorem 2.4.6 in [1] where, instead of Γ as above, one
considers an arbitrary planar digraph (embedded in the plane) in which the sources
s1, . . . , sk and the sinks t1, . . . , tn are disjoint (which is not important) and follow in
succession clockwise and anti-clockwise, respectively, in the boundary of the digraph.
However, the question of possibility of generating all TP-functions on C by this method
is beyond that paper.

We show that the flow model as above constructs almost all TP-functions. Here
‘almost’ is because fw obeys the evident relation fw(∅) = 0 (and this is a unique
restriction, in essense). We say that a function f on C is normalized if f(∅) = 0.
(In fact, we can deal with only normalized functions since no TP-relation involves the
empty set. Note also that any TP-function can be considered up to adding a constant,
but now this is not important to us.) Let T P0(C) denote the set of normalized TP-
functions on C. Accordingly, we exclude {∅} from the standard basis and denote the
set of non-empty intervals in [n] by B0.

Proposition 3. For every function g : B0 → R, there exists a weighting w such that
g(I) = fw(I) for all intervals I ∈ B0. Moreover, w is unique and the correspondence
of g and w gives an isomorphism between the vector spaces RB0

and RV .

Taken together, Theorem 2 and Propositions 2 and 3 imply that the mapping
RB0 → T P0(C) is bijective. This gives Theorem 1 in the case of Boolean cube.

Proposition 3 is easy. Indeed, for each interval I = [c..d], there exists only one
admissible flow F having the source set {sp, p ∈ I}. This flow consists of the paths
P1, . . . , Pd−c+1, where each Pi begins at the source si for i := c+ i− 1, ends at the sink
ti, and is of the form

Pi = (si = vi,1, vi,2, . . . , vi,i, vi−1,i, . . . , vi,i = ti).

(Hereinafter we use notation for a path without indicating its edges.) The picture
below illustrates the flow F for the interval I = {3, 4} in the case n = 5.

12



t t t t d

t t t d

d d d

d d

d

¾¾

¾¾
6

s1 s2 s3 s4 s5

t1

t2

t3

t4

t5

Thus, for an interval I = [c..d], the value fw(I) is equal to sum of weights of those
vertices of Γ that lie in the trapezoid within [d]× [d− c + 1]:

fw(I) =
∑

(wpq : q ≤ p ≤ d, q ≤ d− c + 1). (14)

This defines a linear mapping from the space RV of weights to the space RB0
of functions

on the set of non-empty intervals. The fact that this mapping is an isomorphism follows
from two observations.

I. These vector spaces have the same dimension. Indeed, there exists a natural
bijection between the sets V and B0, namely, (p, q) 7→ Ip,q := [p− q + 1..p].

II. The mapping is injective. Indeed, let w 6= 0 and let (p, q) be a minimal pair in
V (w.r.t. the natural partial order on Z2) such that wpq 6= 0. Then (14) implies

fw(Ipq) =
∑

i≤p, j≤q

wij = wpq 6= 0,

and therefore, fw 6= 0.

This gives Proposition 3.

Remark 2. One can explicitly define the weighting w by the following formula:

wpq = f(Ipq)− f(Ip−1,q)− f(Ip,q−1) + f(Ip−1,q−1), (15)

letting f(Ipq) := 0 if q = 0 or p < q.

Remark 3. One can propose a direct flow model for the case of truncated Boolean
cube Bm′

m (1n). The vertices are the integer points (p, q) of the plane such that:

(a) either q = 1 and p = 1, . . . , m− 1 (the initial part);

(b) or m ≤ p ≤ n, 1 ≤ q ≤ m′ and q ≤ p (the main body).

The edges in the main body are assigned as before. Besides, there is an edge from each
vertex (p, 1) of the initial part to the vertex (m, p). The digraph for n = 6,m = 4 and
m′ = 5 is drawn in the picture:
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The set of sources is {(p, 1), 1 ≤ p ≤ n}. The set of sinks consists of the points (m, q)
for 1 ≤ q ≤ m and the points (p, p) for m < p ≤ m′ (in the above picture they are
indicated by black circles). Weights wpq are arbitrary for (p, q) with p > m and zero
for p ≤ m. Admissible flows and the function fw are defined similarly to the above
case. Note that if m ≤ |S| ≤ m′ then an admissible flow from {sp : p ∈ S} does exist;
so the value fw(S) is well-defined.

One can check that if S is an interval of size between m and m′ or a sesquialteral
interval of size m, then there exists a unique flow for it. This implies that the weighting
w is determined by the values fw(S) for S ∈ Sintm∪ Intm∪ . . .∪ Intm′ , and vice versa.
The arguments below are applicable to this model as well, yielding surjectivity for
truncated cubes.

4.2 The case of an entire box

Let B = B(a) be an arbitrary box. We associate to it an auxiliary digraph Γa = (V,E).
To define the latter, we need some notation and terminology.

For i = 0, 1, . . . , n, denote a1 + . . . + ai by ai (in particular, a0 = 0), and let
N := an = |a|. The ordered set [N ] is naturally partitioned into intervals (blocks)
L1, . . . , Ln, where Li is the interval from ai−1 + 1 to ai.

The vertex set V consists of the pairs (p, q) ∈ [N ]× [N ] such that:

(a) q ≤ p, and

(b) if p lies in a block Li then q ≥ p− ai−1.

We assign an edge from a vertex (p, q) to a vertex (p′, q′) in the following two cases:

(c) (p′, q′) is either (p + 1, q) or = (p, q + 1);

(d) p = ai + 1, q < ai, p′ = ai−1 + q, and q′ = q.

(If a = (1, . . . , 1), we just obtain the previous digraph Γn.) The picture illustrates Γa

for a = (2, 3, 1).
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As before, the vertices on the diagonal are assigned to be the sinks; these are
t1 = (1, 1), t2 = (2, 2), . . . , tN = (N, N). As to the sources, one can assign them to
be the vertices (ai−1 + q, q) for 1 ≤ q ≤ ai, i = 1, . . . , n (lying on the diagonals of
squares whose lower sides correspond to blocks in the bottommost horizontal line). We
prefer, however, to consider the sources s1, . . . , sN as extra vertices, place them at the
points (1, 0), . . . , (N, 0), respectively, and connect each source sp by outgoing edge to
the vertex (p, p − ai−1) if p lies in i-th block Li. The extended digraph is denoted by

Γ̃a. Note that this graph remains planar as before though in the visualization (see the
picture) some edges are crossing.
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As before, an (admissible) flow consists of pairwise disjoint paths in Γ̃a going from
a set S ⊆ [N ] of sources to the sinks t1, . . . , t|S|. (Speaking of a flow from S, we mean
a flow from {sp : p ∈ S}.) Given a weighting w : V → R, the function fw on the set
2[N ] is defined as in (13).

