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1. INTRODUCTION

A digraph G = (V| F) is skew-symmetric if there is a permutation ¢ on V such that for every
veV, ow)#wvand o(c(v)) = v, and (v,w) € £ if and only if (o(w),o(v)) € E. In this paper,
we shall usually use the term symmetric instead of skew-symmetric. We say that a node o(v) is
symmetric to v, and an arc (o(v), o(w)) is symmetric to (v, w). We extend o to V UE by defining
o(v,w) = (c(w),o(v)). Unless otherwise explicitly stated, we assume that the input graph G has
no multiple arcs except in the following case. Suppose v’ = o(v) and (v,v’) € E. Then there are

exactly two copies of (v, v’), and they are, obviously, symmetric to each other.

Skew-symmetric graphs come up in a natural way when certain undirected objects, such as
matchings, are reduced to directed objects. These can be used to get insight into combinatorial
structure of the underlying problem and to design algorithms for it. The skew-symmetric graphs
come up in other situations as well, e.g. in [21, 22] a maximum flow problem in a skew-symmetric

graph appears in conjunction with a certain minimum-cost multicommodity flow problem.

A regular path (r-path) is a path in G that does not contain a pair of symmetric arcs. Given
a length function ( : E = R, the length ¢(P) of a path P is the sum of the lengths of the arcs
of the path. We assume that the length function is symmetric: {(v, w) = {(o (v, w)). Suppose we
are given two symmetric nodes s and §'. The r-reachability problem (RRP) is to find an r-path
from s to ¢’ or a proof that there is none. The shortest r-paths problem (SRPP) is to find the
shortest r-path from s to s’ or a proof that there is none. Note that the latter can happen if &
is not reachable from s via an r-path or if there is an r-path from s to s’ containing a negative

length cycle.

The goal of this paper is to establish a solvability criterion for the RRP and an optimality cri-
terion for the shortest r-paths problem, and to develop fast algorithms for these problems. Com-
putationally, these r-path problems are at least as hard as the standard path and shortest paths
problems. This is because given a graph G with two distinguished nodes z and y, we can make a
disjoint copy G’ of G with the opposite orientation of each arc and work with the skew-symmetric
graph H formed by adding to G U G’ new nodes s and s’ and arcs (s,z), (y, ), (s, ), (2, ).
Then any path from s to s’ in H is regular and corresponds to a path from z to y in . Note also
that the problem on paths with forbidden pairs of arcs in an arbitrary digraph, which is related
to the RRP, is NP-complete [14].

The RRP can be reduced to a certain matching problem in a way similar to that described in
[29] for the node-regular path analog of RRP. Such a reduction can be used to describe a solvability
criterion for the RRP via the classical theorems on perfect matchings due to Berge [4] and Tutte

[27] (see also [23]), as well as to solve the RRP using a maximum matching algorithm, e.g. the



classical algorithm in [8]. Similarly, the optimality criterion for the SRPP can be obtained from
the weighted matching theory developed by Edmonds in [7] (see also [23]), and the problem can be
solved in polynomial time using a minimum-cost matching algorithm. These reductions, however,
considerably increase the graph size (if the input graph has n nodes and m arcs, the reductions
produce a graph that has m+2 nodes and may have Q(n?) arcs), so these reductions are expensive
from the algorithmic point of view. The relationship between problems on skew-symmetric graphs
and matching problems is discussed in Section 5. The section also gives applications of RRP and
SRPP to certain problems on matchings.

Our proofs of the solvability and optimality criteria are in terms of the input graph itself,
which is simpler and more enlightening than the proofs obtained by translating the corresponding
theorems on matchings into the skew-symmetric framework. These theorems demonstrate nice
structural properties of the r-path problems and lead to natural approaches for solving them.

Running time bounds of the algorithms we develop in this paper are within a logn factor from
those for the standard path problems. The algorithm for RRP runs in O(m) (linear) time, where
n = |V] and m = |F|.! We call the SRPP with nonnegative arc lengths NSRPP. Our NSRPP
algorithm runs in O(m logn) time or in O(my/log C') time (the latter bound assumes that costs are
integers in the interval [0, ..., C]). The corresponding bounds in the standard paths case, achieved
by the implementations of Dijkstra’s algorithm [6] described in [1] and [11], are O(m + nlogn)
and O(m+ny/log C), respectively. Our SRPP algorithm runs in O(nm(min(log n, /log C))) time.
The corresponding bound in the standard paths case is O(nm) [3, 10, 25].

In the sequel [19] to this paper we extend the structural and algorithmic results developed here
to more general problems on skew-symmetric graphs, such as the maximum integral symmetric
flow problem, the minimum-cost integral symmetric circulation problem, and their unit capacity
variants. Being interesting in their own right, these problems also bridge flows and matchings.
Using the algorithms developed in the present paper, we design algorithms for the skew-symmetric
flow problems which are as efficient as the fastest known algorithms for the corresponding maxi-
mum flow and minimum-cost maximum flow problems.

The classical matching problems, such as maximum matchings, minimum-cost matchings, b-
matchings and their capacitated versions, and even the minimum-cost bidirected flows [9], can be
reduced to skew-symmetric flow problems without increasing the problem size significantly. As a
result, the algorithms of [19] solve the matching problems as efficiently as the fastest matching
algorithms [2, 13, 16, 17, 24, 28]. At the same time, the results we present are more general and

more uniform, and seem to be simpler.

ITo simplify the presentation, we assume that m >n —1 > 2.



Ficure 1. A barrier.

2. THE R-REACHABILITY PROBLEM

2.1. Barriers. Barriers provide infeasibility certificates for RRP. We say that
B = (A7X17 7Xk)

is a barrier if the following conditions hold.

(B1) A, Xy,..., X, are pairwise disjoint subsets of V.

(B2) s e A.

(B3) For A’ =c(A), An A = 0.

(B4) Fori=1,...,k, X, is symmetric, i.e., 0(X;) = X;.

(B5) For¢=1,...,k, there is a unique arc, a;, from A to Xj.

(B6) Fori,j=1,...,k and i # j, no arc connects X; to X;.

(B7) For M =V — (AUX; U...UX}) and i =1,...,k, no arc connects X; to M.
(B8)

B8) No arc connects 4 and A" U M.

(Note that arcs from A’ to A, from X; to A, and from M to A are possible.) Figure 1 illustrates
the definition.

If a node z of a graph G is reachable from s by an r-path, we say that z is reachable in GG. Given
a graph G = (V, F) and a subset of nodes X C V' let (X) denote the subgraph of G induced by



X.
Suppose that no r-path from s to s’ exists. Let Z be the set of reachable nodes in . Define

Z'=olZ), A=Z -7, A=2' -2, X=20%", andM=V — (ZUZ").
Let Ky,..., Ky be the weakly connected components of (X), and let X; (F;) be the node set (arc
set) of K;. We call B = (A; Xy,...,X}) the canonical barrier.

Lemma 2.1. The canonical barrier is indeed a barrier.

Proof. Let B = (A4;Xy,...,X}) be the canonical barrier. Properties (B1)-(B3) and (B6)—(B8)
follow immediately from the definition of B. We prove the remaining properties by induction on
|E|. The base case |F| =0 is trivial.

Let e; = (v1,w1), ..., €, = (vs, ws) be the arcs from A to X, and let v/ = o(v;) and w} = o(w}),
1,...,h. We may assume that A > 2 (otherwise (B4) and (B5) are trivial). Obviously, there exist
distinet ¢, 7 € {1,...,h} such that at least one r-path from s to v; does not meet the arc e;; let

for definiteness ¢ = 1 and j = h.

Let G = (v, E) be the graph obtained by deleting e, and e}, from G. Clearly G has no r-path
from s to 5. Let Z, 7, A, Z/, X, M be corresponding sets in the definition of the canonical barrier
for G. The fact that every r-path in G is an r-path in G implies that Z C Z, whence 7 C 7' and
X CX. Let K; = (X;,E;), i =1,...,p, be the weakly connected components of the subgraph
(X) of G. By induction B = (A; X,,...,X,) is a barrier. Next, from the above property of e,
and e, we observe that vy, v, € Z, whence v;,v, € A (as vy, v, € A and X C X). Also w, € Z.
Three cases are possible.

Case 1. w, € M. Let @ be the graph obtained by adding to (M) the nodes v, v} and
arcs ey, €},. Then @ is skew-symmetric and contains less arcs than G does (as h > 2 and @
does not contain e;). Furthermore, e, is the only arc in @ that leaves vy, therefore @) has
no r-path from v, to v;. By induction the canonical barrier (B;Y3,...,Y,) for Q,v,, v} is a
barrier. Clearly B = (AUB; X,,...,X,,Y,,...,Y,) is a barrier for . Moreover, each node in
Z=AUXUBUY is obviously reachable in GG, where ¥ =Y, U...UY,. Hence, Z = Z. The
facts that (AU B) No(AU B) = 0 and that all sets X,,...,X,,Y,...,Y, are symmetric imply
that B coincides with B.

