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11. IntroductionA digraph G = (V;E) is skew-symmetric if there is a permutation � on V such that for everyv 2 V; �(v) 6= v and �(�(v)) = v, and (v; w) 2 E if and only if (�(w); �(v)) 2 E. In this paper,we shall usually use the term symmetric instead of skew-symmetric. We say that a node �(v) issymmetric to v, and an arc (�(v); �(w)) is symmetric to (v; w). We extend � to V [E by de�ning�(v; w) = (�(w); �(v)). Unless otherwise explicitly stated, we assume that the input graph G hasno multiple arcs except in the following case. Suppose v0 = �(v) and (v; v0) 2 E. Then there areexactly two copies of (v; v0), and they are, obviously, symmetric to each other.Skew-symmetric graphs come up in a natural way when certain undirected objects, such asmatchings, are reduced to directed objects. These can be used to get insight into combinatorialstructure of the underlying problem and to design algorithms for it. The skew-symmetric graphscome up in other situations as well, e.g. in [21, 22] a maximum 
ow problem in a skew-symmetricgraph appears in conjunction with a certain minimum-cost multicommodity 
ow problem.A regular path (r-path) is a path in G that does not contain a pair of symmetric arcs. Givena length function ` : E ) R, the length `(P ) of a path P is the sum of the lengths of the arcsof the path. We assume that the length function is symmetric: `(v; w) = `(�(v; w)). Suppose weare given two symmetric nodes s and s0. The r-reachability problem (RRP) is to �nd an r-pathfrom s to s0 or a proof that there is none. The shortest r-paths problem (SRPP) is to �nd theshortest r-path from s to s0 or a proof that there is none. Note that the latter can happen if s0is not reachable from s via an r-path or if there is an r-path from s to s0 containing a negativelength cycle.The goal of this paper is to establish a solvability criterion for the RRP and an optimality cri-terion for the shortest r-paths problem, and to develop fast algorithms for these problems. Com-putationally, these r-path problems are at least as hard as the standard path and shortest pathsproblems. This is because given a graph G with two distinguished nodes x and y, we can make adisjoint copy G0 of G with the opposite orientation of each arc and work with the skew-symmetricgraph H formed by adding to G [ G0 new nodes s and s0 and arcs (s; x); (y; s0); (s; y0); (x0; s0).Then any path from s to s0 in H is regular and corresponds to a path from x to y in G. Note alsothat the problem on paths with forbidden pairs of arcs in an arbitrary digraph, which is relatedto the RRP, is NP-complete [14].The RRP can be reduced to a certain matching problem in a way similar to that described in[29] for the node-regular path analog of RRP. Such a reduction can be used to describe a solvabilitycriterion for the RRP via the classical theorems on perfect matchings due to Berge [4] and Tutte[27] (see also [23]), as well as to solve the RRP using a maximum matching algorithm, e.g. the



2classical algorithm in [8]. Similarly, the optimality criterion for the SRPP can be obtained fromthe weighted matching theory developed by Edmonds in [7] (see also [23]), and the problem can besolved in polynomial time using a minimum-cost matching algorithm. These reductions, however,considerably increase the graph size (if the input graph has n nodes and m arcs, the reductionsproduce a graph that hasm+2 nodes and may have 
(n3) arcs), so these reductions are expensivefrom the algorithmic point of view. The relationship between problems on skew-symmetric graphsand matching problems is discussed in Section 5. The section also gives applications of RRP andSRPP to certain problems on matchings.Our proofs of the solvability and optimality criteria are in terms of the input graph itself,which is simpler and more enlightening than the proofs obtained by translating the correspondingtheorems on matchings into the skew-symmetric framework. These theorems demonstrate nicestructural properties of the r-path problems and lead to natural approaches for solving them.Running time bounds of the algorithms we develop in this paper are within a logn factor fromthose for the standard path problems. The algorithm for RRP runs in O(m) (linear) time, wheren = jV j and m = jEj.1 We call the SRPP with nonnegative arc lengths NSRPP. Our NSRPPalgorithm runs in O(m logn) time or in O(mplogC) time (the latter bound assumes that costs areintegers in the interval [0; : : : ; C]). The corresponding bounds in the standard paths case, achievedby the implementations of Dijkstra's algorithm [6] described in [1] and [11], are O(m + n logn)and O(m+nplogC), respectively. Our SRPP algorithm runs in O(nm(min(logn;plogC))) time.The corresponding bound in the standard paths case is O(nm) [3, 10, 25].In the sequel [19] to this paper we extend the structural and algorithmic results developed hereto more general problems on skew-symmetric graphs, such as the maximum integral symmetric
ow problem, the minimum-cost integral symmetric circulation problem, and their unit capacityvariants. Being interesting in their own right, these problems also bridge 
ows and matchings.Using the algorithms developed in the present paper, we design algorithms for the skew-symmetric
ow problems which are as e�cient as the fastest known algorithms for the corresponding maxi-mum 
ow and minimum-cost maximum 
ow problems.The classical matching problems, such as maximum matchings, minimum-cost matchings, b-matchings and their capacitated versions, and even the minimum-cost bidirected 
ows [9], can bereduced to skew-symmetric 
ow problems without increasing the problem size signi�cantly. As aresult, the algorithms of [19] solve the matching problems as e�ciently as the fastest matchingalgorithms [2, 13, 16, 17, 24, 28]. At the same time, the results we present are more general andmore uniform, and seem to be simpler.1To simplify the presentation, we assume that m � n� 1 � 2.
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Figure 1. A barrier.2. The R-Reachability Problem2.1. Barriers. Barriers provide infeasibility certi�cates for RRP. We say thatB = (A;X1; : : : ; Xk)is a barrier if the following conditions hold.(B1) A;X1; : : : ; Xk are pairwise disjoint subsets of V .(B2) s 2 A.(B3) For A0 = �(A), A \ A0 = ;.(B4) For i = 1; : : : ; k, Xi is symmetric, i.e., �(Xi) = Xi.(B5) For i = 1; : : : ; k, there is a unique arc, ai, from A to Xi.(B6) For i; j = 1; : : : ; k and i 6= j, no arc connects Xi to Xj.(B7) For M = V � (A [X1 [ : : :[Xk) and i = 1; : : : ; k, no arc connects Xi to M .(B8) No arc connects A and A0 [M .(Note that arcs from A0 to A, from Xi to A, and from M to A are possible.) Figure 1 illustratesthe de�nition.If a node x of a graph G is reachable from s by an r-path, we say that x is reachable in G. Givena graph G = (V;E) and a subset of nodes X � V , let hXi denote the subgraph of G induced by



4X .Suppose that no r-path from s to s0 exists. Let Z be the set of reachable nodes in G. De�neZ0 = �(Z); A = Z � Z 0; A0 = Z 0 � Z; X = Z \ Z 0; andM = V � (Z [ Z 0):Let K1; : : : ; Kk be the weakly connected components of hXi, and let Xi (Ei) be the node set (arcset) of Ki. We call B = (A;X1; : : : ; Xk) the canonical barrier.Lemma 2.1. The canonical barrier is indeed a barrier.Proof. Let B = (A;X1; : : : ; Xk) be the canonical barrier. Properties (B1){(B3) and (B6){(B8)follow immediately from the de�nition of B. We prove the remaining properties by induction onjEj. The base case jEj = 0 is trivial.Let e1 = (v1; w1); : : : ; eh = (vh; wh) be the arcs from A to X , and let v0i = �(vi) and w0i = �(w0i),1; : : : ; h. We may assume that h � 2 (otherwise (B4) and (B5) are trivial). Obviously, there existdistinct i; j 2 f1; : : : ; hg such that at least one r-path from s to vi does not meet the arc ej ; letfor de�niteness i = 1 and j = h.Let G = (v; E) be the graph obtained by deleting eh and e0h from G. Clearly G has no r-pathfrom s to s0. Let Z; Z0; A; A0; X;M be corresponding sets in the de�nition of the canonical barrierfor G. The fact that every r-path in G is an r-path in G implies that Z � Z, whence Z 0 � Z 0 andX � X . Let Ki = (Xi; Ei), i = 1; : : : ; p, be the weakly connected components of the subgraphhXi of G. By induction B = (A;X1; : : : ; Xp) is a barrier. Next, from the above property of e1and eh we observe that v1; vh 2 Z, whence v1; vh 2 A (as v1; vh 2 A and X � X). Also w1 2 Z.Three cases are possible.Case 1. wh 2 M . Let Q be the graph obtained by adding to hMi the nodes vh; v0h andarcs eh; e0h. Then Q is skew-symmetric and contains less arcs than G does (as h � 2 and Qdoes not contain e1). Furthermore, eh is the only arc in Q that leaves vh, therefore Q hasno r-path from vh to v0h. By induction the canonical barrier (B; Y1; : : : ; Yq) for Q; vh; v0h is abarrier. Clearly bB = (A [ B;X1; : : : ; Xp; Y1; : : : ; Yp) is a barrier for G. Moreover, each node inbZ = A [X [ B [ Y is obviously reachable in G, where Y = Y1 [ : : :[ Yq. Hence, bZ = Z. Thefacts that (A [ B) \ �(A[ B) = ; and that all sets X1; : : : ; Xp; Y1; : : : ; Yp are symmetric implythat bB coincides with B.Case 2. wh 2 X [ A0. Then, by symmetry, w0h 2 X [ A. Hence, there is an r-path from s tow0h in G. Adding to it the arc e0h we obtain an r-path from s to v0h in G. But v0h is not reachablein G; a contradiction.Case 3. wh 2 A. Then w0h 2 A0. Since w0h 2 Z, there is an r-path P from s to w0h in G. Notethat P passes through eh (otherwise v0h would be reachable in G). Let P 0 be the part of P from