At this point, there is one important difference from the Boolean case: for some
subsets S ⊂ [N ], no flow from S exists; in this case we formally define fw(S) := −∞.
Nevertheless, our embedding of the box B(a) to the cube 2[N ] is arranged so that a
flow exists for the image of any element of the box.

More precisely, we associate to a vector x ∈ B(a) the subset [x] = (a0 + [x1]) ∪
. . . ∪ (an−1 + [xn]) of [N ] (letting [0] := ∅). In other words, [x] consists of xi beginning
elements of each block Li. We call such a set left-squeezed. One can check that a flow
does exist for any left-squeezed subset S ⊆ [N ], whence fw(S) is finite. The desired
function on B(a), for which we use the same notation fw, is defined in a natural way:
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fw(x) := fw([x]) for each x ∈ B(a).

Theorem 2′ (a generalization of Theorem 2). Let w be a weighting on Γa. Then
the function fw on B(a) is a TP-function.

(Note that this does not follow from Theorem 2.4.6 in [1] since in general we cannot

embed Γ̃a in the plane so that all sources and sinks occur in the boundary of the graph.)
Theorem 2′ together with the next proposition implies the surjectivity of res in the
box case.

Proposition 3′ (a generalization of Proposition 3). For any function g on the set
Int0(a) of non-zero fuzzy-intervals, there exists a weighting w on Γa = (V, E) such that
g(x) = fw(x) holds for all x ∈ Int0(a). Moreover, w is unique and the correspondence
of g and w gives an isomorphism between the vector spaces RInt0(a) and RV .

This is proved similarly to the proof of Proposition 3. Let x be a fint and let [c..d]
be its support (in [n]). If c = d of if xc = ac, then the set [x] is an interval in [N ]. In a
general case, [x] consists of two intervals: [x]∩Lc and [x]∩[ac+1..N ] = [ac+1..ad−1+xd].
Analysing the construction of Γa, one can realize that in all cases there exists a unique
admissible flow from the set of sources corresponding to [x]. This gives a linear mapping
from the space RV of weightings to the space of functions on Int0(a). These spaces
have the same dimension and the mapping is injective. Hence, the mapping is an
isomorphism. ¤

Proof of Theorem 2′ It is based on a technique of flow rearrangements.

We have to show validity of TP3-relation (3) for the function fw on B(a) and a

cortege (x; ĩ, j̃, k̃) in B(a) (with ĩ < j̃ < k̃). The operator [] transfers the six vectors
occurring as arguments in this relation into six left-squeezed sets in [N ]. Moreover, one
can see that the latter sets are of the form Xik, Xj, Xij,Xk, Xi,Xjk with i < j < k
and X ⊆ [N ] − {i, j, k}, and that the above relation turns into the Boolean TP3-
relation (1) involving these sets and the function f = fw on the cube 2[N ] determined
by the weighting w on Γa. So our aim is to show validity of the latter TP3-relation.
We will use the following result, which will be proved in the Appendix.

Proposition 4. Let X, i, j, k be as above.

(a) Let F be a flow from Xij, and F ′ a flow from Xk in Γ̃a. Then the union of
these flows can be rearranged as the union of a flow F1 from Xik and a flow F2 from
Xj. A similar property is true for flows from the sets Xjk and Xi.

(b) Let F be a flow from Xik, and F ′ a flow from Xj in Γ̃a. Then the union of
these flows can be rearranged as the union of flows F1 and F2 such that: either F1 goes
from Xij and F2 goes from Xk, or F1 goes from Xjk and F2 goes from Xi.

(Here the rearrangement means that each vertex (or edge) of Γa is covered by the flows
in the first union as many times as it is covered by the flows in the second union.)

Using this proposition, we finishes the proof of Theorem 2′ as follows. Let F
be a flow from Xij such that f(Xij) = w(F), and F ′ a flow from Xk such that
f(Xk) = w(F ′), where f := fw. By (a) in Proposition 4, there exist a flow F1

from Xik and a flow F2 from Xj such that w(F1) + w(F2) = w(F) + w(F ′). Since
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f(Xik) ≥ w(F1) and f(Xj) ≥ w(F2), we have

f(Xik) + f(Xj) ≥ f(Xij) + f(Xk).

Similarly we have the inequality

f(Xik) + f(Xj) ≥ f(Xjk) + f(Xi).

Arguing in a similar way and using (b) in Proposition 4, we obtain

f(Xik) + f(Xj) ≤ max{f(Xij) + f(Xk), f(Xi) + f(Xjk)}.
These three inequalities give the desired TP3-relation.

This completes the proof of Theorem 2′ and the proof of Theorem 1. ¤ ¤

5 The tropical Laurent phenomenon

Consider a TP-function f on the Boolean cube 2[n], and a subset S ⊆ [n]. We have
seen that the value f(S) can be computed (by use of the operations of addition, sub-
traction and taking the maximum) via the values f(I), where I runs over the set Int
of intervals in [n]. Thus, f(S) can be regarded as a function of variables f(I), I ∈ Int.
Moreover, it is a piecewise linear function. A remarkable feature is that the function is
convex! Equivalently, this function is a tropical Laurent polynomial. Such a behavior
of TP-functions w.r.t. the standard basis is a sample of the so-called tropical Laurent
phenomenon (cf. [8]).

More precisely, a tropical Laurent polynomial (of variables ξe) is the maximum of
a finite collection of tropical Laurent monomials. A tropical Laurent monomial is an
integer linear form of ξe. So a tropical Laurent polynomial is expressed as

P (ξ) = max
j

(∑
e
aj,eξe

)
,

where the coefficients aj,e are integer.

