- . ) . i_

SCALING METHODS FOR FINDING A MAXIMUM FREE
MULTIFLOW OF MINIMUM COST

ANDREW V. GOLDBERG anp ALEXANDER V. KARZANOV

Suppose we are given an undirected graph with nonnegative integer-valued edge capacities
and costs in which a subset of nodes is specified. We consider the problem of finding a
collection of flows between arbitrary pairs of specified nodes such that the capacity con-
straints are satisfied and the sum of costs of flows is minimum, provided that the sum of
values of flows is maximum. It is known that this problem has a half-integer optimal solution
and such a solution can be found in strongly polynomial time using the ellipsoid method.

In this paper we give two “purely combinatorial” polynomial algorithms for finding a
half-integer optimal solution. These are based on capacity and cost scaling techniques and
use the double covering method earlier worked out for the problem.

1. Introduction. By a graph we mean a finite undirected graph with possible
multiple edges; VG and EG are the sets of nodes and edges of a graph G,
respectively. A network is a quadruple N = (G, T, c, a) consisting of a graph G, a
subset 7 C VG of its nodes, called terminals, and nonnegative integer-valued func-
tions ¢ (of capacities) and a (of costs) on the edges of G.

A simple path in G between two distinct terminals is called a T-path; let & =
(G, T) denote the set of T-paths. A (c-admissible) multicommodity flow, or, briefly, a
multiflow, in N is a nonnegative rational-valued function f: & — Q. satisfying the
capacity constraint

{f(e) = Y (f(P):e€PeP) <c(e) forall e € EG

(when writing e € P, we consider a path as an edge-set). The total value, v;, of f is
L(f(P): P € %), and the total cost, ay, of f is L(a(e);/(e): e € EG). A multiflow of
the maximum total value is called maximum. We deal with the following minimum
cost maximum multiflow problem:

(1.1) Find a maximum multiflow f in N whose total cost a, is as small as possible.

The simplest case arises when |T|= 2. Then (1.1) turns into the well-known
(undirected) minimum cost maximum flow problem. A fundamental fact is that the
latter problem has an optimal solution which is integer-valued; see, e.g., Ford and
Fulkerson (1962). This is, in general, not true for |T| > 3. Nevertheless, a weaker
property of half-integrality has been proved, as follows.

THEOREM 1 (KARZANOV 1979). There exists an optimal solution f to (1.1) such that
2f is integer-valued.

REMARK 1. Problem (1.1) is a special case of the general undirected minimum
cost maximum multiflow problem in which pairs {s;,#},...,{s,,#,} of nodes are
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2 SCALING METHODS FOR MULTIFLOWS

specified, and the goal is to connect these pairs by flows so that the resulting
multiflow is c-admissible and has the minimum cost provided that its total value is
maximum. The special case we study allows flows between arbitrary pairs of termi-
nals; in other words, the graph H induced by the pairs {s;, ;},...,{s,, #,} as edges is a
complete graph. Following Lomonosov (1985), we call a multiflow for a complete H a
free multiflow. The relationship between the denominators of multiflow entries and
the structure of H is studied in Karzanov (1987). It turned out that if H is not a
complete multi-partite graph, then for each k € Z,, there exists an instance of
G, ¢, a such that kf is not integral for any optimal solution f for G, H, ¢, a. On the
other hand, when H is a complete multi-partite graph, the problem is easily reduced
to the free multiflow case, whence the problem has a half-integer optimal solution by
Theorem 1.

REMARK 2. The existence of a half-integer maximum free multiflow was estab-
lished, independently, by Lovész (1976) and Cherkassky (1977). Theorem 1 extends
that result to the cost case.

Theorem 1 appeared as a consequence of a similar result concerning a more
general parametric problem, namely:

(1.2) Given p € Z,, find a multiflow f in N which maximizes puv; — dy.

THEOREM 2 (KARzANOV 1979). For any p =0, (1.2) has a half-integer optimal
solution.

Obviously, (1.2) becomes equivalent to (1.1) when p is large enough (from the
existence of a half-integer solution to (1.2) it follows that p = 2a(EG)c(EG) + 1 is
sufficient). So Theorem 1 immediately follows from Theorem 2. Here and later on for
a function g on a set S and a subset §' C S, g(§") denotes (gle): e € SN.