5wh to w0h. Then P 0 is an r-path in G going from A to A0. This contradicts the fact that B is abarrier in G.We are now ready to prove the duality theorem for RRP.Theorem 2.2. There is an r-path from s to s0 if and only if there is no barrier.Proof. The fact that if there is a barrier then there is no r-path from s to s0 is immediate from thede�nition of a barrier. If there is no r-path from s to s0, then the canonical barrier is well-de�ned,and Lemma 2.1 completes the proof.As mentioned in the introduction, Theorem 2.2 can also be obtained using matching theory.2.2. Buds and Trimming Operation. A bud is a triple � = (V� ; E� ; e� = (v; w)) such that(i) E� � E is symmetric: �(E�) = E� .(ii) e� 2 E.(iii) V� � V is the set of nodes incident to E� . Note that V� is symmetric.(iv) w 2 V� .(v) v 62 V� .(vi) s 62 V� .(vii) For every node x 2 V� there is an r-path from w to x in (V� ; E�) (and therefore an r-pathfrom x to �(w)).(viii) There is an r-path P from s to v such that P is node-disjoint from V� .A particular case of a bud arises when the graph (V� ; E�) is the union of an r-path � from wto �(w0) and the symmetric path �(�); such a bud is called elementary.The node w is called the base node of the bud and the arc (v; w) is called the base arc. Thenode �(w) is called the anti-base node of the bud and the arc �(v; w) is called the anti-base arc.Given a collection of buds, a bud � from this collection is called maximal if V� is maximal (withrespect to inclusion).Buds play important role in the algorithms described in this paper. They are similar, in acertain sense, to blossoms that come up in the classical matching algorithm [8].Given a symmetric graph G = (V;E) with a bud (V� ; E� ; e� = (v; w)), let v0 = �(v), w0 = �(w),and e0� = �(e�). The trimming operation transforms G into G with the node setV = V � (V� � fw;w0g)and arc set E constructed as follows.(1) Each arc a = (x; y) 2 E such that either x; y 2 V � V� , or a = e� , or a = e0� remains in E.
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Before trimming After trimmingFigure 2. Bud trimming example.(2) Each arc a = (x; y) 2 E such that x 2 V� , y 2 V � V� , and a 6= e0� is replaced by an arcfrom w to y.(3) Each arc a = (x; y) 2 E such that x 2 V � V� , y 2 V� , and a 6= e� is replaced by an arcfrom x to w0.The sets of arcs of G de�ned by (1){(3) are denoted by E1; E2; and E3, respectively; thusfE1; E2; E3g is a partition of E. For convenience we identify the corresponding arcs in G and G.See Figure 2 for an example of bud trimming.The next lemma follows from the de�nition of G.Lemma 2.3. The graph G is symmetric.Theorem 2.4. There is an r-path from s to s0 in G if and only if there is an r-path from s to s0in G.Proof. Suppose that s0 is not reachable in G. Apply Theorem 2.2 and consider a barrier B =(A;X1; : : : ; Xk) for G. By the de�nition of a bud, there is an r-path P in G from s to w with thelast arc e� . Since P is also an r-path in G, either (i) w 2 Xi for some i, or (ii) w 2 A. In case (i),add V� � fw; �(w)g to Xi. In case (ii), let I be the set of indices i 2 f1; : : : ; kg such that the arcai from A to Xi has its tail at w. Remove w from A and replace the sets Xi, i 2 I , in B by the



7only set X 0 that is the union of these Xi's and V� . It is easy to see that in both cases we obtaina barrier for G.Next we prove the other direction of the theorem. Suppose that s0 is not reachable in G.Consider a barrier B = (A;X1; : : : ; Xk) for G. The r-reachability from s of all nodes in V� andthe symmetry of V� imply that V� � Xi for some i. Then(A;X1; : : : ; Xi�1; Xi � (V� � fw;w0g); Xi+1; : : : ; Xk)is a barrier in G.Like shrinking blossoms in matching algorithms, bud trimming lowers the size of the graph andgives an e�cient approach to solving the r-reachability problem, re�ned in the algorithm that wedescribe in further sections. In essence, the algorithm is based on the following two lemmas, the�rst one is obvious, while the second one is easily proved by arguing as in the proof of the part\only if" in Theorem 2.4.Lemma 2.5. Let P be an r-path from s to s0 in G.(i) If P meets neither e� nor e0� , then P is an r-path in G.(ii) If P meets e� and u is the arc in P following e� , then, in G, P is split into two paths,P1 and P2. The former is an initial portion of P with the last arc e� and the latter is the�nal portion of P with the �rst arc u. Moreover, the concatenation of P1, Q, and P2 isan r-path from s to s0 in G, where Q is an r-path in (V� ; E�) from w to the tail of u.(If P meets e0� the statement is \symmetric" to that in (ii).)For a node x in G let 
(x) = 
� (x) denote the set V� if x is the base or the anti-base of atrimmed bud � , and the node x otherwise. We say that 
(x) is the preimage of x in G. ForX � V let 
(X) stand for the union of preimages of elements of X .Lemma 2.6. Let Y � V be a set such that s0 62 Y and Y contains all reachable nodes in G. LetY = 
(Y ). Then s0 62 Y and Y contains all reachable nodes in G. If, in addition, each elementof Y is reachable in G then the same is true for Y and G.In the algorithm we use the following corollaries from Lemmas 2.5 and 2.6. Suppose we haveconstructed a sequence G = G0; G1; : : : ; Gr of graphs, where Gi = (Vi; Ei) is obtained from Gi�1by trimming a bud �i = (V�i ; E�i; e�i = (vi; wi)) in it. Suppose also that for each i and x 2 V�i wehave a procedure of �nding an r-path from wi to x in (V�i ; E�i), (e.g. in the case when each �i isan elementary bud in Gi�1). If we succeed in �nding an r-path eP from s to s0 in Gr then Lemma2.5 provides an explicit method to construct an r-path P from s to s0 in G, by going along thesequence backward and �nding a corresponding path in Gi from the previous path in Gi+1.



8 On the other hand, suppose we discovered a set eY of nodes of Gr such that s 2 eY , eY \�( eY ) = ;,and none of the arcs of Gr goes from eY to Vr � eY . Then Lemma 2.6 shows that G has no r-pathfrom s to s0 and that the set Y = 
�1(: : :
�r( eY )) contains all reachable nodes in G. Moreover,if each element of eY is reachable in Gr then Y is exactly the set Z of reachable nodes in G, andtherefore, we have an explicit method to construct a canonical barrier in G.In what follows we often need to distinguish the base node w (or w0 = �(w)) in the graphs Gand G. To do this, we denote w (w0) in G by w� (respectively, w0� ). Also, considering sequencesG = G0; : : : ; Gr of graphs and �1; : : : ; �r of buds as above, we denote by V�i the set of preimagesin G of the node w�i (or w�i) of Gi, i.e., V�i = 
�1(: : :
�i(w�i)). We use notation (V�i ; E�i; e�i)for the \preimage" in G of the bud �i; here E�i is the union of sets E�j among all j � i such thatV�j � V�i . It is easy to see the following result.Lemma 2.7.(i) For 1 � i; j � r, either V�i \ V�j = ; or V�i � V�j ; in particular, the sets V�i, i = 1; : : : ; r,form a nested family.(ii) The sets E�i, i = 1; : : : ; r, are pairwise disjoint; in particular, P(jE�ij : i = 1; : : : ; r) � m.(iii) Each (V�i ; E�i ; e�i) is a bud in G.We usually keep the same notation �i for the bud (V�i ; E�i; e�i) in G. A bud �i is called maximalif V�i \ V�j = ; for j = i+ 1; : : : ; r.2.3. High-Level Algorithm Description. Lemmas 2.5 and 2.6 suggest the following algorithmfor RRP. The algorithm maintains a set A of nodes reachable from s by r-paths, with the r-pathsrepresented by a spanning tree T � E of A rooted at s. The algorithm also maintains A0 = �(A)and T 0 = �(T ). By symmetry, from every node v0 2 A0 there is an r-path to s0 in T 0. The invariantA \ A0 = ; always holds. Initially A = fsg and T = ;.At each step the algorithm scans an arc (v; w) with v 2 A and w 62 A. If w 62 A0, then w isadded to A, (v; w) to T , �(w) to A0, and �(v; w) to T 0. Now suppose w 2 A0 and let P be theconcatenation of the s to v path P1 in T , (v; w), and the w to s0 path P2 in T 0. If P is regular, thenthe algorithm terminates and returns P (in Section 2.6 we explain how to e�ciently transform Pinto a regular s to s0 path in the original graph). If P is not regular, then there is an arc (x; y)on P1 such that �(x; y) is on P2. Let (x; y) be the closest to v arc on P1 that has this property.Let E� be the set of arcs on P between y and �(y), and their symmetric arcs. Let V� be the setof nodes incident to E� in the current graph. Then � = (V� ; E� ; (x; y)) is an elementary bud. Thealgorithm trims � , accordingly updating the current graph, the sets A;A0, and the trees T; T 0.