Proposition 5. Let f be a TP-function f on the Boolean cube 2[n], and S ⊆ [n].
There exists a tropical Laurent polynomial PS of variables associated with intervals
I ∈ Int such that

f(S) = PS(f(I), I ∈ Int).

Moreover, all coefficients of linear forms involved in PS belong to {−1, 0, 1, 2}.
(Note that the lower and upper bounds –1 and 2 on the ‘tropical monomial’ co-

efficients in this expression are similar to those on the exponents of face variables es-
tablished by Speyer and stated in the Main Theorem of [20], where algebraic Laurent
polynomials are considered.)

Proof We know (from Theorem 2 and Proposition 3) that f is determined by a
weighting w, a function on the set V of vertices of the digraph Γ. More precisely,

f(S) = max{w(F) : F ∈ ΦS}, (16)

17



where ΦS is the set of admissible flows going from S. Thus, we have a representation
of f(S) as a tropical polynomial, but of variables wv for v ∈ V . Here each monomial
corresponds to a flow in ΦS. Recall that each variable wv is linearly expressed via the
values of f on intervals (see (15)):

wv =
∑

I∈Int
hv(I)f(I), (17)

where each coefficient hv(I) is 0, 1 or –1. Taking the sum of weights wv over the set
of vertices v covered by a flow F and substituting it into (16), we obtain the desired
tropical Laurent polynomial:

f(S) = max
F∈ΦS

(∑
I∈Int

hF(I)f(I)
)

, (18)

where hF(I) :=
∑

v∈F hv(I).

It remains to show that the coefficients hF(I) are between –1 and 2.

To show this, consider a path P in a flow F . For an intermediate vertex v = vpq of
P , we say that P makes right turn at v if the edge e of P entering v is horizontal (i.e.,
e = (vp+1,q, v)) while the edge e′ leaving v is vertical (i.e., e′ = (v, vq+1)), and say that
P makes left turn at v if e is vertical while e′ is horizontal. Also if the first edge of
P is horizontal, we (conditionally) say that P makes left turn at its beginning vertex
as well. Let hP denote the sum of functions hpq over the vertices vpq contained in P .
The values of hP on the intervals can be calculated by considering relations in (15) and
making corresponding cancelations when moving along the path P . More precisely,
one can see that

(i) if P makes left turn at vpq, then hP ([p−q+1..p]) = 1 and hP ([p−q+1..p−1]) = −1
(unless q = 1, in which case the interval [p− q + 1..p− 1] vanishes);

(ii) if P makes right turn at vpq, then hP ([p−q+1..p]) = −1 and hP ([p−q+1..p−1]) =
1; and

(iii) hP (I) = 0 for the remaining intervals I in [n].

This enables us to estimate the values of hF , i.e., of the sum of the functions hP over
the paths P in F . Consider an interval I = [c..d]. Since the paths in F are disjoint,
(i)–(iii) show that there are at most two paths P such that hP (I) 6= 0. Therefore,
|hF(I)| ≤ 2. Suppose hF(I) = −2. Then hP (I) = hP ′(I) = −1 for some (neighboring)
paths P, P ′ in F . In view of (i)–(iii), this can happen only if one of these paths makes
right turn at the vertex vpq with p = d and q = d − c + 1, while the other path
makes left turn at the vertex vp+1,q+1. But then P, P ′ must intersect (see Fig. 1(a)); a
contradiction.

Thus, −1 ≤ hF(I) ≤ 2, as required. (In fact, hF(I) = 2 is possible; in this case
there are two paths in F , one making left turn at vd,d−c+1, and the other making right
turn at vd+1,d−c+2. See Fig. 1(b).) ¤

Remark 4. Each flow F in expression (16) (or (18)) is essential. Indeed, if in the
digraph Γ we put unit weights wv for the vertices v covered by F and zero weights for
the other vertices, then F is the unique maximum-weight flow in ΦS for this weighting.
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Figure 1: (a) hF(I = [p− q + 1..p]) = −2; (b) hF([p− q + 1..p]) = 2.

So the number of linear pieces (slopes) in (18) is just |ΦS|. Next, adding an appropriate
expression to each sum in the maximum, one can re-write (18) in the form

f(S) = max
{∑

I∈Int
h′F(I)f(I) : F ∈ ΦS

}

−
∑

(f(I) : I ∈ Int, I ⊆ [min(S) + 1.. max(S)− 1]) ,

where all coefficients h′F(I) are nonnegative integers not exceeding 3.

Remark 5. The admissible flows figured in (18) can be replaced by somewhat
simpler objects. For k ∈ Z+, let us say that a triangular array A = (aij), 1 ≤ j ≤ i ≤ k,
is a semi-strict Gelfand-Tsetlin pattern of size k if ai,j−1 < aij ≤ ai+1,j−1 holds for all
i, j. (Classical Gelfand-Tsetlin patterns are defined by the non-strict inequalities in
both sides.) The tuple a11 < a21 < . . . < ak1 is called the shape of A. For each
S ⊆ [n], there is a bijection between the set ΦS of admissible flows going from S and
the set of semi-strict GT-patterns of size |S| with the shape p1 < . . . < p|S|, where
S = {p1, . . . , p|S|}.

Indeed, given F ∈ ΦS, let Pi be the path in F beginning at spi
. Let Vi be the set

of vertices entered by vertical edges of Pi plus the source spi
. The second coordinate

of the vertices in Vi runs from 1 through i (along Pi) and we denote these vertices as
vaij ,j, j = 1, . . . , i. Then the admissibility of F implies that the arising triangular array
(aij) is a semi-strict GT-pattern of size |S|. Conversely, given a semi-strict pattern A
of size k with ak1 ≤ n, one can uniquely construct an admissible flow F in which the
vertices entered by vertical edges are just vaij ,j for i = 1, . . . , k and j = 2, . . . , i, and
the sources are vai1,1 = sai1

, i = 1, . . . , k.