Theorem 2 was originally proved by constructive means, relying on a pseudo-poly-
nomial algorithm which solves (12) in time O(min{(c(EG) + g, (a(EG) +
Dgq',27)), where g,q',q" are polynomials in |VG|,|EG|. Further results were ob-
tained in Karzanov (1994) where a relatively simple, nonalgorithmic, proof of Theo-
rem 2 was given and it was shown how to find a half-integer optimal solution to 1.2)
(and, therefore, (1.1)) in strongly polynomial time by use of the ellipsoid method.
However, no polynomial algorithm which uses solely “combinatorial means” has been
known until the present.

Like the classic algorithm for the min-cost max-flow problem due to Ford and
Fulkerson (1962), the algorithm in Karzanov (1979) works in frameworks of the
primal-dual method of linear programming and iteratively reduces (1.2) to simpler,
noncost, subproblems on multiflows in “feasible subgraphs” I' of G, which are solved
by use of combinatorial techniques. The key idea is that the subproblem allows a
reduction to a certain single-commodity flow problem in a skew-symmetric digraph D
such that each edge of T corresponds to a pair of “skew-symmetric arcs”in D. Such a
D is called the double covering over T'. This explains the existence of a half-integer
optimal solution to (1.2): The flow problem in D has an integer solution g and the
back reduction increases the solution “fractionality” twice, transforming g into a
half-integer multiflow in T'.

In this paper we design two “purely combinatorial” polynomial algorithms for
finding a half-integer optimal solution to (1.2). The first algorithm works with an
arbitrary p € Z., while the second algorithm works when p is large; in particular,
both algorithms solve (1.1). At the high level, instead of the primal-dual approach,
they apply variants of the scaling method: the first algorithm scales capacities (cf.
Edmonds and Karp 1972) and runs in O(log(c(EG) + 2)) iterations, while the second
one scales costs (cf. Rock 1980; Bland and Jensen 1992) and runs in O(log(a(EG) +
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2) + log(c(Z) + 2)) iterations. Here Z is the set of edges e with a(e) = 0. An
iteration of each algorithm deals with a subproblem which is somewhat different
from, but closely related to, that of Karzanov (1979). We show that each subproblem
is reduced to a sequence of directed flow problems and that the total time required to
perform an iteration is polynomial in |VG|, | EG].

It should be noted that the original version of this paper (Goldberg and Karzanov
1993) presented polynomial time capacity and cost scaling algorithms based on similar
ideas, but was technically more complicated, using the concept of so-called transitive
fork environments—a formalism which allows us to extend standard augmenting and
alternating path techniques to rather general situations. This formalism was, in fact,
introduced in Karzanov (1993) for solving the integer strengthening of (1.1).

For technical reasons, throughout the paper we assume that the cost function 4 is
positive, i.c., a(e) >0 for all e € EG. This assumption does not lead to loss of
generality. Indeed, if the set Z = {e € EG: a(e) = 0} is nonempty, we can replace p
by p' = (2¢(Z) + 1p, and a by a’ defined by

a'(e) = (2¢(Z) + 1)a(e) fore € EG - Z,
=1 foreeZ.

Then for any two half-integer maximum multiflows f and f’ with A = ( pYy —ag) —
(pvpy — ap) > 0, we have A > 1/2 and

(p'yy = ;) = (p'vp — ay)
= (2C(Z) + 1)((PUf_ af) - (PUf' - af’)) - gf(Z) + évfy(Z)
2(2e(Z) + DA -c(Z)2c(Z) + 4 -¢(2) > 0.

Therefore, if f is an optimal solution for p’, a’, then f is also an optimal solution for
P, a. Note that a factor of c¢(Z) + 1 in the definition of @' causes the rising of the
term involving ¢ in the complexity of the cost scaling algorithm declared above.

Although we allow multiple edges in G, when it is not confusing, we denote an
edge with end nodes « and v by uw.

This paper is organized as follows. Section 2 contains background for the algo-
rithms that we develop. It considers the dual of (1.2), describes the construction of
double covering digraphs D, and briefly reviews the relationship between multiflows
in G and flows in D. Sections 3-6 are devoted to the capacity scaling algorithm.
Section 7 contains the cost scaling algorithm; its description is shorter because both
algorithms utilize many common tools.