9If there is no arc (v; w) with v 2 A and w 62 A, the algorithm concludes that s0 is not reachable,in view of Lemma 2.6. If needed, we can �nd, in linear time, the canonical barrier in the originalG.Correctness of this algorithm follows from Lemma 2.3 and Theorem 2.4.Note that at each step either A grows or at least two arcs are deleted from the graph by thetrimming operation. This implies a polynomial bound on the algorithm complexity. To achieve alinear bound, we implement the bud trimming operation e�ciently and pick the next arc to scanquickly.2.4. Data Structures and Implementation of Bud Trimming. E�cient implementationof bud trimmings is crucial to the algorithm performance. We discuss the bud trimming imple-mentation issues below. In this paper, we assume the adjacency list representation of the inputgraph in which each node has a list of outgoing arcs arranged in a doubly linked list.Remark. For every node v of the current graph we maintain the list of outgoing arcs and donot maintain the list of incoming arcs. We can easily access the incoming arcs, however, becauseby symmetry every arc (u; v) is symmetric to the arc (�(v); �(u)) which is on the adjacency listof �(v).A naive implementation of trimming a bud � = (V� ; E� ; (v; w)) is to delete nodes in V� andarcs adjacent to these nodes, add new nodes w� ; w� 0, and add arcs adjacent to these nodes asprescribed by the de�nition of bud trimming. By (ii) in Lemma 2.7, there can be O(m) budtrimmings, and at most m arcs need to be processed during a bud trimming. It can be easilyshown that processing of arcs dominates the running time bound and the naive implementationruns in O(m2) time.To do better, an implementation of bud trimming should avoid looking at every arc involved inthe trimming. This can be achieved by using the original arc lists. The arc list for w� is formed bydeleting the arcs of E� and the arc �(v; w) from the appropriate lists, and then by concatenatingthe resulting arc lists of nodes in V� .Next we address the following issue: if we are examining an arc (x; y), what is its head node inthe current graph? If y does not belong to a bud, then the head node is y. If does, consider themaximal bud � that contains y. If (x; y) is the base arc of � , then the head node is the base of �and otherwise, the upper base of � .For this implementation we need to maintain the sets V� of the current maximal buds � . Thesesets are disjoint, by Lemma 2.7. The set operations that we need are make-set(x), union(x; y),and find-set(x). These operations create a single element set containing x, form the union of thesets containing x and y, and return the name of the set containing x, respectively. The operations



10are supported by the well-known disjoint set union data structure (see e.g. [5]). In the fastestknown implementation of the disjoint set union data structure [26], a sequence of k operations onelements from a universe of size n takes O(k�(k; n) + n) time, where � is a functional inverse ofAckermann's function. As we shall see later, the set union operations we need fall into a specialclass and can be done in time O(k + n).Next we describe an e�cient implementation of bud trimming. Since the sets we need tomaintain are symmetric, it is convenient to deal with a representative r(x) = r(x0) to every pairx; x0 of symmetric nodes. Initially each representative is included in a single element set. Thesets are modi�ed only by the trimming operation. If a node x 2 V belongs to a bud, then the setV� of nodes of the maximal bud containing x is exactly the set of nodes with representatives inthe same set as r(x).To trim a bud (V� ; E� ; (x; y)), we do the following.(T1) Delete arcs in E� from the appropriate arc lists and from T and T 0, if applicable.(T2) For every z 2 V� , concatenate the arc list of z to the arc list of y.(T3) Form the union of sets containing representatives of nodes in V� .To implement the last step, recall that the bud in the current graph found by the algorithm iselementary, i.e., V� contains exactly nodes on a path � and the symmetric path �(�). Thus, to�nd the sets which need to be joined it su�ces to traverse once � and �(�).As we shall see later, the algorithm does O(m) set operations. Under the above mentionedimplementation, the set operations take O(m�(m + n; n)) time. However, we show below that,under a slightly di�erent implementation, the set operations fall into the incremental tree setunion case studied by Gabow and Tarjan [15]. Because of this, a sequence of k operations can bedone in O(k+ n) time.The incremental tree set union case [15] is as follows. Let R be a rooted tree whose nodescorrespond to disjoint sets of elements. Initially R contains a single node corresponding to asingle element set. The operations allowed on R are a contraction of an edge of R that results inmerging the sets corresponding to the two end points, and addition of a leaf node correspondingto a single element set.For the RRP algorithm, the tree R is just T (assuming that the nodes of T are the correspondingsets of representatives). If the algorithm adds a node to T , this node becomes a leaf of T andcorresponds to a single element set. If the algorithm �nds a bud � = (V� ; E� ; (x; y)) while scanningan arc (v; w), each node in V� occurs on a path � or �(�). Furthermore, � consists of a path �1from y to v in T , (v; w), and a path �2 from w to �(y) in T 0. Observe that �(�2) is a path inT from y to �(w), and for every node z 2 V� , exactly one of the nodes z; �(z) appears on �1 or�(�2). Therefore we form the unions of only the sets which are connected by the edges of R, i.e.,



11the incremental tree method is applicable in our case.2.5. Linear-Time Implementation. Now we specify how to �nd an arc going out of A e�-ciently. We maintain the set Q of arcs (v; w) 2 E (of the current graph) such that v 2 A andw 62 A. The set Q can be represented by any data structure that allows constant time membershipquery, addition, extraction, and deletion (e.g. a queue implemented using a doubly linked list).Since initially A = fsg, we initialize Q by adding all arcs (s; x) 2 E such that x 6= s to Q. Toselect an arc to scan, we extract an arc (v; w) from Q and scan it. Every time we add a node xto A, we add (x; y) to Q for every y such that (x; y) 2 E and y 62 A, and delete (z; x) from Q forevery (z; x) 2 E in Q.Finally, we show how to �nd a bud quickly. Recall that a bud is formed when we scan an arc(v; w) connecting A to A0 and �nd out that the path P = (P1; (v; w); P2) is not regular. To �ndthe desired bud (or a regular path from s to s0), we trace P2 forward from w and P1 backwardfrom v, intermixing forward and backward steps. We stop as soon as we discover an arc (x; y) inPi such that its symmetric arc has already been traced in P3�i. The time spent on �nding a budusing this techniques is proportional to the number of nodes in the discovered bud.Next we show that the above algorithm terminates in linear time. In the next section we showhow to compute an s to s0 r-path in the original graph if the above algorithm found an s to s0r-path in the resulting graph.Theorem 2.8. The above algorithm solves the problem of determining whether or not there existsan r-path from s to s0, in time O(m).Proof. We show that the number of operations of the algorithm is O(m). These operationsinclude the set union operations spent; however, the whole work in performing the set unionoperations requires time O(m) because the operations fall into the incremental tree case discussedabove.To account for the time to perform the bud trimmings, note that the cost of trimming a bud� is proportional to jE� j, and the number of arcs of the graph decreases by jE� j because of thetrimming. Hence, the total cost of bud trimmings is O(m).Similarly, since the cost of �nding a bud is proportional to the size of the bud, the total costof �nding the buds is O(m). If the algorithm �nds an r-path from s to s0, it takes O(n) time toverify this fact.Each time the algorithm scans an arc going out of A, a node is added to A or a bud trimmingoccurs, so there are O(m) scans. Each scan requires a constant number of operations (includingselection of the arc to be scanned but not including those accounted for above or those needed tomaintain the set Q).