Case 2. w, € X U A Then, by symmetry, w), € X U A. Hence, there is an r-path from s to
wj, in G. Adding to it the arc €}, we obtain an r-path from s to v}, in . But v} is not reachable
in (G; a contradiction.

Case 3. w, € A. Then w), € A'. Since wj, € Z, there is an r-path P from s to wj in . Note
that P passes through e, (otherwise v, would be reachable in (). Let P’ be the part of P from
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wy, to w). Then P’ is an r-path in G going from A to A'. This contradicts the fact that B is a

barrier in G. m

We are now ready to prove the duality theorem for RRP.
Theorem 2.2. There is an r-path from s to s' if and only if there is no barrier.

Proof. The fact that if there is a barrier then there is no r-path from s to s’ is immediate from the
definition of a barrier. If there is no r-path from s to &', then the canonical barrier is well-defined,

and Lemma 2.1 completes the proof. m

As mentioned in the introduction, Theorem 2.2 can also be obtained using matching theory.

2.2. Buds and Trimming Operation. A bud is a triple 7 = (V,, E;, e, = (v, w)) such that
(i) L, C I is symmetric: o(£;) = L.

s¢ V..

For every node & € V, there is an r-path from w to z in (V, E;) (and therefore an r-path

(ii) e, € E.
(iii) V; C V is the set of nodes incident to £,. Note that V, is symmetric.
(iv) we V.
(v) vg V.
i)
i)

from z to o(w)).

(vili) There is an r-path P from s to v such that P is node-disjoint from V.

A particular case of a bud arises when the graph (V,, F.) is the union of an r-path I' from w
to o(w’) and the symmetric path o(I'); such a bud is called elementary.

The node w is called the base node of the bud and the arc (v, w) is called the base arc. The
node o(w) is called the anti-base node of the bud and the arc (v, w) is called the anti-base arc.
Given a collection of buds, a bud 7 from this collection is called mazimal if V, is maximal (with
respect to inclusion).

Buds play important role in the algorithms described in this paper. They are similar, in a
certain sense, to blossoms that come up in the classical matching algorithm [8].

Given a symmetric graph G = (V, IY) with a bud (V,, ., e, = (v, w)), let v/ = o(v), w' = o(w),

and e/ = o(e,). The trimming operation transforms G into G with the node set
V=V-(V,-{wuw'l}
and arc set I/ constructed as follows.

(1) Each arc a = (z,y) € F such that either 2,4 € V —V,, or a = ¢,, or a = ¢! remains in F.



Before trimming After trimming

Ficure 2. Bud trimming example.

(2) Each arc @ = (2,y) € F such that z € V,, y € V — V., and a # €. is replaced by an arc
from w to y.
(3) Each arc @ = (2,y) € F such that z € V — V., y € V,, and a # e, is replaced by an arc

from z to w'.

The sets of arcs of G defined by (1)—(3) are denoted by FEj, F,, and FEs, rtespectively; thus
{E\, Fy, Es} is a partition of E. For convenience we identify the corresponding arcs in G and G.
See Figure 2 for an example of bud trimming.

The next lemma follows from the definition of G.
Lemma 2.3. The graph G is symmetric.

Theorem 2.4. There is an r-path from s to s’ in G if and only if there is an r-path from s to s

in G.

Proof. Suppose that s’ is not reachable in G. Apply Theorem 2.2 and consider a barrier B =
(A; X1, ..., Xy) for G. By the definition of a bud, there is an r-path P in G from s to w with the
last arc e,. Since P is also an r-path in G, either (i) w € X; for some 7, or (ii) w € A. In case (i),
add V, — {w,o(w)} to X;. In case (ii), let I be the set of indices ¢ € {1,...,k} such that the arc
a; from A to X; has its tail at w. Remove w from A and replace the sets X;, ¢ € I, in B by the



only set X’ that is the union of these X;’s and V,. It is easy to see that in both cases we obtain
a barrier for G.

Next we prove the other direction of the theorem. Suppose that s’ is not reachable in G.
Consider a barrier B = (A; Xy, ..., X}) for G. The r-reachability from s of all nodes in V, and
the symmetry of V, imply that V, C X; for some 2. Then

(A7X17 e, X, X — (VT - {w7w/})7Xi+17 .- 7Xk)

is a barrier in G. m

Like shrinking blossoms in matching algorithms, bud trimming lowers the size of the graph and
gives an eflicient approach to solving the r-reachability problem, refined in the algorithm that we
describe in further sections. In essence, the algorithm is based on the following two lemmas, the
first one is obvious, while the second one is easily proved by arguing as in the proof of the part

“only if” in Theorem 2.4.

Lemma 2.5. Let P be an r-path from s to s’ in G.

(i) If P meets neither e, nor €., then P is an r-path in G.

(ii) If P meets e, and w is the arc in P following e,, then, in G, P is split into two paths,
P and P,. The former is an initial portion of P with the last arc e, and the latter is the
final portion of P with the first arc u. Moreover, the concatenation of P, @@, and P, is
an r-path from s to s’ in G, where Q is an r-path in (V., E.) from w to the tail of u.

(If P meets €/ the statement is “symmetric” to that in (ii).)

For a node z in G let Q(x) = Q,(x) denote the set V, if @ is the base or the anti-base of a
trimmed bud 7, and the node z otherwise. We say that Q(xz) is the preimage of z in GG. For
X CV let Q(X) stand for the union of preimages of elements of X.

Lemma 2.6. Let Y C V be a set such that s' €Y and Y contains all reachable nodes in G. Let
Y = Q). Then s’ ¢ Y and Y contains all reachable nodes in G. If, in addition, each element
of Y is reachable in G then the same is true for Y and G.

In the algorithm we use the following corollaries from Lemmas 2.5 and 2.6. Suppose we have
constructed a sequence GG = Gy, G, ..., G, of graphs, where GG; = (V;, F;) is obtained from G;_,
by trimming a bud 7; = (V,,, F;,, €;, = (v;,w;)) in it. Suppose also that for each ¢ and € V,, we
have a procedure of finding an r-path from w; to z in (V,,, E.,), (e.g. in the case when each 7; is
an elementary bud in G;_y). If we succeed in finding an r-path P from s to s’ in G, then Lemma
2.5 provides an explicit method to construct an r-path P from s to s’ in GG, by going along the

sequence backward and finding a corresponding path in G; from the previous path in G, ;.



On the other hand, suppose we discovered a set Y of nodes of G, such that s € )7, )700()7) =0,
and none of the arcs of GG, goes from Y to V., — Y. Then Lemma 2.6 shows that G has no r-path
from s to s and that the set ¥ = Q. (...Q, (Y)) contains all reachable nodes in G. Moreover,
if each element of Y is reachable in G, then Y is exactly the set Z of reachable nodes in GG, and
therefore, we have an explicit method to construct a canonical barrier in G.

In what follows we often need to distinguish the base node w (or w’ = o(w)) in the graphs G

/

’). Also, considering sequences

and G. To do this, we denote w (w') in G by w, (respectively, w
G =Gy, ..., G, of graphs and 7,..., 7, of buds as above, we denote by V;, the set of preimages
in GG of the node w,, (or w,,) of G, i.e., V,, = Q,,(...Q;,(w,,)). We use notation (V;,, &, €;,)
for the “preimage” in  of the bud 7;; here &, is the union of sets £, among all j < such that

V;, C V.. It is easy to see the following result.

Lemma 2.7.
(i) For1<i,j<r, either V., NV, =0 or V. CV, ;in particular, the sets V,,i=1,...,r,
form a nested family.
(i) The sets F,,, i =1,...,r, are pairwise disjoint; in particular, Y (|F;|:i=1,...,r) < m.

(iii) Fach (V.,, &, €;,) is a bud in G.

We usually keep the same notation 7; for the bud (V;,, &, €e;,) in G. A bud 7; is called mazimal
if Vv, NV, =0forj=i4+1,...,r.

2.3. High-Level Algorithm Description. Lemmas 2.5 and 2.6 suggest the following algorithm
for RRP. The algorithm maintains a set A of nodes reachable from s by r-paths, with the r-paths
represented by a spanning tree T C E of A rooted at s. The algorithm also maintains A’ = o (A)
and 7" = o(T). By symmetry, from every node v’ € A’ there is an r-path to s’ in 7”. The invariant
AN A = always holds. Initially A = {s} and 7' = 0.

At each step the algorithm scans an arc (v, w) with v € A and w ¢ A. If w ¢ A’, then w is
added to A, (v,w) to T, o(w) to A’, and o(v,w) to T’. Now suppose w € A’ and let P be the
concatenation of the s to v path P, in 7', (v, w), and the w to s’ path P, in T”. If P is regular, then
the algorithm terminates and returns P (in Section 2.6 we explain how to efficiently transform P
into a regular s to s’ path in the original graph). If P is not regular, then there is an arc (z,y)
on P, such that o(z,y) is on Ps. Let (z,y) be the closest to v arc on P, that has this property.
Let E, be the set of arcs on P between y and o(y), and their symmetric arcs. Let V, be the set
of nodes incident to £, in the current graph. Then 7 = (V,, F., (z,y)) is an elementary bud. The
algorithm trims 7, accordingly updating the current graph, the sets A, A’, and the trees T',T".