For a semi-strict GT-pattern A of shape p1 < . . . < pk ≤ n and a TP-function f on
2[n], define

f̂(A) :=
∑

i,j
∆f([aij − j + 1..aij]),

where for an interval I = [c..d],

∆f(I) := f(I) + f(I − {c, d})− f(I − {c})− f(I − {d})
if c < d, and ∆f(I) := f(I) if c = d (assuming f(∅) = 0). One can check that for an

admissible flow F and its corresponding semi-strict GT-pattern A, f̂(A) is equivalent
to

∑
I∈Int hF(I). This and Proposition 5 give the following

Corollary 2. For a TP-function f on 2[n] and a subset S = {p1, . . . , p|S|} ⊆ [n]
with p1 < . . . < p|S|, one holds

f(S) = max{f̂(A)},
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where the maximum is taken over all semi-strict GT-patterns A with the shape p1 <
. . . < p|S|.

Remark 6. In the case of a truncated Boolean cube Bm′
m (1n), the tropical Laurent-

ness property for the TP-functions w.r.t. the standard basis B is shown in a similar
way as for the entire cube 2[n]. Then Proposition 5 is generalized as follows (see [2]).

Proposition 6. Let f be a TP-function on a truncated Boolean cube B = Bm′
m (1n),

and let S ∈ B. Then

f(S) = max
F

(∑
X∈B

hF(X)f(X)
)

,

where B is the standard basis for B. Also each coefficient hF(X) in this expression is
in {−1, 0, 1, 2}.

Finally, using a similar approach and considering flows in the digraph Γa defined in
Subsection 4.2, one can show the tropical Laurentness property for the TP-functions
on a box (see [2] for details).

Proposition 7. Let f be a TP-function on a box B(a), and let x ∈ B(a). Then
the value f(x) is expressed as

f(x) = max
F

(∑
I∈Int(a)

hF(I)f(I)

)

(where F concerns flows in Γa), and all coefficients hF(I) are in {−1, 0, 1, 2}.

6 Bases and rhombus tilings

So far we have been concerned only with the standard basis. In this section we confine
ourselves by considering an entire n-dimensional box B(a) and deal with a class of bases
that can be produced from the standard basis by a series of elementary transformations
and have a nice graphical representation. (Recall that a (TP-)basis for B(a) is a subset
B ⊆ B(a) such that the restriction map res : T P(B(a)) → RB is a bijection.)

Suppose that a basis B for B(a) contains the four vectors occurring in the right
hand side of an instance of TP3-relation (3) and one vector in the left hand side, i.e.,
vectors x + 1i + 1j, x + 1k, x + 1j + 1k, x + 1i and x′ ∈ {x + 1i + 1k, x + 1j} for some
x ∈ B(a) and i < j < k. It is easy to see that replacing in B the element x′ by the
other element x′′ of {x + 1i + 1k, x + 1j} (which is, obviously, not in B) makes a basis
as well. Such a transformation is said to be a (TP3-)mutation, or a flip, of B and we
use notation x′ Ã x′′ for it.

Thus, starting from the standard basis Int(a) (consisting of the fuzzy-intervals),
one can produce other bases by making arbitrary sequences of flips. Let M = M(a)
be the set of all bases obtained in this way. (It is open for us whether M contains all
bases for B(a).)

We are interested in a certain subclass ofM. It concerns a special sort of mutations.
More precisely, for x, i, j, k as above, we allow to apply the mutation x′ Ã x′′ only if the
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vectors x and x+1i+1j+1k belong to the basis B as well. In this case we (conditionally)
call the mutation (flip) normal and use the same adjective for a basis obtained by a
series of such mutations from Int(a). It turns out that the normal bases one-to-one
correspond to the rhombus tilings of the zonogon related to B(a). A rhombus tiling is
constructed as follows.

In the upper half-plane R× R+, take n-vectors ξ1, . . . , ξn so that: (i) these vectors
have Euclidean norm 1 and are ordered clockwise around (0, 0), and (ii) all integer
combinations of these vectors are different. Then the set

Z(a) := {λ1ξ1 + . . . + λnξn : 0 ≤ λi ≤ ai, i = 1, . . . , n}

is a 2n-gone (when ai > 0 for all i). Moreover, it is a zonogon, that is, the sum of
n segments [0, aiξi], i = 1, . . . , n. Also it is the image of a linear projection π of the
convex box

∏
i∈[n][0, ai] = convB(a) into the plane, namely, π(x) = x1ξ1 + . . . + xnξn.

A rhombus tiling D is a subdivision of the zonogon Z(a) into rhombi with side length
1. It is easy to see that these rhombi have the form q +{λiξi +λjξj : 0 ≤ λi, λj ≤ 1} for
some i < j and a point q ∈ π(B(a)). The tiling D can also be regarded as a directed
planar graph whose vertices and edges are the vertices and side segments of the rhombi,
respectively. Each edge e corresponds to a parallel translation of some vector ξi and is
directed accordingly. Two instances are illustrated in Fig. 2.
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Figure 2: Two instances of tilings for n = 4 and a = (1, 1, 2, 1).

Especially we are interested in the vertex set V (D) of D because, as we shall see
later, its pre-image π−1(V (D)) gives a basis for B(a). For example, the standard basis
for B(a) corresponds to the ‘standard rhombus tiling’ drawn in the left side of Fig. 2.

The standard rhombus tiling can be constructed by induction. Assume a1 > 0 and
let D′ be the standard rhombus tiling of the zonogon Z(a− 11). The zonogon Z(a) is
the sum of the zonogon Z(a− 11) and the segment [0, ξ1]. In other words, Z(a) is the
union of Z(a− 11) and the strip L + [0, ξ1], where L is the left half of the boundary of
Z(a−11). Now the standard tiling D of Z(a) is obtained by adding to D′ all rhombi of
the form E + [0, ξ1], where E runs over all unit segments of L. See the picture below.
If a1 = 0, we work with a2, and so on.
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A similar induction is used to show that the vertices of the standard tiling corre-
spond to the fuzzy-intervals in B(a). Such a correspondence takes place in a general
case.

Theorem 3. For any rhombus tiling D, the set V (D) is a basis for the box B(a).

To prove this theorem, we define the operation of flip for rhombus tilings. Then
we show that for every rhombus tiling D, there is a series of downward flips which
transform D into the standard tiling.