12Finally, each time a node of the current graph is added to A, we need to update Q. Since anode v 2 V is added to the preimage of A at most once and the cost of updating Q due to thenode addition is O(1+ degree(v)), the total number of additions to Q is O(n) and the total workinvolved is O(m). The number of extractions from Q cannot exceed the number of additions.2.6. Extracting the Path. Note that if the above algorithm �nds an r-path, the path is in theresulting graph eG. The corresponding path in the original graph can be constructed in lineartime by adding bookkeeping and postprocessing to the algorithm.We say that a sequence (a1; : : : ; ak) of arcs is a partial path if there is a path (b1; : : : ; br) anda sequence of indices i1 < i2 < : : : < ik such that aj = bij for 1 � j � k.For the bookkeeping, we store information about trimmed buds in a way that allows us toundo the trimmings during the postprocessing. We maintain a rooted forest F that representsthe nested structure of the buds appeared during the algorithm. Each vertex of F represents toa bud or a pair of symmetric nodes of G. Each leaf of F represents a pair of symmetric nodes;there are n=2 leaves. Each non-leaf vertex x represents to a bud � , and the leaves of the subtreerooted at x is just the representatives of the symmetric pairs in V� . In the latter case we also saythat the x represents the pair fw� ; w� 0g.The forest F is maintained as follows. At the beginning of the algorithm F is a trivial forestwith n=2 vertices and no edges. When a bud � = (V� ; E� ; e�) is trimmed, we add to F a new vertexx representing � . For each pair fy; �(y)g of elements of V� we make the vertex of F representingthis pair a child of x.When a bud � is trimmed, we also store the two paths that form E� . These paths are storedas the corresponding sequences of arcs of G, organized as doubly-linked lists. Because of (ii) inLemma 2.7 the overall work in storing the paths is O(m).We say that a vertex of F which is not a child of any other vertex is maximal. The forest F ischanged during the path restoring algorithm by removing (repeatedly) certain maximal vertices.In the process of restoring we use the following f-root(v) operation: given a leaf x of F , �ndthe maximal vertex rx of the tree T of the current F that contains x, i.e., rx is the root of T .To implement this operation, we maintain a stack of vertices of F , which either is empty orcorresponds to the path from x to rx. Initially each stack is empty. We say that a leaf is active ifits stack is already non-empty. Suppose we want to �nd rx for some leaf x. If x is active then rxis just at the top of the stack, and we �nd rx immediately. If x is not active, we traverse F up,starting from x and simultaneously pushing the traversed vertices into the stack. At the end ofthe traversal rx occurs at the top of the stack, and x becomes active.Let eP be the (simple) path in eG found by the algorithm. This path corresponds to a partial



13path P in G. Note that P may have consecutive arcs (a; b) and (c; d) such that b 6= c. In this caseb and c must belong to the same maximal bud and therefore to the same tree T of F . Let b andc be the leaves in F representing the pairs fb; �(b)g and fc; �(c)g, respectively. Using f-rootoperation, we �nd the root x of T and work with the bud � = (V� ; E� ; (v; w)) represented by xas follows. Note that either (a; b) is the base arc (v; w) of � , or (c; d) is its anti-base arc (w0; v0).Assume the former; the other case is symmetric. We remove x from F , which makes the childrenof x maximal vertices in the new F . Accordingly, we delete the top element x from the stacks of band c; let y and z be the new elements in these stacks, respectively. Then y and z represent somepairs ff; �(f)g and fg; �(g)g, respectively, of nodes of the graph G0 from which eG was created bytrimming � . Moreover, b is in the preimage of f or �(f), and c is in the preimage of g or �(g).By the above assumption, ff; �(f)g coincides with fw;w0g.Our aim is to �nd a path �0 = (e1; : : : ; ek) in (V� ; E�) to be inserted in eP between (a; b) and(c; d) so that the resulting sequence P 0 would be an s to s0 r-path in G0. If y = z then eP is alreadythe desired path. Otherwise we should take as �0 either the path �1 from w to g or the path �2from w to �(g) (these �1 and �2 are found by traversing the two paths forming E�). If z is a leafthen c 2 fg; �(g)g, and the task of choosing �0 among �1 and �2 is trivial. And if z represents abud � 0 then we must take as �0 that of �1 and �2 last arc of which is the base arc of � 0. Here weuse the facts that (a; b) and (c; d) are not in E� and that P 0 must contain the base or anti-basearc of � 0 to conclude that in our case the base and anti-base arcs of � 0 are in E� .We recursively apply the above procedure to the graph G0 and path P 0, and so on. As a result,we eventually �nd the desired path in G.Formally, at an iteration of the postprocessing algorithm we deal with a partial path (a1; : : : ; ak)in G and a pair (ai; ai+1) in it and decide whether the head h of ai coincides the tail t of ai+1.If h 6= t, we �nd a sequence (e1; : : : ; ek) in E� to insert between ai and ai+1 as described above,where � is the maximal bud (in the current collection of buds) such that h; t 2 V� .The scan of all the pairs (ai; ai+1) throughout the algorithm can be easily organized so thatit takes linear time. Furthermore, determining the required sequence in E� takes time O(jE� j),therefore the whole work in constructing such sequences takes linear time. It remains to show thatthe total time � of the f-root operation is linear. We observe that once the f-root is applied toa leaf x of F , each repeated f-root(x) operation takes O(1) time and the stack of x decreases.Therefore, � is proportional to the total length of the stacks designed during the algorithm, orto the total number � of traversals of edges in F when the stacks are created. Analysis of thealgorithm easily shows that each edge of F is traversed at most twice (taking into account thatwhile a bud � is occurring in F , there can happen at most two arcs (a; b) and (c; d) in the currentpartial paths for which b and c belong to V�). Hence, � is O(n), and the result follows.



14 3. Shortest R-Paths under Nonnegative LengthsIn this section we study the problem of �nding a shortest s to s0 r-path under the nonnegativearc lengths. We refer to this problem as NSRPP.3.1. Length Transformations. A fragment is a pair � = (V� ; e� = (v; w)), where V� is asymmetric set of nodes and e� is an arc such that v 62 V� , w 2 V� . Note that every bud correspondsto a fragment de�ned by its node set and base arc. The characteristic function �� of � is thefunction on E de�ned by �� (a) = 8<: 1 if a 2 fe� ; �(e�)g;�1 if a 2 �(V�)� fe� ; �(e�)g;0 otherwise:Here �(V�) is the set of arcs with one end in V� and the other in V � V� .Let � 2 R+. The (�; �)-transformationmaps the length function ` to `0 = `+��� . We can applya sequence of (�i; �i)-transformations and obtain the length function `0 = ` +Pi �i��i . Observethat if length of a path P increases after an (�; �)-transformation, P must pass through both thebase and the anti-base of � , thus P is non-regular. Therefore the (�; �)-transformation does notincrease the length of any r-path from s to s0.Node potentials are given by a potential function p : V ! R. Given a length function `, wede�ne the reduced cost function `p by `p(x; y) = `(x; y) + p(x)� p(y), (x; y) 2 E. If the reducedcosts are nonnegative, and a path P has zero reduced cost, then P is a shortest path for `.A separator is a set S � V such that s 2 S, s0 62 S. Given a separator S, a potential functionp, and a real � 2 P , the (�; S)-relabeling operation modi�es p as follows:p(x) = � p(x) if x 2 S;p(x) + � otherwise:Given a length function `0 and a potential function p such that `0p � 0, we de�ne the zero-graphG0 = (V;E0) by de�ning E0 = fa 2 Ej`0p(a) = 0g.3.2. Linear Programming Formulation. Next we describe a linear program (LP) and discussits relationship to the shortest r-paths problem. Although we are now studying the nonnegativelength case, the linear program remains the same for the arbitrary length case, which we study inthe next section. Let T be the set of all fragments and let P be the set of all regular paths froms to s0. Given a path P , we de�ne its characteristic function �P on E by�P (e) = � 1 if e 2 P;0 otherwise:Variables of the LP are of two types. A variable of the �rst type corresponds to a fragment� 2 T and is denoted by �� . A variable of the second type corresponds to a node x 2 V and is



15denoted by �x. The LP is as follows.max�s0 subject to 8<: �� � 0 8� 2 T�s = 0�y � �x �PT ���� (x; y) � `(x; y) 8(x; y) 2 E:(3.2-1)Note that if ` � 0, then � = 0 and � = 0 give a feasible solution to this LP.It can be shown that the s to s0 r-paths induce a subset of feasible dual solutions to this LP. Wedo not state the dual program explicitly but prove the facts we need directly, without an explicituse of the linear programming duality.For any feasible solution to the LP, �s0 gives a lower bound on the shortest s to s0 r-path length.This is because any (�; �)-transformation can only decrease the length of an r-path from s to s0(as mentioned above), and the length of any s to s0 path with respect to `+PT ���� is at least�s0 .Let P 2 P and let (�; �) be a feasible solution to the LP. Let `0 = ` +PT ���� . The following\complementary slackness" conditions give an optimality criterion for the problem, in view ofLemmas 3.1{3.2 and Theorem 3.3 below.(CS1) �� > 0) �P � �� = 0;(CS2) (x; y) 2 P ) �y � �x = `0(x; y):Lemma 3.1. If (CS1) and (CS2) hold, then P is a shortest r-path from s to s0 with respect to `and `(P ) = �s0.Proof. Condition (CS2) implies that P is a shortest path with respect to `0 and `0(P ) = �s0 .Condition (CS1) implies that `(P ) = `0(P ). The fact that for any r-path �, `(�) � `0(�) completesthe proof.This lemma is easy, while the next one is provided by the algorithm described in Section 3.3.Lemma 3.2. If P is a shortest r-path with respect to `, then there exists a feasible solution (�; �)to the LP such that (CS1) and (CS2) hold.Taken together, Lemmas 3.1 and 3.2 yield the following duality theorem.Theorem 3.3. max�s0 = minP `(P ).Proof. We know that max�s0 � minP `(P ). By Lemmas 3.1 and 3.2, there exist P 2 P and afeasible solution (�; �) such that `(P ) = �s0 .