If there is no arc (v, w) with v € A and w ¢ A, the algorithm concludes that s’ is not reachable,
in view of Lemma 2.6. If needed, we can find, in linear time, the canonical barrier in the original
G.

Correctness of this algorithm follows from Lemma 2.3 and Theorem 2.4.

Note that at each step either A grows or at least two arcs are deleted from the graph by the
trimming operation. This implies a polynomial bound on the algorithm complexity. To achieve a
linear bound, we implement the bud trimming operation efficiently and pick the next arc to scan

quickly.

2.4. Data Structures and Implementation of Bud Trimming. Efficient implementation
of bud trimmings is crucial to the algorithm performance. We discuss the bud trimming imple-
mentation issues below. In this paper, we assume the adjacency list representation of the input
graph in which each node has a list of outgoing arcs arranged in a doubly linked list.

Remark. For every node v of the current graph we maintain the list of outgoing arcs and do
not maintain the list of incoming arcs. We can easily access the incoming arcs, however, because
by symmetry every arc (u,v) is symmetric to the arc (o(v),o(u)) which is on the adjacency list
of o(v).

A naive implementation of trimming a bud 7 = (V,, I, (v,w)) is to delete nodes in V, and
arcs adjacent to these nodes, add new nodes w,,w,’, and add arcs adjacent to these nodes as
prescribed by the definition of bud trimming. By (ii) in Lemma 2.7, there can be O(m) bud
trimmings, and at most m arcs need to be processed during a bud trimming. It can be easily
shown that processing of arcs dominates the running time bound and the naive implementation
runs in O(m?) time.

To do better, an implementation of bud trimming should avoid looking at every arc involved in
the trimming. This can be achieved by using the original arc lists. The arc list for w, is formed by
deleting the arcs of E; and the arc o(v, w) from the appropriate lists, and then by concatenating
the resulting arc lists of nodes in V.

Next we address the following issue: if we are examining an arc (z,y), what is its head node in
the current graphl' If y does not belong to a bud, then the head node is y. If does, consider the
maximal bud 7 that contains y. If (z,y) is the base arc of 7, then the head node is the base of 7
and otherwise, the upper base of 7.

For this implementation we need to maintain the sets V, of the current maximal buds 7. These
sets are disjoint, by Lemma 2.7. The set operations that we need are MAKE-SET(z), UNION(z, ),
and FIND-SET(2). These operations create a single element set containing z, form the union of the

sets containing z and y, and return the name of the set containing z, respectively. The operations
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are supported by the well-known disjoint set union data structure (see e.g. [5]). In the fastest
known implementation of the disjoint set union data structure [26], a sequence of k operations on
elements from a universe of size n takes O(ka(k, n) + n) time, where a is a functional inverse of
Ackermann’s function. As we shall see later, the set union operations we need fall into a special
class and can be done in time O(k 4 n).

Next we describe an efficient implementation of bud trimming. Since the sets we need to
maintain are symmetric, it is convenient to deal with a representative r(z) = r(2’) to every pair
x,z’ of symmetric nodes. Initially each representative is included in a single element set. The
sets are modified only by the trimming operation. If a node z € V belongs to a bud, then the set
V, of nodes of the maximal bud containing « is exactly the set of nodes with representatives in
the same set as r(z).

To trim a bud (V;, E., (z,y)), we do the following.

(T1) Delete arcs in F. from the appropriate arc lists and from 7" and 7", if applicable.
(T2) For every z € V,, concatenate the arc list of z to the arc list of y.

(T3) Form the union of sets containing representatives of nodes in V..

To implement the last step, recall that the bud in the current graph found by the algorithm is
elementary, i.e., V,; contains exactly nodes on a path I' and the symmetric path o(I"). Thus, to
find the sets which need to be joined it suffices to traverse once I' and o(I').

As we shall see later, the algorithm does O(m) set operations. Under the above mentioned
implementation, the set operations take O(ma(m 4 n,n)) time. However, we show below that,
under a slightly different implementation, the set operations fall into the incremental tree set
union case studied by Gabow and Tarjan [15]. Because of this, a sequence of k operations can be
done in O(k+ n) time.

The incremental tree set union case [15] is as follows. Let R be a rooted tree whose nodes
correspond to disjoint sets of elements. Initially R contains a single node corresponding to a
single element set. The operations allowed on R are a contraction of an edge of R that results in
merging the sets corresponding to the two end points, and addition of a leaf node corresponding
to a single element set.

For the RRP algorithm, the tree R is just 7' (assuming that the nodes of T" are the corresponding
sets of representatives). If the algorithm adds a node to T, this node becomes a leaf of T" and
corresponds to a single element set. If the algorithm finds a bud 7 = (V;, F., (z, y)) while scanning
an arc (v, w), each node in V, occurs on a path I' or o(I'). Furthermore, I' consists of a path ',
from y to v in T, (v,w), and a path I's from w to o(y) in T”. Observe that o(I';) is a path in
T from y to o(w), and for every node z € V., exactly one of the nodes z,0(z) appears on I'; or

o(I'y). Therefore we form the unions of only the sets which are connected by the edges of R, i.e.,
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the incremental tree method is applicable in our case.

2.5. Linear-Time Implementation. Now we specify how to find an arc going out of A effi-
ciently. We maintain the set @ of arcs (v,w) € I/ (of the current graph) such that v € A and
w ¢ A. The set () can be represented by any data structure that allows constant time membership
query, addition, extraction, and deletion (e.g. a queue implemented using a doubly linked list).

Since initially A = {s}, we initialize @ by adding all arcs (s,z) € F such that  # s to Q. To
select an arc to scan, we extract an arc (v, w) from @ and scan it. Every time we add a node z
to A, we add (z,y) to @ for every y such that (z,y) € F and y ¢ A, and delete (z, z) from @ for
every (z,z) € E'in Q.

Finally, we show how to find a bud quickly. Recall that a bud is formed when we scan an arc
(v, w) connecting A to A" and find out that the path P = (P, (v, w), I%) is not regular. To find
the desired bud (or a regular path from s to s'), we trace P, forward from w and P, backward
from v, intermixing forward and backward steps. We stop as soon as we discover an arc (z,y) in
F; such that its symmetric arc has already been traced in Ps;_;. The time spent on finding a bud
using this techniques is proportional to the number of nodes in the discovered bud.

Next we show that the above algorithm terminates in linear time. In the next section we show
how to compute an s to s’ r-path in the original graph if the above algorithm found an s to s

r-path in the resulting graph.

Theorem 2.8. The above algorithm solves the problem of determining whether or not there exists

an r-path from s to s, in time O(m).

Proof. We show that the number of operations of the algorithm is O(m). These operations
include the set union operations spent; however, the whole work in performing the set union
operations requires time O(m) because the operations fall into the incremental tree case discussed
above.

To account for the time to perform the bud trimmings, note that the cost of trimming a bud
7 is proportional to |E;|, and the number of arcs of the graph decreases by |FE,| because of the
trimming. Hence, the total cost of bud trimmings is O(m).

Similarly, since the cost of finding a bud is proportional to the size of the bud, the total cost
of finding the buds is O(m). If the algorithm finds an r-path from s to ¢, it takes O(n) time to
verify this fact.

Each time the algorithm scans an arc going out of A, a node is added to A or a bud trimming
occurs, so there are O(m) scans. Each scan requires a constant number of operations (including
selection of the arc to be scanned but not including those accounted for above or those needed to

maintain the set ).
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Finally, each time a node of the current graph is added to A, we need to update (). Since a
node v € V is added to the preimage of A at most once and the cost of updating ¢) due to the
node addition is O(1 + degree(v)), the total number of additions to () is O(n) and the total work

involved is O(m). The number of extractions from () cannot exceed the number of additions. m

2.6. Extracting the Path. Note that if the above algorithm finds an r-path, the path is in the
resulting graph G. The corresponding path in the original graph can be constructed in linear
time by adding bookkeeping and postprocessing to the algorithm.

We say that a sequence (ay,...,a;) of arcs is a partial path if there is a path (by,...,b,) and
a sequence of indices ¢y < iy < ... <1 such that a; = 0;, for 1 < j < k.

For the bookkeeping, we store information about trimmed buds in a way that allows us to
undo the trimmings during the postprocessing. We maintain a rooted forest F' that represents
the nested structure of the buds appeared during the algorithm. Each vertex of F represents to
a bud or a pair of symmetric nodes of G. Each leaf of F' represents a pair of symmetric nodes;
there are n/2 leaves. Each non-leaf vertex z represents to a bud 7, and the leaves of the subtree
rooted at x is just the representatives of the symmetric pairs in V.. In the latter case we also say
that the a represents the pair {w,, w, }.