2. Double covering. The linear program dual of (1.2) is

(2.1) Minimize ¢ -y over all y: EG — @, such that y(P) > p — a(P) for each
Pex

viewing P as an edge-set and denoting by g -  the inner product L(g(e)h(e): e € §)
of functions g and 4 on S. For I € QZC let dist,(x, y) denote the I-distance between
nodes x,y € VG, ie., the minimum I-length I(P) of a path P from x to y. The
constraints in (2.1) can be expressed in a more compact form as

(2.2) dist,,,(s,t) >p foranys,teT,s + 1.
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The linear programming duality theorem applied to (1.2) and (2.1) implies tha" a
multiflow f and a vector ¥ &€ QEC satisfying (2.2) are optimal solutions to these
problems if and only if the following “complementary slackness” conditions hold:

(23) For P2, it f(P) > 0 then a(P) + y(P) =p;
(2.4) For e € EG, if y(e) > 0 then e is saturated by f, ie., {/(e) = c(e).

In the rest of this section we consider a positive function I on EG which satisfies
dist,(s, ¢) = p for all distinct s, ¢ € T (usually [ is equal to a + ). For brevity, we
denote dist,(,) by dist(-, - ) and omit the prefix [ in the terms I-length, [-distance
and I-shortest. A T-path of the length exactly p is called a (T, 1)-line, or, briefly, a
T-line. A part of a T-line is called a line. By (2.2), every line P is a shortest path; so P
is simple (as [ is positive). The structure of lines has important properties described
below; for detailed proofs, see Karzanov (1979, 1994).

We need some terminology and notations. The subgraph of G formed by T and
the nodes and edges contained in lines is called the [-graph and denoted by I' = I
For v e VT, the potential, 7(v) = m,(v), of v is the distance from v to T (e,
min{dist(v, s): s € T), and T(v) = T,(v) denotes the set of terminals s € T closest to
v (e., dist(v, s) = (V).

Obviously, 7(v) < p/2 for any v e VT; moreover, w(v) = p /2 implies T = 2,
and w(v) < p/2 implies \T(v)| = 1. Therefore, the nodes of T’ are naturally parti-
tioned into the sets V = {(veVl: T = {s)) for s € T and ve={peVI: |1 T(w)|
> 2}; the nodes in V'* are called central. One can obtain the following characteriza-
tion of the lines (in particular, the edges of I') in terms of potentials:

(2.5) A path P = (vg, €y, V155 €k v,) in G with both ends in T is a line if and
only if either (i) vy, Ux € Y, U V* and \r(vy) — 7wl = I(P) for some s € T, or (i)
vV, i €V: and m(v,) + m(v) + I(P) = p for some distinct s, € T.

In particular, in view of the positivity of /, m(x) = mw(y) for any edge xy € ET with
x,y € V,, and no edge of T connects two central nodes. Property (2.5) easily implies
that

(2.6) A T-path P = (v, =S5, €00 e, v =1 inTisa T-line if and only if
there is 0 <i <k such that vg,...,0; € Vi Viagso s U € V;m(oy) < 0 < m(v);
m(v,) > > w(v,); and either v,y € ye or v,, €V, and 7(v,4,) > (W)

Using (2.5) for one-edge paths (edges), we now construct the digraph D'=D =
(VD, AD), the double covering over T, mentioned in the Introduction, as follows.
Split each v € VI into 2|T(v)| nodes v} and v; (s € T(v)). If v is noncentral, i.e.,

T(v) consists of a single terminal s, then v; and v? are called the first and second
copies of v in D, respectively. The arcs of D are defined as follows:

(2.7) (i) Each edge e =uv € ET with ueV, veV,uV?* and m(u) < w(v)
generates two arcs (ul,v}) and (v}, ud),

(ii) Each edge e = uv € ET with ueV, and vEV, (s # 1) generates two arcs
(u!, v?) and (0], u3);

(iii) Each central node v generates arcs (v}, v?) for all distinct 5,7 € T(v).

An illustration is given in Figure 1 where T = {s,t,q}, p = 4, the numbers on edges
indicate values of I, and the arcs of D are directed upward. An arc as in (2.7)(ii) is
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called central, or a v-arc, and has infinite capacity. An arc as in (2.7)() or (ii) has the
same capacity as that of the edge which generates this arc. We keep the same
notation ¢ for the capacities in D and think of 7! = {s': s€ T} and T? =
{s2: s € T} as the sets of sources and sinks of D, respectively.