163.3. Algorithm Description. The intuition for the algorithm of this section is as follows. Sup-pose we have a current length function `0 (obtained by a sequence of (�; �)-transformations) anda potential function p such that the reduced costs `0p are nonnegative. Then in G0 either there isan r-path P from s to s0 or a barrier. In the former case, if P satis�es (CS1) then P is a requiredpath by Theorem 3.3. In the latter case, using the barrier, we modify the length and potentialfunctions so that the length of the shortest (non-regular) paths increases and the reduced costsremain nonnegative. The search for the path in G0 is similar to the RRP algorithm. Each bud� = (V� ; E� ; e�) found during the search induces the fragment (V� ; e�) (also denoted by �), andthe function � on T can take nonzero values only on these fragments.The algorithm maintains a length function `0 and a potential function p such that `0p is non-negative and symmetric. Initially `0 is the input length function ` and p is the zero function. Thealgorithm also maintains a set A of nodes reachable from s by r-paths in the current zero-graphG0, with the r-paths represented by a spanning tree T � E of hAi rooted at s. By symmetry, forevery node v0 2 A0 = �(A) there is an r-path to s0 in T 0 = �(T ). The invariant A\A0 = ; alwaysholds. Initially A = fsg and T = ;.At each step the algorithm attempts to �nd an arc (v; w) such that v 2 A, w 62 A, and`0p(v; w) = 0. If such an arc exists, the algorithm proceeds as the RRP algorithm. The onlydi�erence is that the buds are discovered in G0 but trimmed in the current graph G. Thealgorithm maintains the sets CV and CE of base nodes and arcs of the maximal fragments (in thecurrent collection of fragments).If no arc out of A with zero reduced cost exists, the algorithm chooses � 2 R+ as describedbelow and modi�es `0 and p by performing the following adjustment procedure consisting of thefour consecutive steps (1){(4) (in (1) and (2) `0 is being changed step by step, by treating theelements of CE in succession). De�ne X = A� CV .(1) For every (v; w) 2 CE, set `0(v; w) to `0(v; w) + �, and for all (w; z) 2 E with z 62 V� , set`0(w; z) to `0(w; z)� �, where � is the maximal fragment with e� = (v; w).(2) For every (v; w) 2 CE, set `0(�(v; w)) to `0(�(v; w))+� and for all �(w; z) 2 E with z 62 V� ,set `0(�(w; z)) to `0(�(w; z))� �, where � is as in (1).(3) Apply the (�;X)-relabeling.(4) Apply the (�; V � �(X))-relabeling.(The �rst two steps are equivalent to applying to `0 the (�; �)-transformations simultaneously forall maximal fragments � .)The value of the adjustment parameter � is chosen to be as large as possible without creatingnegative reduced cost arcs. One can see that after the adjustment, the reduced cost of an arcis either preserved or changed by �, 2�, ��, or �2�. The arcs whose reduced costs decrease by
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Figure 3. The adjustment parameter choice. The length of light arcs decreasesby �, and the length of heavy arcs by 2�.� include the arcs from X to M and the symmetric arcs, and the arcs from CV to M and thesymmetric arcs. (M is de�ned in Section 2.1.) (See Figure 3.) We denote the set of these arcs byE�1. One can see that the arcs whose reduced costs decrease by 2� are of three types.(1) The arcs from X to �(X) = X 0.(2) The arcs from X to �(CV ) = C 0V and the symmetric arcs.(3) The arcs of the form (v1; �(v2)), where v1; v2 2 CV and v1 6= v2.We denote the set of these arcs by E�2. The value of � is the smallest of the minimum reducedcost over the arcs in E�1 and one half of the minimum reduced cost over the arcs in E�2.Clearly if no arc restricts the value of �, then there is no path from s to s0 in the current graph,so the problem is infeasible. Otherwise, at the next iteration of the algorithm the current G0 mustcontain an arc (v; w) with v 2 A, w 62 A, so during this iteration either a bud trimming occurs andthe graph G becomes smaller, or a node is added to A. Therefore any reasonable implementationof the algorithm runs in polynomial time. We discuss a particularly e�cient implementation laterin Section 3.5.3.4. Correctness. We start the correctness proof with several lemmas. The proof of the �rstlemma is trivial.



18Lemma 3.4. The reduced cost function `0p maintained by the algorithm is symmetric; the graphG0 is also symmetric.Lemma 3.5. T and T 0 contain only zero reduced cost arcs.Proof. The only case which is not completely straight-forward is the case of an arc (x; y) 2 Tthat is a base arc of a fragment (i.e., (x; y) 2 CE). In this case y 2 CV and x is either in CV orin X . If x 2 CV then both potentials p(x) and p(y) increase by � and `0(x; y) does not change.To see the latter, let �x be the maximal fragment with the base x and let �y be the maximalfragment with the base y. Note that (x; y) is the base arc of �y, whence the treatment of �y in theadjustment procedure increases `0(x; y) by �. But (x; y) is also an arc going out of V�x , whence thetreatment of �x in the adjustment procedure decreases `0(x; y) by �. Thus the whole adjustmentprocedure does not change `0(x; y). If x 2 X then p(x) is not changed and both p(y) and `0(x; y)are increased by �. Hence, `0p(x; y) is not changed.The adjustment parameter is chosen so that the following result holds.Lemma 3.6. The reduced costs maintained by the algorithm are nonnegative.Lemma 3.7. Bud trimming preserves the minimum length of an r-path from s to s0.Proof. Let eG be the graph obtained from the current graph G by trimming � = (V� ; E� ; (v; w))and let `0p denote the reduced costs in G. Then `0p � 0, `0p(e) = 0 for every e 2 E� , and trimmingpreserves the reduced costs of the arcs that remain in eG. Suppose that P 0 is an `0p-shortest r-pathfrom s to s0 in eG. Since (v; w) is the only arc in G entering w and �(v; w) is the only arc leaving�(w), P 0 passes through at most one node among w; �(w). This implies that there is an r-path Pin G from s to s0 consisting of all arcs of P 0 and, possibly, some arcs in E� . Then `0p(P ) = `0p(P 0),hence the minimum `0p-length of an r-path from s to s0 in G is at most `0p(P 0).To see the converse inequality, suppose that P is an `0p-shortest r-path in G. Consider thesubgraph Q = (VQ; EQ) induced by the arc-sets of P; �(P ); L; �(L) and the set E� , where L isthe path in T from s to w. By Theorem 2.4, after trimming � in Q the resulting graph eQ stillcontains an r-path P 0 from s to s0. Since the paths P 0 and �(P 0) are edge-disjoint and `0p(e) = 0for all e 2 E� [ L [ �(L), we have2`0p(P 0) = `0p(P 0) + `0p(�(P 0)) � `0p(EQ)) = `0p(P ) + `0p(�(P )) = 2`0p(P );hence `0p(P 0) � `0p(P ).



19Theorem 3.8. If there is no r-path from s to s0, the algorithm declares the problem infeasible,and otherwise the value of p(s0) at the end of the algorithm is equal to the length of the shortestr-path from s to s0 with respect to `.Proof. The �rst part of the theorem follows from Theorem 2.4 and the description of the algo-rithm.For the second part of the theorem, note that the above lemmas imply that if the algorithmterminates with an r-path, this r-path has a zero reduced cost with respect to the �nal reducedcost function `0p and `0p is nonnegative. Lemmas 3.1 and 3.7 complete the proof.In particular, this proves Lemma 3.2 and Theorem 3.3.3.5. E�cient Implementation. In this section we give details of an e�cient implementationof the algorithm. This implementation runs in time which is close to linear. The only nonlinearterm comes from O(m) operations on the priority queue data structure.An important part of the implementation is the way node potentials are maintained. Thepotentials of nodes in A are maintained explicitly (by A;A0 we mean these sets themselves ortheir preimages in the original graph, depending on the context). We also maintain the numberD such that p(s0) = 2D. For v 2 A0, p(v) = 2D� p(�(v)). For a node v 2M , p(v) = D. When anode from M is added to A, its potential is computed and stored explicitly. Each time we trim abud � with base node w, we store the values D� and p� of D and p(w), respectively, at the timeof trimming. Then for a node w 2 CV that is the base of a trimmed bud � , the current p(w) isgiven by p(w) = p� + (D � D�). Accordingly, for a node w 2 C 0V , p(w) = 2D � p(�(w)). Theadjustment procedure with the parameter value � increases D by 2�.The function `0 is maintained explicitly on the arcs of G not incident to nodes in CV or C 0V andimplicitly on the remaining arcs of G. (Note that the adjustment procedure does not change `0on the former arcs.) Initially all values of `0 = ` are explicit. We denote the last value of `0(v; w)stored explicitly by �(v; w). Consider an arc (v; w) with exactly one end incident to a maximalfragment, and let � be the single minimal fragment incident to (v; w). We have the followingpossibilities.(1) If v 2 CV , then the current value of `0(v; w) is �(v; w)� (D �D�).(2) If w 2 CV then the current value of `0(v; w) is �(v; w) + (D �D�).(3) If w 2 C 0V then the current value of `0(v; w) is �(v; w)� (D �D�).(4) If v 2 C 0V , then the current value of `0(v; w) is �(v; w) + (D �D�).Now consider an arc (v; w) adjacent to two maximal buds �1 and �2. Without loss of generalityassume that v is the base of �1. If (v; w) is the base arc of �2, then the current value of `0(v; w) is