The forest I’ is maintained as follows. At the beginning of the algorithm F'is a trivial forest
with n/2 vertices and no edges. When a bud 7 = (V,, F,, ¢;) is trimmed, we add to F' a new vertex
z representing 7. For each pair {y, o(y)} of elements of V. we make the vertex of F' representing
this pair a child of x.

When a bud 7 is trimmed, we also store the two paths that form F,. These paths are stored
as the corresponding sequences of arcs of G, organized as doubly-linked lists. Because of (ii) in
Lemma 2.7 the overall work in storing the paths is O(m).

We say that a vertex of F’ which is not a child of any other vertex is mazimal. The forest F is
changed during the path restoring algorithm by removing (repeatedly) certain maximal vertices.
In the process of restoring we use the following F-ROOT(v) operation: given a leaf & of I, find
the maximal vertex r, of the tree T of the current F' that contains z, i.e., r, is the root of T.
To implement this operation, we maintain a stack of vertices of F', which either is empty or
corresponds to the path from z to r,. Initially each stack is empty. We say that a leaf is active if
its stack is already non-empty. Suppose we want to find r, for some leaf x. If 2 is active then r,
is just at the top of the stack, and we find r, immediately. If z is not active, we traverse F' up,
starting from z and simultaneously pushing the traversed vertices into the stack. At the end of
the traversal r, occurs at the top of the stack, and x becomes active.

Let P be the (simple) path in G found by the algorithm. This path corresponds to a partial
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path P in GG. Note that P may have consecutive arcs (a, b) and (c, d) such that b # c. In this case
b and ¢ must belong to the same maximal bud and therefore to the same tree T’ of F. Let b and
€ be the leaves in F' representing the pairs {b,o(b)} and {c,o(c)}, respectively. Using F-ROOT
operation, we find the root « of 7" and work with the bud 7 = (V;, E;, (v, w)) represented by x
as follows. Note that either (a,b) is the base arc (v, w) of 7, or (¢, d) is its anti-base arc (w’,v’).
Assume the former; the other case is symmetric. We remove z from F', which makes the children
of 2 maximal vertices in the new F. Accordingly, we delete the top element  from the stacks of b
and €; let 4 and z be the new elements in these stacks, respectively. Then y and z represent some
pairs {f,o(f)} and {g,0(g)}, respectively, of nodes of the graph G’ from which G was created by
trimming 7. Moreover, b is in the preimage of f or o(f), and ¢ is in the preimage of g or o(g).
By the above assumption, {f,o(f)} coincides with {w, w'}.

Our aim is to find a path T = (e, ..., e;) in (V;, E,) to be inserted in P between (a,b) and
(¢, d) so that the resulting sequence P" would be an s to s’ r-path in G’. If y = z then Pis already
the desired path. Otherwise we should take as I either the path I'y from w to g or the path I'y
from w to o(g) (these I'y and I'; are found by traversing the two paths forming F.). If z is a leaf
then ¢ € {g,0(¢)}, and the task of choosing [V among I'; and I'y is trivial. And if z represents a
bud 7’ then we must take as IV that of I'y and I's last arc of which is the base arc of /. Here we
use the facts that (a,b) and (c,d) are not in F, and that P’ must contain the base or anti-base
arc of 7' to conclude that in our case the base and anti-base arcs of 7/ are in F,.

We recursively apply the above procedure to the graph G’ and path P’, and so on. As a result,
we eventually find the desired path in G.

Formally, at an iteration of the postprocessing algorithm we deal with a partial path (ay, ..., a)
in G and a pair (a;,a;41) in it and decide whether the head h of a; coincides the tail ¢ of a;4,.
If h # ¢, we find a sequence (ey,...,e;) in E, to insert between a; and a;;, as described above,
where 7 is the maximal bud (in the current collection of buds) such that h,t € V,.

The scan of all the pairs (a;,a;41) throughout the algorithm can be easily organized so that
it takes linear time. Furthermore, determining the required sequence in F. takes time O(|F;|),
therefore the whole work in constructing such sequences takes linear time. It remains to show that
the total time n of the F-ROOT operation is linear. We observe that once the F-ROOT is applied to
a leaf z of F', each repeated F-ROOT(z) operation takes O(1) time and the stack of 2 decreases.
Therefore, 1 is proportional to the total length of the stacks designed during the algorithm, or
to the total number p of traversals of edges in F' when the stacks are created. Analysis of the
algorithm easily shows that each edge of I’ is traversed at most twice (taking into account that
while a bud 7 is occurring in /', there can happen at most two arcs (a,b) and (¢, d) in the current

partial paths for which b and ¢ belong to V. ). Hence, p is O(n), and the result follows.
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3. SHORTEST R-PATHS UNDER NONNEGATIVE LENGTHS

In this section we study the problem of finding a shortest s to s’ r-path under the nonnegative

arc lengths. We refer to this problem as NSRPP.

3.1. Length Transformations. A fragment is a pair 7 = (V;,e, = (v,w)), where V, is a
symmetric set of nodes and e, is an arc such that v € V,, w € V. Note that every bud corresponds
to a fragment defined by its node set and base arc. The characteristic function x, of T is the

function on F defined by

-1 ifaed(V;) —{e-,a(e)},

0 otherwise.

1 ifaé€{e;,o(e)},
Xr(a) = {
Here §(V.) is the set of arcs with one end in V, and the other in V' — V.

Let e € R,. The (¢, 7)-transformation maps the length function £ to ¢/ = {+e€x,. We can apply
a sequence of (¢, 7;)-transformations and obtain the length function ¢/ = {+ 3", €;x,,. Observe
that if length of a path P increases after an (¢, 7)-transformation, P must pass through both the
base and the anti-base of 7, thus P is non-regular. Therefore the (e, 7)-transformation does not
increase the length of any r-path from s to 5.

Node potentials are given by a potential function p : V — R. Given a length function ¢, we
define the reduced cost function ¢, by (,(z,y) = ((z,y) + p(z) — p(y), (z,y) € L. If the reduced
costs are nonnegative, and a path P has zero reduced cost, then P is a shortest path for £.

A separatoris a set S C V such that s € S, s € S. Given a separator S, a potential function
p, and a real € € P, the (¢, .5)-relabeling operation modifies p as follows:

[ plz) ifz e,
pe) = { p(z) + € otherwise.

Given a length function £ and a potential function p such that £/, > 0, we define the zero-graph
Go = (V, Eqy) by defining Ey = {a € E|(,(a) = 0}.

3.2. Linear Programming Formulation. Next we describe a linear program (LP) and discuss
its relationship to the shortest r-paths problem. Although we are now studying the nonnegative
length case, the linear program remains the same for the arbitrary length case, which we study in
the next section. Let T be the set of all fragments and let P be the set of all regular paths from

s to §'. Given a path P, we define its characteristic function yp on F by

(e) = 1 ifeeP,
XPL) =1 0 otherwise.

Variables of the LP are of two types. A variable of the first type corresponds to a fragment
7 € 7 and is denoted by ¢,. A variable of the second type corresponds to a node € V and is
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denoted by 7,. The LP is as follows.

€& >0 VreT
(3.2-1)  maxmw, subject to { 7 =0

Ty = T = Ly eXs (1Y) < layy)  VY(w,y) € B
Note that if £ > 0, then ¢ = 0 and 7 = 0 give a feasible solution to this LP.

It can be shown that the s to s’ r-paths induce a subset of feasible dual solutions to this LP. We
do not state the dual program explicitly but prove the facts we need directly, without an explicit
use of the linear programming duality.

For any feasible solution to the LP, ,: gives a lower bound on the shortest s to s’ r-path length.
This is because any (¢, 7)-transformation can only decrease the length of an r-path from s to s
(as mentioned above), and the length of any s to ' path with respect to £+ 3", €, x, is at least
T

Let P € P and let (¢, 7) be a feasible solution to the LP. Let ¢’ = £+ 3", ¢, x,. The following
“complementary slackness” conditions give an optimality criterion for the problem, in view of

Lemmas 3.1-3.2 and Theorem 3.3 below.

(CSl) € > 0:>XP'XT :07
(CS2) (z,y) € P=my —m, = U(2,y).

Lemma 3.1. If (CS1) and (CS2) hold, then P is a shortest r-path from s to s’ with respect to (
and ((P) = 7.

Proof. Condition (CS2) implies that P is a shortest path with respect to ¢’ and ¢'(P) = 7.
Condition (CS1) implies that £(P) = ¢/(P). The fact that for any r-path I', £(I') > ¢'(I') completes
the proof. m

This lemma is easy, while the next one is provided by the algorithm described in Section 3.3.

Lemma 3.2. If P is a shortest r-path with respect to {, then there exists a feasible solution (e, )

to the LP such that (CS1) and (CS2) hold.
Taken together, Lemmas 3.1 and 3.2 yield the following duality theorem.
Theorem 3.3. maxr, = minp ((P).