Since for each b = (u’, v}) € AD, the pair b’ = (v*~7,u?™") is also an arc of D, the
mapping o: vl - v}~" gives a (skew) symmetry of D; we extend o to the arcs
denoting b’ by o (b). Next, the construction of D yields a natural mapping @ of
VD U AD to VT U ET which brings a node v to v, a noncentral arc (u!, v}) to the
edge uv, and a central arc (v}, v?) to the node v. We extend ¢ and o in a natural
way to the dipaths and other objects in D. For example, the dipath o (P) symmetric
to a dipath P = (xq, by, X15- -5 by, x;) is (o(x}), o(by), o(xp_1)y-..r 0(by), a(xy);
the path (P) for this P is the sequence (0(xy), 0(by), @(x)),. .., @(by), w(xy))
with the repeated central nodes (if any) deleted. A function A on AD is symmetric if
h(b) = h(o (b)) for each b € AD.

Important properties of D, easily derived from (2.6) and (2.7), are as follows:

(2.8) Dipaths P and o(P) are disjoint, and w(o(P)) is reverse to w(P);

(29) o yields a one-to-one correspondence between the set of T-lines and the set
of T' to T? dipaths in D.

Such a correspondence is further extended to a relationship between certain
multiflows in G and flows in D, as follows. A multiflow f is called going along T-lines
if each T-path P with f(P) > 0is a T-line. A (c-admissible T to T?) flow in D is a
function g: AD — Q, satisfying the conservation condition

divg(x) = X 8&(%¥) -~ Y g(y,x)=0

y: (x,y)eAD y: (y,x)€AD
forall x € VD — (T* U T?),

and the capacity constraint g(b) < ¢(b) for all b € AD. Note that D is acyclic,
therefore, a flow g can be represented as the sum of elementary flows along dipaths.
That is, there are T' to T? dipaths Py,..., P, and rationals a,..., a, = 0 such
that ©(a;: b € P) = g(b) for each b € AD: we call @ = {(P,, a,)} a decomposition of

81'
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g. Such a @ induces the function f=f? on & by setting flw(P)) = a;/2 for
i =1,...,m and f(P) =0 for the remaining T-paths P. For any noncentral arc
b € AD, we have

(210) /(w(b)) = 3(g(b) +&(a (b)) < 3(c(b) +e(a (b)) = c(w(b)).

Hence, f is c-admissible. Also f goes along T-lines (by (2.9)). Furthermore, if g is
integer-valued, then it has an integer decomposition 2 (i.e., with all &’s integral),
whence f? is half-integral (this is the crucial observation in the proof of Theorem 2
in Karzanov 1979, 1994).

Conversely, let f: # —» Q, be a multiflow going along 7-lines. Define the function
g =g’ on AD so that for b € AD, g(b) is the sum of numbers f(w(P)) overall T' to
T? dipaths P in D that contain b or o(b). Then g is a symmetric flow, and for each
noncentral arc b € AD, we have

(2.11) g(b) =g(o (b)) = {(w(b))-

Now return to consideration of a function vy satisfying (22 andlet [ =a + y. It is
convenient to extend y to the arcs b of D! by setting y(b) = ¥( w(d)) if b is
noncentral, and y(b) = 0 otherwise. We say that an arc b is feasible if y(b) = 0, and
a flow g in D is feasible if it saturates each infeasible arc b, g(b) = c(b). Summing
up arguments above and using (2.10) and (2.11), we derive the following.

STATEMENT 2.1 (KARZANOV 1979). The flow g/ induced by an optimal solution f
to (1.2) is feasible. Moreover, if, in addition, f is half-integral, so is g. Conversely, the
multiflow fZ induced by a feasible flow g and a decomposition Z of g is an optimal
solution to (1.2). Moreover, if both g and & are integral, then f is half-integral.

Our algorithms will also use a result on the fractionality of dual problem (2.1).

THEOREM 2.2 (KARZANOV 1994). (2.1) has a half-integer optimal solution.