20�(v; w)� (D�1 �D�2), and otherwise the value is �(v; w)� (D�D�1)� (D �D�2).To select the next arc for scanning and to compute the adjustment parameter values e�ciently,we represent the sets E�1 and E�2 by priority queues Q1 and Q2, respectively. (For a discussion ofthe priority queue data structure, see e.g. [5].) We use the standard priority queue operations:member, insert, minimum, extract-minimum, and delete. The key k(v; w) of an element(v; w) on Q1 is equal to �p(v; w)�Dw, where Dw is the value of D at the last time k(v; w) wascomputed and �p(x; y) = p(x) � p(y) + �(x; y). The key k(v; w) of an element (v; w) on Q2 isequal to �p(v; w)� 2Dw, where Dw is the value of D at the time k(v; w) was computed. Belowwe show how to maintain D so that for (v; w) on Q1, `0p(v; w) = k(v; w)� D, and for (v; w) onQ2, `0p(v; w) = k(v; w)� 2D.Using the priority queues, the adjustment parameter value can be quickly computed becauseit is given by � = (min(minimum(Q1); 12minimum(Q2)))�D:(3.5-2)(We assume that if Qi is empty, minimum(Qi) returns in�nity.)The e�cient implementation of the algorithm works as follows. Initially Q2 is empty and Q1contains the arcs (s; v) 2 E with v 6= s. At each step, we compute the adjustment parameter � asdescribed above.If 0 < � < 1, then we increase D by �. Note that given our representation of p and `0, thisimplements the adjustment procedure.If � = 0, let Qi be the queue containing the arc for which the minimum in (3.5-2) is achieved.Then extract-minimum(Qi) returns an arc (v; w) such that v 2 A, w 62 A, and `0p(v; w) = 0.We examine all (w; x) 2 E. If (w; x) is not in Q1 or Q2, we compute k(w; x), and executeinsert(Q1; (w; x)) if x 2 M and insert(Q2; (w; x)) otherwise. Next we examine all (z; w) 2 Eand delete (z; w) from Qi if (z; w) is in the queue.Then we scan (v; w) as follows. If w 62 A0, then w is added toA, (v; w) to T , w0 toA0, and �(v; w)to T 0 (as usual, w0 = �(w)). For each (x; w) 2 E that is in Q1, we execute delete(Q1; (x; w)). Foreach (x; w0) 2 E that is in Q1, we execute delete(Q1; (x; w0)), set Dw0 = D, �(x; w0) = `0(x; w0),and k(x; w0) = �(x; w0))� 2Dw0 , and execute insert(Q2; (x; w0)).Now suppose w 2 A0 and let P be the concatenation of the s to v path P1 in T , (v; w), and thew to s0 path P2 in T 0. If P is regular, then we return P and halt. If P is not regular, then we �ndand trim a bud � = (V� ; E� ; (x; y)) in G in the same way as in the RRP algorithm. If an arc a isdeleted from the current graph by the trimming operation, we delete the arc from Q1 and Q2 ifappropriate.If � =1, we declare the problem infeasible.



21The above analysis immediately implies the following theorem.Theorem 3.9. The shortest regular path problem with nonnegative arc lengths can be solved inO(m) time plus O(m) priority queue operations mentioned above.Since some priority queue operations require non-constant time, the running time of the NSRPPalgorithm is dominated by O(m) priority queue operations and time bound achieved by thealgorithm depends on the priority queue implementation used. Using the simple binary heapdata structure (see e.g. [5]), we obtain an O(m logn) bound. Using the R-heap implementation[1], we obtain an O(mplogC) bound. Note that the latter bound implies that we can solve theproblem with unit arc lengths in linear time.3.6. Extracting Primal and Dual Solutions. Next we discuss how to modify the algorithm sothat we can in linear time recover, upon termination, an r-path P in G, a potential function p, andlength transformations (�1; �1); : : : ; (�k; �k) that satisfy the complementary slackness conditions.We start with the length transformation. To obtain the linear time bound, we use techniques forrepresenting nested families similar to those for the RPP algorithm, including the data structuresused for extracting the path at the end of the RPP algorithm.To extract �, recall that with each bud � trimmed by the algorithm we also maintain the valueD� . Let Df be the �nal value of the variable D. Then for each bud � , the corresponding �� valueis Df �D� .Next we discuss how to extract the potential function p. Recall that we have already discussedhow the potentials of nodes in G are maintained, and the explicit value of such a potential can becomputed in constant time. Let v be a node deleted during trimming of a bud � , and let pf(v)be the potential value at v at the time of trimming. Then p(v) = pf(v) +Df �D� . Note that �corresponds to the parent of v in the forest representing the buds and can be found in constanttime.Finally, the path P in G corresponding to the path in G found by the algorithm can bereconstructed in the same way as in the RRP algorithm. Because of the way the bud trimmingoperation works, the path P satis�es (CS1) and (CS2).4. Shortest R-Paths under Arbitrary LengthsLet ` : E ! R be an arbitrary symmetric length function. We say that (G; `) is r-conservativeif there is no r-cycle C in G of negative length `(C) (an r-cycle is a directed cycle containing nopair of symmetric arcs). Note that an r-conservative (G; `) can have (non-regular) negative lengthcycles. The SRPP is the problem to decide whether (G; `) is r-conservative, and if it is, to �nd ashortest r-path from s to s0, given s 2 V and s0 = �(s).



22 It is easy to see that for any nonnegative function � on the set T of fragments in G, the lengthtransformation ` ! `0, de�ned in Section 3.1, does not increase the length of any r-cycle. Thelength of an r-cycle can decrease, however, so we have to assure that no negative r-cycles areintroduced by the length transformations.Consider the linear program (3.2-1).Theorem 4.1.(i) (G; `) is r-conservative if and only if LP (3.2-1) has a feasible solution, in other words, ifand only if there exists a length transformation ` ! `0 such that all cycles for (G; `0) arenonnegative.(ii) Let (G; `) be r-conservative. Then max �s0 = min(`(P ) : P is an r-path from s to s0).The proof of this theorem is provided by the algorithm to solve SRPP described next.As a preprocessing step, we apply the following node-splitting transformation to construct anequivalent problem which is at most a constant factor bigger than the original problem and hasO(n) negative length arcs. We iterate over all nodes and do the following for every node x that hasan outgoing arc of negative length. We replace x by two nodes, x1 and x2. Let � be the minimumlength of the arcs going out of x. We replace all arcs of the form (z; x) by the arcs (z; x1) with`(z; x1) = `(z; x)� � and all arcs of the form (x; z) by the arcs (x2; z) with `(x2; z) = `(x; z)� �.We also add an arc (x1; x2) with `(x1; x2) = 2� and call this arc the x-arc. Note that if x is splitthis way, then x0 = �(x) is also split. It is easy to see that if we de�ne �(x1) = x02 and �(x2) = x01,then the resulting graph is skew-symmetric and the new function ` is symmetric. Note that inthe graph obtained by node-splitting, if (x1; x2) is an x-arc, then this is the only arc out of x1and the only arc into x2.The SRPP algorithm works as follows. Let N = fe 2 E : `(e) < 0g, and let the pairs ofsymmetric arcs in N be numbered as fe1; �(e1)g; fe2; �(e2)g; : : : ; fejNj=2; �(ejNj=2)g. Denote byGi the subgraph (V;Ei) in G, where Ei is obtained from G by deleting the arcs ej; �(ej) forj = i+ 1; : : : ; jN j=2.The algorithm consists of at most jN j=2 + 1 iterations. After executing i � 1 iterations, wehave the following current objects: a set T i of fragments in Gi�1; a positive function �i on T i; apotential function pi. In addition, the following conditions are satis�ed.(N1) The reduced costs `i(x; y) = `0pi(x; y) of the arcs (x; y) in Gi�1 are symmetric and nonneg-ative.(N2) T i forms a base compatible nested family; this means that for any two distinct � =(V� ; (v; w)); � 0 = (V� 0 ; (v0; w0)) in T i either V� \ V� 0 = ;, V� � V� 0 , or V� 0 � V� ; more-over, if V� � V� 0 and v 62 V� 0 then (v; w) = (v0; w0).