Let us first consider the case of 3-dimensional Boolean cube C3 = B(1, 1, 1). The
corresponding zonogon Z(1, 1, 1) is a hexagon. There are two rhombus tilings for it,
and a flip is just the transformation of one to the other. See the picture:
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The upward flip changes the point ξ2 by the point ξ1 + ξ3 whereas the downward
flip makes the inverse change (these terms are borrowed from [11]). The g-tiling of
the hexagon corresponds to the standard basis {∅, 1, 2, 3, 12, 23, 123} for C3, whereas
the f-tiling corresponds to the basis {∅, 1, 3, 12, 13, 23, 123}. Thus, flips on the tilings
match flips on the bases for C2.

Return to a general box B(a). Suppose that a rhombus tiling D of Z(a) contains
a (little) hexagon H; then H is the zonogon of a 3-dimensional cube x + B(1i, 1j, 1k)
(where i < j < k) lying in B(a). This H is subdivided into three rhombi in D, and
the flip in H results into another tiling D′ of Z(a). If the subdivision of H has the
g-configuration and V (D) is a basis for B(a), then x + 1j Ã x + 1i + 1k is a normal
mutation (in view of x, x + 1i + 1j + 1k ∈ V (D)), and therefore, V (D′) is again a basis
for B(a) (we identify a subset of B(a) and its image by π in Z(a)). Similarly for the
f-subdivision.

It remains to make the last step and to prove the following

Proposition 8. Starting from any tiling D, one can reach the standard tiling by a
series of downward flips.

This assertion is proved in [11]; for completeness of our description we give a proof
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following a method in that paper. (An alternative proof of Proposition 8 using wirings
and additional results on rhombus tilings are given in [2].)

If a tiling D contains a hexagon H of f-form, then the downward flip in H results
in a tiling whose total height of vertices is smaller, where the height h(v) of a vertex
v = a′1ξ1 + . . . + a′nξn is a′1 + . . . + a′n (or the length of a path from the minimal vertex
0 to v). So we can consider a tiling without f-hexagons.

Claim. Let a tiling D of Z(a) have no f-hexagon. Then D is the standard rhombus
tiling of Z(a).

Proof of the claim Consider a vertex v of D, and let (u1, v), . . . , (uk, v) be its
entering edges, in this order around v. Suppose that k ≥ 3 and consider the second
edge (u2, v). One can see that the vertex u2 has only one leaving edge, namely, (u2, v),
and that u2 cannot belong to the boundary of Z(a). These facts imply that u2 has at
least two entering edges. Moreover, the number of these edges is more than two; for
otherwise u2 belongs to exactly three rhombi, and these rhombi form a f-hexagon. So
we can take u2 instead of v, and so on (every time decreasing the height of a vertex).
This implies that D has no vertices with three or more entering edges at all.

Now let R be the set of rhombi of D that have a common edge with the left half L
of the boundary of Z(a). Going along L from the maximal vertex a1ξ1 + . . . + anξn to
the minimal vertex 0 and using the above property, it is not difficult to conclude that
the union of rhombi in R forms the strip L + [0, ξ1] (assuming a1 > 0). Then the rest
of Z(a) is the zonogon Z(a− 11), and now the claim follows by induction on |a|. ¤

This completes the proofs of Proposition 8 and Theorem 3. ¤¤

Next we show one more fact about rhombus tilings (it will be used in next sections).
Imagine that the box B(a) contains a sub-box B(p, p′) := p + B(a′), where a′ = p′− p.
Projecting it to the plane, we obtain the sub-zonogon Z ′ = π(p) + Z(a′) in Z(a).

Proposition 9. Any tiling D′ of the sub-zonogon Z ′ corresponding to B(p, p′) (with
0 ≤ p < p′ ≤ a) can be extended to a tiling of Z(a).

(In [11], this is proved for the case when Z ′ is a hexagon.)

Proof One may assume that the sub-box B(p, p′) is smaller than B(a). Then B(p, p′)
is contained in one of the following sub-boxes:

B′
i := B(1i, a) or B′′

i := B(0, a− 1i), i = 1, . . . , n.

Let for definiteness B(p, p′) be contained in some B′
i. By induction on the size of a

box, the tiling D′ of Z ′ can be extended to a tiling D′′ of the zonogon Z ′′ = Z(1i, a).
So it suffices to extend D′′ to a tiling of Z(a). Note that Z(a) is Z ′′ + [−ξi, 0]. Then
the desired tiling for Z(a) is obtained by adding to D′′ the (unique) tiling of the strip
L + [−ξi, 0], where L is the part of boundary of Z ′′ ‘visible in the direction ξi’ (see the
picture).
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When B(p, p′) is contained in a box B′′
i , we argue in a similar way. ¤

Proposition 10. Let B ⊂ B′ be two truncated boxes. Then any TP-function f on
B can be extended to a TP-function f ′ on B′.

Proof We may assume that B′ is an entire box. Due to Corollary 1, one may assume
that B is an entire box as well. These B′ and B correspond to a zonogon Z ′ and its
sub-zonogon Z, respectively.

Let D be a tiling of Z, e.g., the standard one. By Theorem 3, V (D) is a basis for
B; let f0 be the restriction of f to this basis. By Proposition 9, there is a tiling D′ of
Z ′ extending D; then V (D) ⊂ V (D′). Again by Theorem 3, V (D′) is a TP-basis for
B′. Extend f0 to a function g0 on V (D′). Then g0 determines a TP-function g on B′,
and this g coincides with f within B. ¤

Remark 7. An interesting open problem is: given a subset X ⊆ B(a), decide
whether or not X can be extended to a TP-basis for B(a). A similar problem concerning
normal bases has a solution (recall that the normal bases are those corresponding to the
rhombus tilings). More precisely, it is shown in [15] (see also [2]) that X is extendable
to a normal basis (equivalently, π(X) is extendable to the vertex set of a tiling of Z(a))
if and only if X satisfies the following betweenness condition:

(Btw) for any two points x, x′ ∈ X and any i, k ∈ [n], if xi < x′i and xk < x′k, then
xj ≤ x′j holds for each j between i and k (i.e., min{i, k} < j < max{i, k}).

The simplest example of violation of this condition is the set consisting of the points
2 and 13 in the Boolean cube 2[3]; we know that they cannot simultaneously occur in
the same rhombus tiling.