Proof. We know that maxw,, < minp £(P). By Lemmas 3.1 and 3.2, there exist P € P and a
feasible solution (e, 7) such that {(P) =r7,. W
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3.3. Algorithm Description. The intuition for the algorithm of this section is as follows. Sup-
pose we have a current length function ¢ (obtained by a sequence of (¢, 7)-transformations) and
a potential function p such that the reduced costs £} are nonnegative. Then in G either there is
an r-path P from s to s’ or a barrier. In the former case, if P satisfies (CS1) then P is a required
path by Theorem 3.3. In the latter case, using the barrier, we modify the length and potential
functions so that the length of the shortest (non-regular) paths increases and the reduced costs
remain nonnegative. The search for the path in Gy is similar to the RRP algorithm. Each bud
T = (V;, E;,e,;) found during the search induces the fragment (V;,e,) (also denoted by 7), and
the function € on 7 can take nonzero values only on these fragments.

The algorithm maintains a length function ¢ and a potential function p such that £ is non-
negative and symmetric. Initially ¢ is the input length function ¢ and p is the zero function. The
algorithm also maintains a set A of nodes reachable from s by r-paths in the current zero-graph
Gy, with the r-paths represented by a spanning tree T C E of (A) rooted at s. By symmetry, for
every node v’ € A’ = ¢(A) there is an r-path to s’ in 7" = o(T). The invariant AN A’ = () always
holds. Initially A = {s} and T = {.

At each step the algorithm attempts to find an arc (v, w) such that v € A, w ¢ A, and
0 (v,w) = 0. If such an arc exists, the algorithm proceeds as the RRP algorithm. The only
difference is that the buds are discovered in G but trimmed in the current graph G. The
algorithm maintains the sets Cy and Cg of base nodes and arcs of the maximal fragments (in the
current collection of fragments).

If no arc out of A with zero reduced cost exists, the algorithm chooses ¢ € R, as described
below and modifies ¢ and p by performing the following adjustment procedure consisting of the
four consecutive steps (1)—(4) (in (1) and (2) ¢ is being changed step by step, by treating the
elements of C'g in succession). Define X = A — Cy.

(1) For every (v, w) € Cp, set (v, w) to '(v,w) + ¢, and for all (w,z) € F with z € V;, set
U(w, z) to I'(w, z) — €, where 7 is the maximal fragment with e, = (v, w).
(2) For every (v, w) € Cg, set /(c(v, w)) to £'(o(v,w)) +e€and for all o(w, z) € E with 2 ¢ V,,
set 0'(o(w, z)) to U'(o(w, z)) — €, where 7 is as in (1).
(3) Apply the (¢, X)-relabeling.
(4) Apply the (¢, V — o(X))-relabeling.
(The first two steps are equivalent to applying to ¢’ the (¢, 7)-transformations simultaneously for
all maximal fragments 7.)

The value of the adjustment parameter € is chosen to be as large as possible without creating

negative reduced cost arcs. One can see that after the adjustment, the reduced cost of an arc

is either preserved or changed by ¢, 2¢, —e, or —2¢. The arcs whose reduced costs decrease by
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Cy
A =+ N
M
—
V
X

Ficure 3. The adjustment parameter choice. The length of light arcs decreases
by ¢, and the length of heavy arcs by 2e.

¢ include the arcs from X to M and the symmetric arcs, and the arcs from Cy to M and the
symmetric arcs. (M is defined in Section 2.1.) (See Figure 3.) We denote the set of these arcs by

5. One can see that the arcs whose reduced costs decrease by 2¢ are of three types.

(1) The arcs from X to o(X) = X".
(2) The arcs from X to 6(Cy) = €4, and the symmetric arcs.
(3) The arcs of the form (v, o(vs)), where vy, v, € Cy and vy # vs.

We denote the set of these arcs by E5. The value of € is the smallest of the minimum reduced
cost over the arcs in I/ and one half of the minimum reduced cost over the arcs in 5.

Clearly if no arc restricts the value of €, then there is no path from s to s’ in the current graph,
so the problem is infeasible. Otherwise, at the next iteration of the algorithm the current G, must
contain an arc (v, w) with v € A, w ¢ A, so during this iteration either a bud trimming occurs and
the graph G becomes smaller, or a node is added to A. Therefore any reasonable implementation
of the algorithm runs in polynomial time. We discuss a particularly efficient implementation later

in Section 3.5.

3.4. Correctness. We start the correctness proof with several lemmas. The proof of the first

lemma is trivial.
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Lemma 3.4. The reduced cost function {}, maintained by the algorithm is symmetric; the graph

Gy is also symmetric.
Lemma 3.5. T and T contain only zero reduced cost arcs.

Proof. The only case which is not completely straight-forward is the case of an arc (z,y) € T
that is a base arc of a fragment (i.e., (z,y) € Cg). In this case y € Cy and 2 is either in Cy or
in X. If z € Cy then both potentials p(z) and p(y) increase by € and ¢'(z,y) does not change.
To see the latter, let 7, be the maximal fragment with the base z and let 7, be the maximal
fragment with the base y. Note that (z,y) is the base arc of 7,,, whence the treatment of 7, in the
adjustment procedure increases {'(x,y) by €. But (z,y) is also an arc going out of V,_, whence the
treatment of 7, in the adjustment procedure decreases {'(x,y) by €. Thus the whole adjustment
procedure does not change ¢'(z,y). If 2 € X then p(z) is not changed and both p(y) and ¢'(z, y)

are increased by €. Hence, [ (z,y) is not changed. m

The adjustment parameter is chosen so that the following result holds.
Lemma 3.6. The reduced costs maintained by the algorithm are nonnegative.
Lemma 3.7. Bud trimming preserves the minimum length of an r-path from s to s'.

Proof. Let G be the graph obtained from the current graph G by trimming 7 = (V. By, (v, w))
and let () denote the reduced costs in G. Then 0, >0, (e) =0 for every e € F, and trimming
preserves the reduced costs of the arcs that remain in G. Suppose that P is an () -shortest r-path
from s to s’ in G. Since (v, w) is the only arc in G entering w and o (v, w) is the only arc leaving
o(w), P’ passes through at most one node among w, o(w). This implies that there is an r-path P
in GG from s to s’ consisting of all arcs of P’ and, possibly, some arcs in F,. Then 0(P) =,(P),
hence the minimum ¢ -length of an r-path from s to s" in G is at most £, (F').

To see the converse inequality, suppose that P is an () -shortest r-path in G. Consider the
subgraph ) = (Vo, Eg) induced by the arc-sets of P,o(P),L,c(L) and the set £, where L is
the path in T from s to w. By Theorem 2.4, after trimming 7 in ¢ the resulting graph @ still
contains an r-path P’ from s to s’. Since the paths P' and o(F’) are edge-disjoint and £/ (e) = 0
forallee . ULUo(L), we have

20,(P') = 6,(P') + £,(0(P)) < ((Eq)) = 6,(P) + (,(a(P)) = 26,(P),

hence 0 (P') < £ (P). =
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Theorem 3.8. If there is no r-path from s to s, the algorithm declares the problem infeasible,
and otherwise the value of p(s') at the end of the algorithm is equal to the length of the shortest

r-path from s to s with respect to (.

Proof. The first part of the theorem follows from Theorem 2.4 and the description of the algo-
rithm.

For the second part of the theorem, note that the above lemmas imply that if the algorithm
terminates with an r-path, this r-path has a zero reduced cost with respect to the final reduced

cost function £ and (] is nonnegative. Lemmas 3.1 and 3.7 complete the proof. m

In particular, this proves Lemma 3.2 and Theorem 3.3.

3.5. Efficient Implementation. In this section we give details of an efficient implementation
of the algorithm. This implementation runs in time which is close to linear. The only nonlinear
term comes from O(m) operations on the priority queue data structure.

An important part of the implementation is the way node potentials are maintained. The
potentials of nodes in A are maintained explicitly (by A, A’ we mean these sets themselves or
their preimages in the original graph, depending on the context). We also maintain the number
D such that p(s') = 2D. For v € A’, p(v) = 2D — p(c(v)). For a node v € M, p(v) = D. When a
node from M is added to A, its potential is computed and stored explicitly. Each time we trim a
bud 7 with base node w, we store the values D, and p, of D and p(w), respectively, at the time
of trimming. Then for a node w € Cy that is the base of a trimmed bud 7, the current p(w) is
given by p(w) = p, + (D — D;). Accordingly, for a node w € C},, p(w) = 2D — p(o(w)). The
adjustment procedure with the parameter value ¢ increases D by 2e.

The function ' is maintained explicitly on the arcs of G not incident to nodes in Cy or Cf, and
implicitly on the remaining arcs of G. (Note that the adjustment procedure does not change ('
on the former arcs.) Initially all values of ¢/ = ¢ are explicit. We denote the last value of (v, w)
stored explicitly by 8(v,w). Consider an arc (v, w) with exactly one end incident to a maximal

fragment, and let 7 be the single minimal fragment incident to (v, w). We have the following

possibilities.
(1) If v € Cy, then the current value of ¢'(v, w) is f(v,w) — (D — D,).
(2) If w € Cy then the current value of (v, w) is f(v,w)+ (D — D,).
(3) If w € CY, then the current value of (v, w) is f(v,w) — (D — D,).
(4) If v € CY,, then the current value of ¢'(v, w) is f(v,w)+ (D — D,).