3. Capacity scaling algorithm. As before, we assume that a is positive. Also one
may assume that p > 0. At the high level, the algorithm for (1.2) that we now develop
applies a standard capacity scaling approach and consists of big (or scaling) iterations.
The numbers of these iterations is equal to the number of ones in the binary notation
of the capacities.

More precisely, let I be the maximum of numbers [log,(c(e) + 1)] among all
¢ecEG. For i=0,...,I and e € EG, define the truncated capacity c'(e)
= |c(e) /27| Then ¢° = 0 and ¢/ =c. Fori=1,...,1 define U’ to be the set of
edges e with c'(e) > 2¢'~'(e). Assuming that the elements of U’ are arbitrarily
ordered as zy,...,Zy;, (k) =|U'D, define the capacities ci(e) = c'(e) — 1
(=2c¢7He)) for e =21, 5% and cj(e) = ci(e) for the other edges e in G,
j=0,..., k(). In particular, c = 207N

The algorithm starts with obvious optimal primal and dual solutions f° and y° to
(1.2) for G, T, c°, a, p. More precisely, we put £° =0, and choose y” so as to provide
dist,, (s, 1) = p for all distinct s,f € T (e.g., for e = xy € EG, one can take v°(e)
to be max{0, p —a(e)} if x,y €T, 0if x,ye VG —T, and max{0, p/2 — a(e)}
otherwise).

The input of a current big iteration (with 1 <i < I and 1 <j < k(i) consists of
optimal primal and dual solutions fl, and y/_, for G,T, ci_y,a, p, and the goal is
to transform them into optimal f{ and vy, for c; (letting fo = 2" and vy = vy
where fi~! and y'~! are optimal solutions found for ¢ 1). So the last big iteration
finds optimal solutions for the original c.
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Thus, the following auxiliary problem has to be solved at most I|EG| times; for
convenience we keep the same notation as for the original problem.

(3.1) Given optimal half-integral f and y for G, T, ¢, a, p and an edge z € EG,
find optimal half-integral f’ and y' for G,T,c,a, p, where c(z) = é(z) + 1 and
c(e) = é(e) for all e € EG — {z}.

We describe an algorithm to solve (3.1) in strongly polynomial time, thus providing
the desired result for (1.2). For reasons which will be clear later, we assume that each
pair of distinct terminals is connected by an edge of a large capacity and zero cost;
the set of these edges is denoted by W. The latter assumption does not lead to loss of
generality because, obviously, each element of W must be saturated in any optimal
solution for ¢ or ¢ (in view of p > 0). Also we may assume that ¢ is positive; for if
c(e) = 0 for some e, we can simply delete e from G.

If y(z) = 0, then f and y remain optimal for ¢ (since (2.4) holds for z). So assume
that y(z) > 0. Then ¢/(z) = é(z) = c(z) — 1, by (2.4). Our aim is either to make z
saturated by increasing the total multiflow through z by one, or to reduce y(z) to
zero, in order to restore the violated complementary slackness condition at z. This
task will require at most two primal updates (which increase {(z)) and O(|VG|) dual
updates (which decrease y(z)).

We use the construction from the previous section. Let ! = a + y and construct
the l-graph T =T, digraph D = D' and flow g = g/. As before, vy is extended to
AD. We may assume that z is in I" because if z belongs to no 7-line, we can decrease
y(z) by the maximum amount allowed by (2.2). Then vy takes zero values on all edges
in EG — ET (in view of (2.3),(2.4) (for ¢) and the positivity of ¢). Let Z = (g, r) and

= (r’,q") be the arcs forming »~'(z). We need to slightly modify D and g to
H H' and h, the extended double covering and a circulation in it, as follows.

® H is formed by adding to D arcs of infinite capacity and zero cost from each
sink s* to each source ¢'. The set of these arcs is denoted by W; we formally extend y
by zero to W. Extend g to each arc in W by a rather large positive half-integer in such
a way that the resulting function g’ is a circulation, i.e., div,.(v) = 0 for all nodes v.
This can be done since the edges from W generate arcs b from sources s' to sinks t2
for all distinct s, € T, and g(b) = c(b) is large.

(i) Transform g’ into an infeger circulation h feasible for ¢,y by increasing or
decreasing g'(b) by 1/2 at each arc b for which g’(b) is not integral. This can be
done since these b’s are feasible (as, obviously, 0 < g'(b) < é(b), yielding y(b) = 0),
and the fact that each node v satisfies div,.(v) = 0 implies that v is incident to an
even number of arcs b with g'(b) not integral.