7 Submodular TP-functions

In this section we consider TP-functions on a box B(a) with the additional property
of submodularity. We demonstrate that a TP-function is submodular if and only if its
restriction to the standard basis (the set of fuzzy-intervals) Int(a) is such.
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Recall that a function f on a lattice L, with meet operation ∧ and join operation
∨, is called submodular if it satisfies the submodular inequality

f(α) + f(β) ≥ f(α ∧ β) + f(α ∨ β)

for each pair α, β ∈ L. (When a part L′ of the lattice is considered, the submodular
inequality is imposed whenever all α, β, α ∨ β, α ∧ β occur is L′.)

The lattice operations on a box B(a) are defined in a natural way (coordinate-wise).
A simple fact is that a function f on the lattice B(a) is submodular if and only if

f(x + 1i) + f(x + 1j) ≥ f(x) + f(x + 1i + 1j) (19)

holds for all x, i, j (i 6= j) such that all four vectors involved belong to B(a).

Theorem 4. A TP-function f on a box B(a) is submodular if and only f it is
submodular on the standard basis Int(a). The latter means that (19) holds whenever
i 6= j and the four vectors occurring in it belong to Int(a).

Proof We use results on rhombic tilings from Section 6.

Consider elements x, x + 1i, x + 1j, x + 1i + 1j of B(a) (i 6= j). Their images in the
zonogon Z(a) form a (little) rhombus, and by Proposition 10, this rhombus belongs
to some tiling of Z(a). In other words, the above four elements are contained in some
normal basis for B(a). In light of this, we can reformulate the theorem (and thereby
slightly strengthen it) by asserting that if a TP-function f is submodular with respect
to some normal basis B (or its corresponding tiling), then f is submodular w.r.t. any
other normal basis. (When saying that f is submodular w.r.t. B, we mean that (19)
holds whenever the four vectors there belong to B. The theorem considers as B the
standard basis Int(a).)

Next, we know (see Proposition 8) that making flips, one can reach any normal basis
from a fixed one. Therefore, it suffices to show that the submodularity is maintained
by flips.

In other words, it suffices to prove the theorem for the simplest case when B(a) is
the 3-dimensional Boolean cube C = 2[3]. In this case, the standard basis Int consists
of the sets ∅, 1, 2, 3, 12, 23, 123, the submodularity on Int involves the three rhombi of
the corresponding tiling, and one has to check the submodularity for the three rhombi
arising under the mutation 2 Ã 13; see the picture.
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Let f be a TP-function on C, i.e., f satisfies

f(2) + f(13) = max{f(1) + f(23), f(3) + f(12)}. (20)
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The submodularity on Int reads as:

f(∅) + f(23) ≤ f(2) + f(3); (21)

f(∅) + f(12) ≤ f(1) + f(2); (22)

f(2) + f(123) ≤ f(12) + f(23). (23)

We show that (20)–(23) imply the submodular inequalities for the other three
rhombi, as follows. Adding f(1) to (both sides of) (21) gives

f(1) + f(23) ≤ f(2) + f(3)− f(∅) + f(1).

Adding f(3) to (22) gives

f(3) + f(13) ≤ f(1) + f(2)− f(∅) + f(3).

Substituting these inequalities into (20), we obtain

f(2) + f(13) = max(f(1) + f(23), f(3) + f(12)) ≤ f(1) + f(2) + f(3)− f(∅),

which implies the submodular inequality for the rhombus on ∅, 1, 3, 13:

f(∅) + f(13) ≤ f(1) + f(3).

Arguing similarly, one obtains the submodular inequalities for the rhombi on
1, 12, 13, 123 and on 3, 13, 23, 123. More precisely:

f(1) + f(123) ≤ f(1) + f(12) + f(23)− f(2) (by (23))

≤ f(2) + f(13) + f(12)− f(2) (by (20))

= f(13) + f(12);

and

f(3) + f(123) ≤ f(3) + f(12) + f(23)− f(2) (by (23))

≤ f(2) + f(13) + f(23)− f(2) (by (20))

= f(13) + f(23).

(Note that if needed, one can reverse the arguments to obtain (21)–(23) from the
other three inequalities.) ¤

Remark 8. If we replace in Theorem 4 the submodularity condition by the corre-
sponding supermodularity condition (i.e., replace ≥ by ≤), then the TP-function f need
not be supermodular globally, even in the Boolean case with n = 3. A counterexample
is the function on 2[3] taking value 0 on {∅}, 1, 2, 3, 12 and value 1 on 13, 23, 123 (the
supermodularity is violated for the sets 13 and 23). On the other hand, one can show
that a version of the theorem concerning modular TP-functions is valid.
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8 Skew-submodular TP-functions

In this section we show that another important property can also be TP-propagated
from the standard basis to the entire box.

Definition. We say that a function f on a box B(a) is skew-submodular if

f(x + 1i + 1j) + f(x + 1j) ≥ f(x + 1i) + f(x + 2j) (24)

for all x, i, j (i 6= j) such that all four vectors involved are in B(a).

Here 2j stands for 2 · 1j, and i, j need not be ordered. So the skew-submodularity
imposes a restriction on f within each sub-box of the form B(x, x + 1i + 2j) in B(a).
The picture below illustrates the corresponding tiling of the zonogon Z(1i + 2j) when
i < j (on the right) and j < i (on the left); here the skew-submodular condition reads
as f(B) + f(C) ≥ f(A) + f(D).
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In fact, one can regard (24) as a degenerate form of the TP3-relation (3). Indeed,
putting j = k in (3), we obtain

f(x + 1i + 1j) + f(x + 1j) = max{f(x + 1i + 1j) + f(x + 1j), f(x + 2j) + f(x + 1i)},

which is just equivalent to (24).

Theorem 5. A TP-function f on a box B(a) is skew-submodular if and only if
its restriction to the standard basis Int(a) is skew-submodular (in the sense that holds
whenever i 6= j and the four vectors occurring in it belong to Int(a)). Furthermore, a
skew-submodular f satisfies the additional relation

f(x + 1i + 1j) + f(x + 1j + 1k) ≥ f(x + 1i + 1k) + f(x + 2j), (25)

where i, j, k are different.