Now consider an arc (v, w) adjacent to two maximal buds 7 and 7. Without loss of generality

assume that v is the base of 7. If (v, w) is the base arc of 75, then the current value of (v, w) is
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B(v,w)— (D, — D,,), and otherwise the value is g(v,w)— (D — D,,) — (D — D,,).

To select the next arc for scanning and to compute the adjustment parameter values efficiently,
we represent the sets Ff and FS by priority queues ) and (s, respectively. (For a discussion of
the priority queue data structure, see e.g. [5].) We use the standard priority queue operations:
MEMBER, INSERT, MINIMUM, EXTRACT-MINIMUM, and DELETE. The key k(v,w) of an element
(v,w) on Q4 is equal to §,(v,w) — D,,, where D,, is the value of D at the last time k(v, w) was
computed and §,(z,y) = p(z) — p(y) + B(z,y). The key k(v,w) of an element (v, w) on @, is
equal to §,(v,w) — 2D,,, where D,, is the value of D at the time k(v, w) was computed. Below
we show how to maintain D so that for (v, w) on Q1, € (v,w) = k(v,w) — D, and for (v, w) on
Q2, 0, (v,w) = k(v,w) = 2D.

Using the priority queues, the adjustment parameter value can be quickly computed because

it is given by
(3.5-2) € = (min(MINIMUM(Q,), %MINIMUM(Qz))) - D.

(We assume that if @); is empty, MINIMUM(();) returns infinity.)

The efficient implementation of the algorithm works as follows. Initially ¢, is empty and @
contains the arcs (s,v) € F with v # s. At each step, we compute the adjustment parameter € as
described above.

If 0 < € < oo, then we increase D by e. Note that given our representation of p and ¢, this
implements the adjustment procedure.

If € =0, let Q; be the queue containing the arc for which the minimum in (3.5-2) is achieved.
Then EXTRACT-MINIMUM(Q);) returns an arc (v, w) such that v € A, w ¢ A, and £ (v, w) = 0.
We examine all (w,z) € E. If (w,z) is not in @, or @2, we compute k(w,z), and execute
INSERT(Q1, (w, z)) if € M and INSERT((Q)s, (w, 2)) otherwise. Next we examine all (z,w) € E
and delete (z,w) from Q; if (z,w) is in the queue.

Then we scan (v, w) as follows. If w ¢ A, then wis added to A4, (v, w)to T, w’ to A’, and o (v, w)
to 1" (as usual, w’ = o(w)). For each (2, w) € F thatis in ();, we execute DELETE(Q);, (2, w)). For
each (z,w’) € E that is in @)1, we execute DELETE(Q1, (z,w')), set Dy, = D, gz, w') = l'(z,w’),
and k(z,w’) = gz, w’)) — 2D,, and execute INSERT(Q2, (z,w’)).

Now suppose w € A’ and let P be the concatenation of the s to v path P, in 7', (v, w), and the
w to s’ path Py in T'. If P is regular, then we return P and halt. If P is not regular, then we find
and trim a bud 7 = (V,, F,, (¥,y)) in G in the same way as in the RRP algorithm. If an arc a is
deleted from the current graph by the trimming operation, we delete the arc from ); and @, if
appropriate.

If € = oo, we declare the problem infeasible.
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The above analysis immediately implies the following theorem.

Theorem 3.9. The shortest reqular path problem with nonnegative arc lengths can be solved in

O(m) time plus O(m) priority queue operations mentioned above.

Since some priority queue operations require non-constant time, the running time of the NSRPP
algorithm is dominated by O(m) priority queue operations and time bound achieved by the
algorithm depends on the priority queue implementation used. Using the simple binary heap
data structure (see e.g. [5]), we obtain an O(mlogn) bound. Using the R-heap implementation
[1], we obtain an O(m+/log (') bound. Note that the latter bound implies that we can solve the

problem with unit arc lengths in linear time.

3.6. Extracting Primal and Dual Solutions. Next we discuss how to modify the algorithm so
that we can in linear time recover, upon termination, an r-path P in G, a potential function p, and
length transformations (e;,7), ..., (€, 7%) that satisfy the complementary slackness conditions.

We start with the length transformation. To obtain the linear time bound, we use techniques for
representing nested families similar to those for the RPP algorithm, including the data structures
used for extracting the path at the end of the RPP algorithm.

To extract ¢, recall that with each bud 7 trimmed by the algorithm we also maintain the value
D.. Let D¢ be the final value of the variable D. Then for each bud 7, the corresponding e, value
is D; — D;.

Next we discuss how to extract the potential function p. Recall that we have already discussed
how the potentials of nodes in GG are maintained, and the explicit value of such a potential can be
computed in constant time. Let v be a node deleted during trimming of a bud 7, and let p;(v)
be the potential value at v at the time of trimming. Then p(v) = p;(v) + D; — D,. Note that 7
corresponds to the parent of v in the forest representing the buds and can be found in constant
time.

Finally, the path P in G corresponding to the path in G found by the algorithm can be
reconstructed in the same way as in the RRP algorithm. Because of the way the bud trimming
operation works, the path P satisfies (CS1) and (CS2).

4. SHORTEST R-PATHS UNDER ARBITRARY LENGTHS

Let ¢ : E'— R be an arbitrary symmetric length function. We say that (G, () is r-conservative
if there is no r-cycle C' in G of negative length ¢(C') (an r-cycle is a directed cycle containing no
pair of symmetric arcs). Note that an r-conservative (G, £) can have (non-regular) negative length
cycles. The SRPP is the problem to decide whether (G, ¢) is r-conservative, and if it is, to find a

shortest r-path from s to s, given s € V and s’ = o(s).
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It is easy to see that for any nonnegative function € on the set 7 of fragments in G, the length
transformation £ — (', defined in Section 3.1, does not increase the length of any r-cycle. The
length of an r-cycle can decrease, however, so we have to assure that no negative r-cycles are
introduced by the length transformations.

Consider the linear program (3.2-1).

Theorem 4.1.
(i) (G,10) is r-conservative if and only if LP (3.2-1) has a feasible solution, in other words, if
and only if there exists a length transformation { — (' such that all cycles for (G, ') are
nonnegative.

(ii) Let (G, {) be r-conservative. Then max wy = min(((P) : P is an r-path from s to s').

The proof of this theorem is provided by the algorithm to solve SRPP described next.

As a preprocessing step, we apply the following node-splitting transformation to construct an
equivalent problem which is at most a constant factor bigger than the original problem and has
O(n) negative length arcs. We iterate over all nodes and do the following for every node z that has
an outgoing arc of negative length. We replace « by two nodes, 2, and z,. Let u be the minimum
length of the arcs going out of 2. We replace all arcs of the form (z,2) by the ares (z,2;) with
U(z,x1) = {(z,2) — p and all arcs of the form (z, z) by the arcs (2, z) with (2, 2) = (2, z) — p.
We also add an arc (zy, z5) with {(z,, 25) = 2p and call this arc the z-arc. Note that if 2 is split
this way, then 2’ = o(2) is also split. It is easy to see that if we define o(z,) = 2}, and o(2,) = 2/,
then the resulting graph is skew-symmetric and the new function ¢ is symmetric. Note that in
the graph obtained by node-splitting, if (2,,z,) is an z-arc, then this is the only arc out of 2,
and the only arc into z.

The SRPP algorithm works as follows. Let N = {e € I : {(e) < 0}, and let the pairs of
symmetric arcs in N be numbered as {e1,0(e1)}, {e2,0(e2)}, ..., {€|n)/2, 0(€n)2)}. Denote by
G" the subgraph (V, F’) in GG, where E' is obtained from G by deleting the arcs €;,0(e;) for
j=ti+1,...,|N|/2.

The algorithm consists of at most |N|/2 4 1 iterations. After executing ¢ — 1 iterations, we
have the following current objects: a set 7' of fragments in G~'; a positive function € on 77; a

potential function p’. In addition, the following conditions are satisfied.

(N1) The reduced costs £'(x,y) = £, (x,y) of the arcs (z,y) in G*~" are symmetric and nonneg-
ative.

(N2) 7' forms a base compatible nested family; this means that for any two distinet 7 =
(Vo (0,w)), 7 = (Vo, (v, w')) in TP either V., NV, =0, V, C Vo, or V; C V;; more-
over, if V;, C V,» and v € V., then (v,w) = (v', w').
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(N3) For every 7 = (V;,a, = (v,w)) € T' and every & € V,, in the subgraph (V;) of G'~*
induced by V, there are r-paths from w to 2z and from 2 to o(w) such that all arcs on

these paths have zero reduced costs.