23(N3) For every � = (V� ; a� = (v; w)) 2 T i and every x 2 V� , in the subgraph hV�i of Gi�1induced by V� there are r-paths from w to x and from x to �(w) such that all arcs onthese paths have zero reduced costs.Initially, T 1 = ; and p1 = 0. At i-th iteration we examine the arcs ei = (xi; yi) and �(ei) =(y0i; x0i). If `i(ei) � 0, we �nish the iteration by setting T i+1 = T i, �i+1 = �i, and pi+1 = pi.Otherwise we form the auxiliary graph H = (VH ; EH) by adding to Gi�1 new nodes t and t0 andarcs (t; yi); (t; x0i); (xi; t0); (y0i; t0) and de�ne `0 on these new arcs to be zero. We extend pi to VH bysetting pi(v) for v = t; t0 in such a way that the reduced costs of the added arcs are nonnegative.We say that an r-path P in H from t to t0 is strong if for any � 2 T i, �� � �P = 0. Let eP be theset of strong paths.Note that because ei is the only arc leaving xi and the only arc entering yi, none of xi; yi; x0i; y0iis in any fragment of T i, so we can construct the auxiliary graph without any complications evenif we work with trimmed graphs.Suppose we have a procedure for �nding a shortest strong path P with respect to `i. Also sup-pose that, when constructing P inH , the procedure transforms T i; �i; pi; `i into T i+1; �i+1; pi+1; `i+1satisfying (N1){(N3) for Gi except, possibly, the nonnegativity of `i+1 on ei; �(ei). If the latterhappens (i.e., if for the part P 0 of the resulting P from yi to xi (or from x0i to y0i) the inequality`(P 0) < j`(ei)j occurs), then adding ei (or �(ei)) to P 0 we get a negative r-cycle and conclude that(G; `) is not r-conservative.If after executing the iterations as above we found out that (G; `) is r-conservative, then atthe last, say j-th, iteration, we put H; t; t0 to be G; s; s0, respectively, thus �nding a strong r-pathfrom s to s0 which satis�es (CS1) and (CS2), along with the current T j+1; �j+1; pj+1. ThereforeP is the shortest r-path from s to s0.We show below that a shortest strong path can be found in O(m logn) time. This implies thefollowing bound on the algorithm.Theorem 4.2. The SRPP problem can be solved in O((jN j+ 1)m logn), or O(nm logn), time.If T i is empty, the procedure for �nding a shortest strong path is the same as the NSRPPalgorithm of Section 3. Otherwise, the procedure is similar but somewhat more complicatedbecause for some fragments � 2 T i the value of �i� may decrease and, if �i� reaches zero, � may bedeleted from T i.As before, the fragments used by the algorithm are induced by the buds. We use the same budtrimming operation as above, but we also need the \inverse" bud expansion operation.4.1. Data Structures and Bud Expansion. Let � = (V� ; E� ; a� = (v; w)) be a maximal bud.Recall the e�cient implementation of the bud trimming operation described in Section 2.4. To



24expand � , we need to undo the steps (T2) and (T3) (see Section 2.4). We can undo (T2) if forevery z 2 V� we store the pointers to the beginning and the end of the arc list of z when weconcatenate the list to the arc list of y.To undo (T3), we need a set-union data structure that allows the split(r) operation in additionto the make-set(x), union(x; y), and find-set(x) operations. The split(r) operation appliedto the set containing r formed by union(x; y) partitions this set into the original two sets whichwere combined by the union operation. The union by rank variant of the disjoint set union datastructure (see e.g. [5]) implements the desired operations so that each operation takes O(logn)time (where n is the maximum set size).In the union by rank implementation, a collection of disjoint sets is represented by a rootedforest on the base elements. Each tree corresponds to a set represented by its root. The make-set(x) operation creates a single element set fxg. The find-set(x) operation starts at x, goesup the tree containing x, and returns the root of the tree. The union(x; y) operation comparesthe sizes of the sets containing x and y, and makes the root of the tree representing the smallerset into a child of the root of the tree representing the bigger set. The children of a tree node aremaintained as a stack. The split(r) operation �nds the root z of the tree containing r, pops thestack containing the children of z, and makes the popped vertex a tree root. It is easy to see thateach operation takes O(logn) time if n is the largest set size.4.2. Finding a Shortest Strong Path. Now we describe the procedure for �nding a shorteststrong path.In addition to the set T 0 of fragments and a function �0 on T 0, the procedure maintains alength function `0 and a potential function p such that `0p is nonnegative and symmetric. InitiallyT 0 = T i, �0 = �i, p = pi, and `0 = `+PT �0��� . When the procedure terminates, we set T i+1 = T 0,�i+1 = �0, pi+1 = p.The procedure maintains a set A of nodes reachable in G0 from t by r-paths, with the r-paths represented by a spanning tree T � E of A rooted at t. By symmetry, for every nodev0 2 A0 = �(A) there is an r-path to t0 in T 0 = �(T ). The invariant A \ A0 = ; always holds.Initially A = ftg and T = ;. In addition, the algorithm maintains the set T 0 (equal to T i initially),and the sets CV ; CE; DV ; DE de�ned as follows.� For every maximal fragment � = (V� ; a� = (v; w)) such that a� is in T , w 2 CV anda� 2 CE. We call � with the base node in CV a growing fragment.� For every maximal fragment � = (V� ; a� = (v; w)) with anti-base w0 = �(w) such thatthere is an arc (z; w0) in T , then w0 2 DV , and (v; w0) 2 DE . We call � with the anti-basenode in DV a shrinking fragment.



25Initially the sets CV ; CE; DV , and DE are empty.Note that a fragment � cannot be growing and shrinking simultaneously. This is because if �is growing than its anti-base node must be in A0, if � is shrinking than its base node must be inA, and A \ A0 = ;.At each step the algorithm attempts to �nd an arc (v; w) such that v 2 A, w 62 A, and`0p(v; w) = 0. If such an arc exists, the algorithm scans the arc as in the NSRPP algorithmwith the following modi�cations. If (v; w) is added to T and (v; w) is the base arc of a maximalfragment in T 0 then we add w to CV and (v; w) to CE. If (v; w) is added to T and w is theanti-base node of a maximal fragment in T 0, we add w to DV and (v; w) to DE.If no arc out of A with zero reduced cost exists, the algorithm chooses � as described belowand modi�es `0 and p by performing the adjustment procedure that is somewhat di�erent from theNSRPP case: step (3) and (4) are added, compared with that described in Section 3.3. Thesesteps are equivalent to applying the (��; �)-transformation to every shrinking bud � . De�neX = A� (CV [DV ).(1) For every (v; w) 2 CE, set `0(v; w) to `0(v; w) + �, and for all (w; z) 2 E with z 62 V� , set`0(w; z) to `0(w; z)� �.(2) For every (v; w) 2 CE , set `0(�(v; w)) to `0(�(v; w)) + � and for all (�(w; z)) 2 E withz 62 V� , set `0(�(w; z)) to `0(�(w; z))� �.(3) For every w0 2 DV , let (v; w) be the base arc of the maximal fragment � with the anti-basenode w0. Set `0(v; w) to `0(v; w)� �, and for all (w; z) 2 E with z 62 V� , set `0(w; z) to`0(w; z) + �.(4) For every w0 2 DV , let (w0; v0) be the anti-base arc of the maximal fragment � with theanti-base node w0. Set `0(w0; v0)) to `0((w0; v0))� �, and for all (z; w0) 2 E with z 62 V� , set`0(�(z; w0)) to `0(�(z; w0)) + �.(5) Apply the (�;X)-relabeling.(6) Apply the (�; V � �(X))-relabeling.The value of the adjustment parameter � is chosen to be as large as possible without creatingnegative reduced cost arcs or making �0 negative on some � . After the adjustment, the reducedcost of an arc is either preserved or changed by �, 2�, ��, or �2�. The sets E�1 and E�2 are de�nedin the same way as in Section 3.3 (note that in the description of types of elements in these setsone should replace CV by CV [ DV and C0V by C 0V [ D0V ). The value of � is the smaller of theminimum reduced cost over the arcs in E�1, one half of the minimum reduced cost over the arcsin E�2, and the minimum value of �0� over shrinking fragments � .If the value of � is restricted by a shrinking fragment � , then we expand the bud correspondingto � .