Proof Arguing as in the previous section and using Propositions 8 and 9, we reduce
the task to examination of the 3-dimensional boxes B(1, 1, 2), B(1, 2, 1) and B(2, 1, 1).
Below we consider the case B(1, 2, 1) (in the other two cases, the proof is analogous
and we leave it to the reader as an exercise). This case is illustrated in the picture:
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There are two TP3-relations in the box B(1, 2, 1), namely:

f(A′) + f(C) = max(f(B) + f(D′), f(B′) + f(D)) (26)

and
f(A′′) + f(C ′) = max(f(B′) + f(D′′), f(B′′) + f(D′)). (27)

The face (parallelogram) AA′′B′′B gives the skew-submodular inequality in the stan-
dard basis:

f(A′′) + f(B) ≤ f(A′) + f(B′). (28)

The face AA′′D′′D gives one more skew-submodular inequality

f(D) + f(A′′) ≤ f(D′) + f(A′). (29)

First of all we prove inequality (25) (with (i, j, k) = (1, 2, 3)); it is viewed as

f(B′) + f(D′) ≥ f(A′′) + f(C). (30)

Adding f(D′) to (28) gives

f(A′′) + f(B) + f(D′) ≤ f(A′) + f(B′) + f(D′).

Adding f(B′) to (29) gives

f(D) + f(A′′) + f(B′) ≤ f(A′) + f(D′) + f(B′).

These inequalities together with (26) result in

f(A′′) + f(A′) + f(C) ≤ f(A′) + f(B′) + f(D′).

Now the desired inequality (30) is obtained by canceling f(A′) in both sides.

Next we show validity of the other two skew-submodular inequalities in the box,
namely, those concerning the faces BB′′C ′′C and DD′′C ′′C.

Adding (30) and the inequality f(B′′) + f(D′) ≤ f(A′′) + f(C ′) (which is a conse-
quence of (27)), we obtain

f(A′′) + f(C) + f(B′′) + f(D′) ≤ f(B′) + f(D′) + f(A′′) + f(C ′).
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Canceling f(A′′) + f(D′) in this inequality gives

f(C) + f(B′′) ≤ f(B′) + f(C ′),

which is just the skew-submodular inequality for the face BB′′C ′′C. The skew-submo-
dular inequality f(C) + f(D′′) ≤ f(D′) + f(C ′) for the face DD′′C ′′C is obtained in a
similar way. ¤

9 Discrete concave TP-functions

In this section we combine the above submodular and skew-submodular conditions on
TP-functions.

Let us say that a TP-function f on a box B(a) is a DCTP-function if

f(x + 1i + 1j) + f(x + 1j + 1k) ≥ f(x + 2j) + f(x + 1i + 1k) (31)

holds for all x ∈ B(a) and i, j, k ∈ {0} ∪ [n] such that the four vectors in this relation
belong to B(a). Here 10 means the zero vector. Note that i, j, k need not be ordered
and some of them may coincide.

Remark 9. The meaning of the abbreviation ‘DC’ is that the TP-functions obey-
ing (31) possess the property of discrete concavity. More precisely, one can check that
such functions satisfy requirements in a discrete concavity theorem from [16, Ch. 6],
and therefore, they form a subclass of polymatroidal concave functions, or M#-concave
functions, in terminology of that book.

Observe that if j = 0 6= i, k and i 6= k, then (31) turns into the submodular
condition (cf. (19)). If k = 0 6= i, j and i 6= j, then (31) turns into the skew-submodular
condition (24). And if i = k = 0, then (31) turns into the concavity inequality

2f(x + 1j) ≥ f(x) + f(x + 2j).

One easily shows that this inequality follows from submodular and skew-submodular
relations.

Now assume that none of i, j, k is 0. If all i, j, k are different, then (31) is a conse-
quence of the skew-submodularity, due to Theorem 5. Finally, if i = k, then (31) turns
into

2f(x + 1i + 1j) ≥ f(x + 2i) + f(x + 2j),

which again is easily shown to follow from skew-submodular relations.

The above observations are summarized as follows.

Proposition 11. A TP-function on a box is a DCTP-function if and only if it is
submodular and skew-submodular.

This proposition and Theorems 4 and 5 give the following

Corollary 3. A TP-function f on a box B(a) is a DCTP-function if and only if
it is submodular and skew-submodular on the standard basis Int(a).
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One can visualize this corollary by considering the standard tiling of the zonogon
Z(a). It contains ‘big’ parallelograms P (i, j) for i < j, where P (i, j) is the sub-zonogon
Z(ai+1ξi+1 + . . . + aj−1ξj−1 ; ai1i + aj1j). Subdivide each ij-rhombus [x, x + ξi, x +
ξj, x+ ξi + ξj] in P (i, j) into two triangles by drawing the diagonal [x+ ξi, x+ ξj]. This
gives a triangulation of P (i, j); see the picture where ai = 2 and aj = 3.
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In terms of such triangulations, the submodular and skew-submodular conditions
on f say that for any two adjacent triangles ABC and BCD, one holds f(B)+f(C) ≥
f(A) + f(D). In other words, the affine interpolation of f within each little triangle
produces a globally concave function.

Appendix. Flow rearrangements

In this section we prove Proposition 4 from Section 4. Recall that we deal with the
extended auxiliary digraph Γ̃a with the sources s1, . . . , sN of sources and the sinks
t1, . . . , tN . We are interested in (admissible) flows from left-squeezed subsets S of [N ]
(identifying S with the subset {sp : p ∈ S} of sources). Let X, i, j, k be as in the
hypotheses of Proposition 4. We start with the first part of this proposition.

Proposition 4a. Let F be a flow from Xij, and F ′ a flow from Xk. Then the
union of these flows can be rearranged as the union of a flow F1 from Xik and a flow
F2 from Xj. A similar property is true for flows from the sets Xjk and Xi.

Proof It essentially uses the facts that the graph Γa is planar and the flows in question
are left-squeezed.

Under the visualization of the extended digraph Γ̃a as in Section 4, a path P in Γ̃a

is represented as a (piecewise linear) curve in the plane; denote it by ζ(P ). Also for
each block Li, let Ti denote the triangle in the plane with the vertices (ai−1 + 1, 1),
(ai, 1) and (ai, ai − 1).