Initially, 7' = @ and p' = 0. At i-th iteration we examine the arcs ¢; = (2, y;) and o(e;) =
(yf,xl). If £'(e;) > 0, we finish the iteration by setting 7'+ = T ¢+ = ¢ and p'*! = p'.
Otherwise we form the auxiliary graph H = (Vy, Fy) by adding to G*~! new nodes ¢ and ' and
arcs (¢, y:), (6, 21), (i, '), (yl, ') and define ¢’ on these new arcs to be zero. We extend p' to Vi by
setting p'(v) for v = ¢, ¢ in such a way that the reduced costs of the added arcs are nonnegative.
We say that an r-path P in H from ¢ to ¢’ is strong if for any 7 € T, v, - xp = 0. Let P be the
set of strong paths.

Note that because e; is the only arc leaving z; and the only arc entering y;, none of z;,y;, 2}, y!
is in any fragment of 77, so we can construct the auxiliary graph without any complications even
if we work with trimmed graphs.

Suppose we have a procedure for finding a shortest strong path P with respect to /. Also sup-
pose that, when constructing Pin H, the procedure transforms 77, ¢’, p', £ into T*+L, ¢+t pitt, (i+!
satisfying (N1)—(N3) for G’ except, possibly, the nonnegativity of £'*! on e;, o(e;). If the latter
happens (i.e., if for the part P’ of the resulting P from y; to z; (or from z} to y!) the inequality
L(P") < |l(e;)| occurs), then adding e; (or o(e;)) to P' we get a negative r-cycle and conclude that
(G, 0) is not r-conservative.

If after executing the iterations as above we found out that (G, () is r-conservative, then at
the last, say j-th, iteration, we put H,t,t' to be G, s, s/, respectively, thus finding a strong r-path
from s to s’ which satisfies (CS1) and (CS2), along with the current 779+, ¢! p/+t. Therefore
P is the shortest r-path from s to s'.

We show below that a shortest strong path can be found in O(mlogn) time. This implies the

following bound on the algorithm.
Theorem 4.2. The SRPP problem can be solved in O((|N|+ 1)mlogn), or O(nmlogn), time.

If 7% is empty, the procedure for finding a shortest strong path is the same as the NSRPP
algorithm of Section 3. Otherwise, the procedure is similar but somewhat more complicated
because for some fragments 7 € 7* the value of € may decrease and, if € reaches zero, 7 may be
deleted from 7°.

As before, the fragments used by the algorithm are induced by the buds. We use the same bud

trimming operation as above, but we also need the “inverse” bud expansion operation.

4.1. Data Structures and Bud Expansion. Let 7 = (V,, E;,a, = (v, w)) be a maximal bud.

Recall the efficient implementation of the bud trimming operation described in Section 2.4. To
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expand 7, we need to undo the steps (T2) and (T3) (see Section 2.4). We can undo (12) if for
every z € V. we store the pointers to the beginning and the end of the arc list of 2z when we
concatenate the list to the arc list of y.

To undo (T3), we need a set-union data structure that allows the SPLIT(r) operation in addition
to the MAKE-SET(z), UNION(z, y), and FIND-SET(z) operations. The SPLIT(r) operation applied
to the set containing r formed by UNION(z,y) partitions this set into the original two sets which
were combined by the UNION operation. The union by rank variant of the disjoint set union data
structure (see e.g. [5]) implements the desired operations so that each operation takes O(logn)
time (where n is the maximum set size).

In the union by rank implementation, a collection of disjoint sets is represented by a rooted
forest on the base elements. Each tree corresponds to a set represented by its root. The MAKE-
SET(x) operation creates a single element set {z}. The FIND-SET(z) operation starts at x, goes
up the tree containing x, and returns the root of the tree. The UNION(z,y) operation compares
the sizes of the sets containing & and y, and makes the root of the tree representing the smaller
set into a child of the root of the tree representing the bigger set. The children of a tree node are
maintained as a stack. The sPLIT(r) operation finds the root z of the tree containing r, pops the
stack containing the children of z, and makes the popped vertex a tree root. It is easy to see that

each operation takes O(logn) time if n is the largest set size.

4.2. Finding a Shortest Strong Path. Now we describe the procedure for finding a shortest
strong path.

In addition to the set 7' of fragments and a function ¢ on 7', the procedure maintains a
length function ¢ and a potential function p such that £ is nonnegative and symmetric. Initially
T =T,€=¢,p=p", and ' = (+3 ¢ x,. When the procedure terminates, we set 7'+ = T,
dHl = ¢ pitl = .

The procedure maintains a set A of nodes reachable in Gy from ¢ by r-paths, with the r-
paths represented by a spanning tree 7" C F of A rooted at t. By symmetry, for every node
v' € A" = o(A) there is an r-path to ¢ in 7" = o(T). The invariant A N A" = () always holds.
Initially A = {¢} and T' = . In addition, the algorithm maintains the set 77 (equal to 77 initially),
and the sets Cy, Cg, Dy, Dy defined as follows.

e For every maximal fragment 7 = (V;,a, = (v,w)) such that a, is in T, w € Cy and
a, € Cg. We call 7 with the base node in C a growing fragment.

e For every maximal fragment 7 = (V;,a, = (v,w)) with anti-base w’ = o(w) such that
there is an arc (z,w’) in 7', then w’ € Dy, and (v,w’) € Dg. We call 7 with the anti-base

node in Dy a shrinking fragment.
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Initially the sets Cy,Cg, Dy, and Dg are empty.

Note that a fragment 7 cannot be growing and shrinking simultaneously. This is because if 7
is growing than its anti-base node must be in A’, if 7 is shrinking than its base node must be in
A,and AN A = 0.

At each step the algorithm attempts to find an arc (v, w) such that v € A, w ¢ A, and
0 (v,w) = 0. If such an arc exists, the algorithm scans the arc as in the NSRPP algorithm
with the following modifications. If (v, w) is added to T" and (v, w) is the base arc of a maximal
fragment in 77 then we add w to Cy and (v, w) to Cg. If (v,w) is added to T" and w is the
anti-base node of a maximal fragment in 7', we add w to Dy and (v, w) to Dg.

If no arc out of A with zero reduced cost exists, the algorithm chooses ¢ as described below
and modifies ¢/ and p by performing the adjustment procedure that is somewhat different from the
NSRPP case: step (3) and (4) are added, compared with that described in Section 3.3. These
steps are equivalent to applying the (—e¢, 7)-transformation to every shrinking bud 7. Define
X =A4-(CyvUDy).

(1) For every (v, w) € Cp, set (v, w) to {'(v,w) + ¢, and for all (w,z) € F with z € V;, set
U(w, z) to U'(w, z) — e.

(2) For every (v,w) € Cg, set {'(o(v,w)) to {'(c(v,w))+ € and for all (¢(w,z)) € F with
2 gV, set U'(o(w, z)) to U'(c(w, 2)) — €.

(3) Forevery w' € Dy, let (v, w) be the base arc of the maximal fragment 7 with the anti-base
node w’. Set ¢'(v, w) to {'(v,w) — ¢, and for all (w,z) € E with z ¢ V;, set '(w, z) to
U(w, z) + e

(4) For every w’ € Dy, let (w’,v’) be the anti-base arc of the maximal fragment 7 with the
anti-base node w'. Set ¢/(w’,v')) to £'((w',v")) — ¢, and for all (z,w’) € F with z ¢ V,, set
U(o(z,w")) to U'(o(z,w)) +e.

(5) Apply the (¢, X)-relabeling.

(6) Apply the (¢, V — o(X))-relabeling.

The value of the adjustment parameter € is chosen to be as large as possible without creating
negative reduced cost arcs or making ¢ negative on some 7. After the adjustment, the reduced
cost of an arc is either preserved or changed by ¢, 2¢, —¢, or —2¢. The sets I and FS are defined
in the same way as in Section 3.3 (note that in the description of types of elements in these sets
one should replace Cy by Cy U Dy and C{, by C{, U Dy). The value of ¢ is the smaller of the
minimum reduced cost over the arcs in 15, one half of the minimum reduced cost over the arcs
in F¢, and the minimum value of € over shrinking fragments 7.

If the value of ¢ is restricted by a shrinking fragment 7, then we expand the bud corresponding

to 7.
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It is easy to verify that the invariants (N1)—(N3) are maintained.

One can easily implement the procedure for finding a shortest strong path using the techniques
developed in Sections 2 and 3. The only additional data structure needed is the third priority
queue containing arcs in Dy with keys equal to the value of ¢ on the corresponding fragments.
The resulting implementation runs in O(m) time plus O(m) set operations and O(m) priority
queue operations. The analysis is the same as in the NSRPP case with the additional observation
that only the fragments which are in 7’ at the beginning of the procedure are expanded, so there
can be at most |77|, or O(n), bud expansions. Using the data structures discussed in Sections 3
and 4.1, the set and priority queue operations take O(mlogn) time. We can extract the primal

and dual solutions in the same way as in Section 3.6. Thus we have the following result.
Lemma 4.3. A shortest strong path can be found in O(mlogn) time.

4.3. Dual Half Integrality. In conclusion we show that if the length function ¢ is integral,
the linear program (3.2-1) always has a half-integral optimal solution. (This can be also derived
from a theorem on dual half-integrality for the weighted perfect matching problem.) In fact, we
prove that the dual solution found by the algorithm is half-integral. In particular, this result is

important for the analysis of blocking flow method for symmetric flows [19].