26 It is easy to verify that the invariants (N1){(N3) are maintained.One can easily implement the procedure for �nding a shortest strong path using the techniquesdeveloped in Sections 2 and 3. The only additional data structure needed is the third priorityqueue containing arcs in DE with keys equal to the value of �0 on the corresponding fragments.The resulting implementation runs in O(m) time plus O(m) set operations and O(m) priorityqueue operations. The analysis is the same as in the NSRPP case with the additional observationthat only the fragments which are in T 0 at the beginning of the procedure are expanded, so therecan be at most jT 0j, or O(n), bud expansions. Using the data structures discussed in Sections 3and 4.1, the set and priority queue operations take O(m logn) time. We can extract the primaland dual solutions in the same way as in Section 3.6. Thus we have the following result.Lemma 4.3. A shortest strong path can be found in O(m logn) time.4.3. Dual Half Integrality. In conclusion we show that if the length function ` is integral,the linear program (3.2-1) always has a half-integral optimal solution. (This can be also derivedfrom a theorem on dual half-integrality for the weighted perfect matching problem.) In fact, weprove that the dual solution found by the algorithm is half-integral. In particular, this result isimportant for the analysis of blocking 
ow method for symmetric 
ows [19].Lemma 4.4. If the current functions � : T ! R and p : V ! R are half-integral and p(s0) isintegral before the adjustment procedure, then the adjustment parameter � selected for the procedureis half-integral.Proof. Recall that the adjustment parameter � is equal to either one or one-half of the reducedcost of some arc (v; w) or to �0� for some bud � . In the �rst case � is half-integral because thereduced costs are half-integral.In the second case we have two subcases: either v 2 X , w 2 X 0 or v is a base of a current budand w is an anti-base of another bud. We show that in this case `0p(v; w) is integral and so � mustbe half-integral. Note that in both subcases v 2 A and w 2 A0, so there are paths �1 and �2 ofzero reduced cost from s to v and from w to s0, respectively. Since p(s) = 0, we havep(s0) = p(s0)� p(s) = `0p(�1) + `0p(v; w) + `0p(�2) = `0p(v; w):Thus `0p(v; w) is integral.In the third case �� is half-integral and therefore the adjustment parameter is half-integral.Since the adjustment procedure increases p(s0) by 2�, this lemma immediately implies thefollowing theorem.



27Theorem 4.5. If the length function ` is integral and LP (3.2-1) is feasible, then the optimalsolution to (3.2-1) found by the algorithm is half-integral.5. Relationship to Matching TheoryAs mentioned in the introduction, the RRP can be reduced to a certain matching problemin a way similar to that described in [29]. Given a skew-symmetric graph G = (V;E) withdistinguished symmetric nodes s and s0, we form an undirected graph eG = ( eV ; eE) as follows. Thenode set eV consists of nodes va corresponding to arcs a 2 E and two additional nodes t and t0.The edge set eE is M [ Y [W [W 0, where� M consists of edges fva; v�(a)g for a 2 E;� Y consists of edges fva; v�(b)g for a; b 2 E such that the head of a coincides with the tailof b;� W consists of edges ft; v�(a)g for a 2 E such that s is the tail of a;� W consists of edges fva; t0g for a 2 E such that s0 is the head of a.Note that because of the symmetry there are two copies of every edge in M and Y ; we identifythese edges.Clearly M is a matching in eG covering all nodes except t and t0. A regular path P =(x0; a1; x1; : : : ; ak; xk) from s = x0 to t = xk in G, corresponds to the path 	(P ) from t to t0in eG given by the sequence (t; v�(a1); va1; v�(a2); : : : ; v�(ak)vak ; t) and 	(P ) is an alternating path(i.e., for each two consecutive edges oh 	(P ), exactly one is in M). It is easy to see that 	gives a one-to-one correspondence between the set of simple r-paths from s to s0 in G and theset of alternating paths from t to t0 in eG. Therefore RRP is equivalent to the problem of �ndinga (simple) alternating path in eG from t to t0. >From the algorithmic viewpoint, however, thisreduction is expensive since j eV j = jEj+ 2 and j eEj can be signi�cantly larger than jEj.Berge's theorem [4] implies that the alternating path exists if and only if eG has a perfectmatching M 0. Suppose that no perfect matching in eG exists. Then by Tutte's theorem [27], thereexists a subset S � eV such that removing S from eG disconnects the graph and the number ofodd components, r, exceeds jSj. (An odd (even) component is a connected component with anodd (even) number of nodes.) Let K1; : : : ; Kr be the odd components of the resulting graph, letKr+1; : : : ; Kq be the even components, and let Vi be the nodes set of Ki. Since in our case eGcontains the matching M with j eV j=2� 1 edges, one can easily see that(1) r = jSj+ 2;(2) t and t0 are contained in two di�erent odd components;(3) each component Ki contains b(jVij � 1)=2c edges of M .



28Using (1){(3), we can show (although arguments are not straightforward) thatK1; : : : ; Kr enablesus to de�ne subsets A;A0; X1; : : : ; Xr�2 such that B = (A;X1; : : : ; Xr�2) is a barrier in G. Thisimplies Theorem 2.2. We can also show that if S is chosen according to Edmonds-Gallai theorem(see e.g. [23]), then B is the canonical barrier; in this case the set Z of nodes reachable by r-pathsfrom s corresponds, in a sense, to the set of nodes in eG reachable by simple alternating pathsfrom t.Next we extend the above reduction to SRPP. First assume that the length function ` isnonnegative. For e 2 eE, de�ne è(e) to be zero if e 2 M , (`(a) + `(b))=2 if e = fva; v�(b)g 2 Y ,and `(a)=2 if e = ft; v�(a)g 2 W or e = fva; t0g 2 W 0. Then for any r-cycle or any t to t0 path Pin G, `(P ) is equal to è(	(P )) of the \image" 	(P ) of P in eG. To solve SRPP in G, we �nd theminimum weight perfect matching M 0 in eG. Clearly the symmetric di�erence M 	M 0 consists ofa simple path Q containing t and t0, and a (possibly empty) collection of pairwise disjoint cyclesC1; : : : ; Ck of zero è-length. Thus, for P = 	�1(Q), we have `(P ) = è(Q) = è(M 0), and P is aminimum `-length r-path in G.Now suppose ` is arbitrary. We �rst determine whether (G; `) is r-conservative. To do this, weconnect t and t0 by an edge e0 with a negative length of large absolute value, obtaining eG0 andè0. Next we �nd a minimum weight perfect matching M 0 for ( eG0; è0). By the choice of è0(e0), M 0must contain e0. One can easily see that (G; `) is r-conservative if and only if M 	M 0 has nonegative length cycles. If (G; `) is r-conservative, we proceed in the same way as for nonnegative`. Note that the above reductions give polynomial-time algorithms for RRP and SRPP, but therunning times of these algorithms are signi�cantly worse than those of the corresponding algo-rithms of our paper. Also, the direct proofs of our analogs of the Berge's and Tutte's theoremsseem simpler than the translations of the classical proofs of these theorems to the skew-symmetricgraph domain.Next we give applications of RRP and SRPP to matching problems.First we consider an augmenting path problem. Suppose we are given an undirected graphH = (VH; EH) and a matching M in it, and let Z � VH be the set of the unmatched nodes. Weare interested in �nding an alternating path connecting two distinct nodes in Z. Such a problemis reduced to RRP for G = (V;E), s, s0 as follows. The node set V is obtained by splitting eachv 2 VH into two nodes v1 and v2, and adding two more nodes, s and s0. The arc set E containsthe arcs (u1; v2) and (v1; u2) for each edge fu; vg 2 VH �M , the arcs (u2; v1) and (v2; u1) for eachedge fu; vg 2 M , and the arcs (s; v1) and (v2; s0) for each v 2 Z. See Figure 4 for an example.One can see that there is a natural one-to-one correspondence between the set of alternatingpaths in H connecting distinct nodes of Z and the set of r-paths from s to s0 in G. Note also
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Figure 4. An example of the augmenting path problem reduction.that jV j = O(jVH j) and jEj = O(EH), so the algorithm of Section 2 solves the augmenting pathproblem in linear time.Next we consider a weighted version of the augmenting path problem. In addition to H andM , we are given a length function `H : EH ! R, and we wish to �nd an alternating path Qconnecting a pair of distinct nodes of Z such that the length `H(Q) is minimized, or show thatthere is an alternating cycle C of negative `H-length. To solve this problem, we construct G asbefore. For each arc a 2 E obtained from an edge e 2 EH , de�ne `(a) = `H(e), and for all otherarcs a 2 E de�ne `(a) = 0. Then the problem is reduced to SRPP for G; s; s0; `.The weighted augmenting path problem can be used to �nd a shortest odd cycle and a shortesteven cycle in an undirected graph. See e.g. [20], Chapter 8. Thus in the case of nonnegative lengthsthe algorithm of Section 3 can be used to solve these problems in O(m logn) and O(m2 logn) time,respectively, wherem in the number of edges and n is the number of nodes in the graph. Similarly,we can use the weighted augmenting path problem to �nd a shortest even (odd) path betweentwo prescribed nodes.In [19] we discuss the reductions of matching and bidirected 
ow problems to skew-symmetric
ow problems. The algorithms developed in [19] use the algorithms of the present paper assubroutines.
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