We observe that for any flow F ′′ from a left-squeezed set S of sources, the curves
ζ(P ), P ∈ F ′′, are pairwise non-intersecting. Indeed, suppose there are P, P ′ ∈ F ′′

such that ζ(P ), ζ(P ′) meet at a point x. Then x is the point (ai + r, q) for some i and
1 ≤ q < r ≤ ai+1 (lying in the interior of Ti+1). Therefore, one of P, P ′ contains the
vertex v = (ai + q, q) of Γa. Since F ′′ is left-squeezed, the source sai+q is in S, and
therefore, there is a path P ′′ ∈ F ′′ beginning at this source. But then P ′′ passes the
vertex v as well, which is impossible. See the picture.
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Next, we associate to a path P in Γ̃a beginning at a source s = (p, 0) and ending
at a sink t = (q, q) the closed south-west region in the plane bounded by ζ(P ), the
horizontal ray from t to (−∞, q), and the vertical ray from s to (p,−∞). We call it
the lower region of P and denote by R(P ). From the above observation it follows that
if a flow from a left-squeezed set of sources consists of paths P1, . . . , Pr, where Pi ends
at ti, then R(P1) ⊂ R(P2) ⊂ . . . ⊂ R(Pr).

Now consider X, i, j, k,F ,F ′ as in the hypotheses of the proposition. Let r :=
|X|+2, and let F = {P1, . . . , Pr} and F ′ = {P ′

1, . . . , P
′
r−1}. We combine the flows F ,F ′

into one family P = (P1, . . . , Pr, P
′
1, . . . , P

′
r−1) (possibly containing repeated paths).

Observe that

(i) each vertex belongs to at most two paths in P ;

(ii) for p ∈ [N ], the source sp is the beginning of exactly one path in P if p ∈ {i, j, k},
and the beginning of exactly two paths if p ∈ X;

(iii) each of the sinks t1, . . . , tr−1 is the end of exactly two paths in P , and tt is the
end of exactly one path.

Also one can see that

(iv) for any two members P, P ′ ofQ, the intersection of ζ(P ) and ζ(P ′) is (the image

of) a subgraph of Γ̃a (i.e., these curves cannot cross in the interiors of T1, . . . , Tn).

Using a standard planar flow decomposition technique and relying on (iv), one can
rearrange paths in P so as to obtain a family Q = {Q1, . . . , Q2r−1} of paths from

sources to sinks in Γ̃a having properties (ii), (iii) as above (with Q in place of P), and
in addition:

(v) for each vertex v of Γ̃a, the numbers of occurrences of v in paths of Q and in
paths of P are equal;

(vi) R(Q1) ⊆ R(Q2) ⊆ . . . ⊆ R(Q2r−1).

(Such a Q is constructed uniquely.) Partition Q into two subfamilies:

F1 := {Qp : p is odd} and F2 := {Qp : p is even}.

We assert that each of these subfamilies consists of pairwise disjoint paths. Indeed,
suppose this is not so. Then, in view of (vi), some subfamily contains ‘consecutive’
paths Qp, Qp+2 that share a common vertex v. But now the inclusions R(Qp) ⊆
R(Qp+1) ⊆ R(Qp+2) imply that v must belong to the third path Qp+1 as well, which
is impossible by (i) and (v).

This assertion together with (ii),(iii),(v) easily implies that both F1,F2 are admis-
sible flows, that the set of the beginning vertices of paths in F1 consists of the sources
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si,sk and sp for all p ∈ X, and that the set of the beginning vertices of paths in F2 con-
sists of the sources sj and sp for all p ∈ X. Here we use the fact that, due to i < j < k,
the paths in Q beginning at si, sj, sk have odd, even and odd indices, respectively.

The proof for flows from Xjk and Xi is similar. ¤

Proposition 4b. Let F be a flow from Xik, and F ′ a flow from Xj. Then the
union of these flows can be rearranged as the union of flows F1 and F2 such that: either

(1) F1 goes from Xij and F2 goes from Xk, or

(2) F1 goes from Xjk and F2 goes from Xi.

Proof In fact, this assertion can be extracted from a result in [16, p. 60]. We give a
direct proof by arguing in a similar spirit.

Regarding F as a graph, we modify it as follows. Each vertex v of F is replaced by
edge ev = (v′, v′′); each original edge (u, v) of F is transformed into edge (u′′, v′). The
resulting graph, consisting of pairwise disjoint paths as before, is denoted by γ(F).
The graph F ′ is modified into γ(F ′) in a similar way. Corresponding edges of γ(F)
and γ(F ′) are identified.

Next we construct an auxiliary graph H by the following rule:

(a) if e is an edge in γ(F) but not in γ(F ′), then e is included in H;

(b) if e = (u, v) is an edge in γ(F ′) but not in γ(F), then the edge (v, u) reverse to
e is included in H.

(Common edges of γ(F), γ(F ′) are not included in H.) One can see that H has the
following properties: each vertex has at most one incoming edge and at most one
outgoing edge; the vertices having one outgoing edge and no incoming edge are exactly
s′i, s

′
k; the vertices having one incoming edge and no outgoing edge are exactly s′j, t

′′
r ,

where r = |X| + 2. This implies that H is represented as the disjoint union of cycles,
isolated vertices and two paths P, Q, where either P is a path from s′i to s′j and Q is a
path from s′k to t′′r (Case 1), or P is a path from s′k to s′j and Q is a path from s′i to t′′r
(Case 2).

We use the path P to rearrange the graphs γ(F) and γ(F ′) as follows: for each
edge e = (u, v) of P ,

(c) if e is in γ(F), then we delete e from γ(F) and add to γ(F ′);

(d) if e is not in γ(F), and therefore, the edge e = (v, u) reverse to e is in γ(F ′),
then we delete e from γ(F ′) and add to γ(F).

Let G and G ′ be the graphs obtained in this way from γ(F) and γ(F ′), respectively
(if there appear isolated vertices, we ignore them). In these graphs we shrink each edge
of the form ev = (v′, v′′) into one vertex v. This produces subgraphs F1 and F2 of Γ,
where the former corresponds to G, and the latter to G ′.

It is not difficult to deduce from (a)–(d) that each of F1,F2 consists of pairwise
disjoint paths, and moreover: in Case 1, F1 is a flow from Xjk and F2 is a flow from
Xi, while in Case 2, F1 is a flow from Xij and F2 is a flow from Xk. Also one can see
that for each vertex v of Γ, the numbers of occurrences of v in paths of {F1,F2} and
in paths of {F ,F ′} are the same. ¤
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