Lemma 4.4. If the current functions ¢ : T — R and p : V — R are half-integral and p(s') is
integral before the adjustment procedure, then the adjustment parameter ¢ selected for the procedure

is half-integral.

Proof. Recall that the adjustment parameter € is equal to either one or one-half of the reduced
cost of some arc (v, w) or to €. for some bud 7. In the first case € is half-integral because the
reduced costs are half-integral.

In the second case we have two subcases: either v € X, w € X’ or v is a base of a current bud
and w is an anti-base of another bud. We show that in this case (v, w) is integral and so ¢ must
be half-integral. Note that in both subcases v € A and w € A’, so there are paths ['; and ['5 of

zero reduced cost from s to v and from w to ¢, respectively. Since p(s) = 0, we have
p(s) = p(s') = p(s) = £,(I1) + £, (v, w) + G,(I2) = €, (v, w).

Thus £, (v, w) is integral.

In the third case ¢, is half-integral and therefore the adjustment parameter is half-integral. m

Since the adjustment procedure increases p(s’) by 2e, this lemma immediately implies the

following theorem.
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Theorem 4.5. [f the length function ( is integral and LP (3.2-1) is feasible, then the optimal
solution to (3.2-1) found by the algorithm is half-integral.

5. RELATIONSHIP TO MATCHING THEORY

As mentioned in the introduction, the RRP can be reduced to a certain matching problem
in a way similar to that described in [29]. Given a skew-symmetric graph G = (V, F) with
distinguished symmetric nodes s and s', we form an undirected graph G= (‘7, E) as follows. The
node set V consists of nodes v, corresponding to arcs ¢ € F/ and two additional nodes ¢ and ¢'.
The edge set Eis MUY UW UW’, where

o M consists of edges {v,,v,(q)} for a € I;

e Y consists of edges {v,, vg(b)} for a,b € E such that the head of a coincides with the tail
of b;

o W consists of edges {t, v,(q)} for @ € E/ such that s is the tail of a;

o W consists of edges {v,,t'} for a € IV such that s’ is the head of a.

Note that because of the symmetry there are two copies of every edge in M and Y'; we identify
these edges.

Clearly M is a matching in G covering all nodes except ¢ and ¢'. A regular path P =
(zo,ar, @1, .., a5, ;) from s = ¢ to t = x in G, corresponds to the path W(P) from ¢ to ¢/
in G given by the sequence (£, Vo(a1)s Vars Vo(as)s - - - » Vo(ap)Vars t) and W(P) is an alternating path
(i.e., for each two consecutive edges oh W(P), exactly one is in M). It is easy to see that W
gives a one-to-one correspondence between the set of simple r-paths from s to s’ in G and the
set of alternating paths from ¢ to ¢’ in G. Therefore RRP is equivalent to the problem of finding
a (simple) alternating path in G from ¢ to t'. JFrom the algorithmic viewpoint, however, this
reduction is expensive since |V| = |E| 4+ 2 and |E| can be significantly larger than |E|.

Berge’s theorem [4] implies that the alternating path exists if and only if G has a perfect
matching M’. Suppose that no perfect matching in G exists. Then by Tutte’s theorem [27], there
exists a subset S C V such that removing S from G disconnects the graph and the number of
odd components, r, exceeds |S|. (An odd (even) component is a connected component with an
odd (even) number of nodes.) Let Ki,..., K, be the odd components of the resulting graph, let
K,i1,..., K, be the even components, and let V; be the nodes set of K;. Since in our case G

contains the matching M with |V|/2 — 1 edges, one can easily see that
(1) r=15[+2;
(2) t and ¢’ are contained in two different odd components;

(3) each component K; contains |(|V;| — 1)/2] edges of M.
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Using (1)—(3), we can show (although arguments are not straightforward) that K, ..., K, enables
us to define subsets A, A, Xy, ..., X,_5 such that B = (4; X,,...,X,_5) is a barrier in . This
implies Theorem 2.2. We can also show that if S is chosen according to Edmonds-Gallai theorem
(see e.g. [23]), then B is the canonical barrier; in this case the set Z of nodes reachable by r-paths
from s corresponds, in a sense, to the set of nodes in G reachable by simple alternating paths
from ¢.

Next we extend the above reduction to SRPP. First assume that the length function ¢ is
nonnegative. For e € E, define {(¢) to be zero if e € M, (((a) + £(b))/2 if e = W, oy} €Y,
and ((a)/2if e = {t,v,0)} € W or e = {v,,'} € W'. Then for any r-cycle or any ¢ to ¢’ path P
in G, {(P) is equal to [(¥(P)) of the “image” W(P) of P in (. To solve SRPP in G, we find the
minimum weight perfect matching M’ in G. Clearly the symmetric difference M & M’ consists of
a simple path @ containing ¢ and ¢/, and a (possibly empty) collection of pairwise disjoint cycles
Ch,...,Cy of zero [-length. Thus, for P = W=1(Q), we have ((P) = {(Q) = {(M’), and P is a
minimum f-length r-path in G.

Now suppose ( is arbitrary. We first determine whether (G, ¢) is r-conservative. To do this, we
connect ¢ and ¢’ by an edge ey with a negative length of large absolute value, obtaining G’ and
. Next we find a minimum weight perfect matching M’ for (G’, ). By the choice of ¢/ (eo), M’
must contain e;. One can easily see that (G, () is r-conservative if and only if M & M’ has no
negative length cycles. If (G, () is r-conservative, we proceed in the same way as for nonnegative
L.

Note that the above reductions give polynomial-time algorithms for RRP and SRPP, but the
running times of these algorithms are significantly worse than those of the corresponding algo-
rithms of our paper. Also, the direct proofs of our analogs of the Berge’s and Tutte’s theorems
seem simpler than the translations of the classical proofs of these theorems to the skew-symmetric
graph domain.

Next we give applications of RRP and SRPP to matching problems.

First we consider an augmenting path problem. Suppose we are given an undirected graph
H = (Vy, Fy) and a matching M in it, and let Z C Vi be the set of the unmatched nodes. We
are interested in finding an alternating path connecting two distinct nodes in Z. Such a problem
is reduced to RRP for G = (V| F), s, s as follows. The node set V' is obtained by splitting each
v € Vg into two nodes v; and vy, and adding two more nodes, s and s’. The arc set /' contains
the arcs (uy,vs) and (v, us) for each edge {u,v} € Viy — M, the arcs (us, vy) and (vq, u) for each
edge {u,v} € M, and the arcs (s,v;) and (v, s’) for each v € Z. See Figure 4 for an example.
One can see that there is a natural one-to-one correspondence between the set of alternating

paths in H connecting distinct nodes of 7 and the set of r-paths from s to s’ in G. Note also
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H

Ficure 4. An example of the augmenting path problem reduction.

that |V| = O(|Vg]|) and |F| = O(Fy), so the algorithm of Section 2 solves the augmenting path

problem in linear time.

Next we consider a weighted version of the augmenting path problem. In addition to H and
M, we are given a length function g : Fg — R, and we wish to find an alternating path @)
connecting a pair of distinct nodes of 7 such that the length (5 (@) is minimized, or show that
there is an alternating cycle C of negative {gy-length. To solve this problem, we construct GG as
before. For each arc a € E obtained from an edge e € Ly, define {(a) = (g (e), and for all other
arcs a € I define £(a) = 0. Then the problem is reduced to SRPP for GG, s, s, (.

The weighted augmenting path problem can be used to find a shortest odd cycle and a shortest
even cycle in an undirected graph. See e.g. [20], Chapter 8. Thus in the case of nonnegative lengths
the algorithm of Section 3 can be used to solve these problems in O(mlogn) and O(m?logn) time,
respectively, where m in the number of edges and n is the number of nodes in the graph. Similarly,
we can use the weighted augmenting path problem to find a shortest even (odd) path between

two prescribed nodes.

In [19] we discuss the reductions of matching and bidirected flow problems to skew-symmetric
flow problems. The algorithms developed in [19] use the algorithms of the present paper as

subroutines.
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6. CONCLUDING REMARKS

In conclusion we would like to discuss some differences in the best known bounds for the shortest
paths problems and our bounds for the skew-symmetric versions of these problems.

One technical difference of our NSRPP algorithm from Dijkstra’s shortest paths algorithm is
that our algorithm removes some arcs from (; and @, by an operation other than EXTRACT-
MINIMUM. Because of this difference, some faster estimates known for the standard shortest paths
problem do not seem to apply in the NSRPP case.

Using a RAM model of computation that allows certain constant-time operations on words,
Fredman and Willard [12] give an O(m+nlogn/loglog n) implementation of Dijkstra’s algorithm.
It is possible that their techniques can be used to improve our algorithms.

A scaling algorithm of Goldberg [18] solves the shortest paths problem with integral arc lengths
in O(y/nmlog N) time, where —N is a lower bound on the arc lengths. An interesting open

problem is to extend this result to the skew-symmetric case.
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