Thus, £ is an integer circulation in H, and Zz, Z’ are the only arcs which make %
infeasible for c.

4. Primal update. We attempt to increase % at the arcs z, Z' using techniques
motivated by usual augmenting paths in flow problems. Let F be the set of feasible
arcs in H, and H, the digraph (VH, F U {Zz, z'}). For a digraph D' and a subset
X c VD', let 85.(X) (8,(X)) denote the set of arcs b = (x, y) € AD’ leaving X, i.c.,
with x € X ? y (respectively, entering X, i.e., with x & X 2 ), and let §,(X) =
85(X) U 85(X) (the cur induced by X).

A path P = (vy, by, vy,...,b,0) in Hy is called active if h(b;) < c(b,) for all
forward arcs b; = (v,_,, v,), h(b;) > 0 for all backward arcs b, = (v, v,_,) in P, and P
uses neither Z nor z' as a backward arc. If, in addition, P is a simple circuit and
contains at least one of z and z’, P is called an augmenting circuit. One can
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efficiently find such a circuit or certify that it does not exist (cf. Ford and Fulkerson
1962). Three cases are possible.

Case 1. An augmenting circuit P containing both Z, z' is found. In this case we
push a unit of flow along P, ie., increase h by one at each forward arc of P, and
decrease it by one at each backward arc. Then the resulting function h' is a
(c-admissible) integer circulation with A'(2) = h'(z') = c(z). Therefore, the half-
integer multiflow f“ induced by an integer decomposition & of k| , along with v,
solves (3.1).

Case 2. No augmenting circuit exists. Then the set X C VH reachable by active
paths from r does not contain g, and the set Y reachable by active paths from g’
does not contain r’. Note that if, say, Y contains g, then, obviously, X does not
contain r'. So, without loss of generality, one may assume that g,r’ & X.

Case 3. An augmenting circuit P containing exactly one of Zand Z',say z' € P, is
found. Push a unit of flow along P, obtaining a circulation 4’ with h'(Z) = c(2).
Then search for an augmenting circuit P’ for A’ and Z. (i) If such a P" is found, push
unit flow along P'. The resulting circulation saturates (for ¢) both z, z' and induces
an optimal solution to (3.1). (ii) Now suppose that P’ does not exist. Then the set
X C VH reachable from r by active paths for A" does not contain g. Furthermore, the
following is true (this will also be used in §§6 and .

STATEMENT 4.1. Let A’ be a circulation in H with h'(Z) < h'(Z'), and let X be
the set of nodes of H reachable from r by active paths for A'. Let g & X. Then
r & X.

PROOF. Let F, and F, (respectively, Q, and Q,) be the sets of feasible (respec-
tively, infeasible) arcs in 8;(X) and &,(X), respectively. Then Zz & Q,,h'(b) = c(b)
for each b € (F, U Q, U Q,) — (2,2}, and h'(b) = Oforeach b € F, (in view of the
definition of X).

Suppose that r’ € X. Let a = ¢(2) — h'(z)and B =c(z') — h'(Z); then a > B. If
q' € X (whence z' ¢ 8,(X)), put A = a, and if q' &€ X (whence z' € Q)), put
A = a — B. We have

(4.1) 0=div, (X) = h'(F) + h'(Q)) — k' (F,) = h'(Q,)
=c(F) +c(Q1) — c(Q,) +A.

Consider the symmetric set X' = o(X). By symmetry, r,r' € X ?q.AlsogeX’
if and only if ¢' € X. Define the subsets Fj, F;, 0}, Q) of 8,(X’) similarly to those
for 8,(X). Then z' € Q). If ¢ € X' (whence Z & 8;(X"), put A’ =B, and if
g ¢ X' (whence z € Q)), put A’ = B — o. We have

(4.2) 0= — div,(X') = h'(F3) + h'(Q5) — W' (Fi) —h'(Q)
< c(Fy) +c(Qy) —e(Q) + A"

Note that F}, Q}, Q, are symmetric to Fy, Q5, Oy, respectively. Therefore, c(F}) +
(@) — c(Q) = c(F) + c(Q)) — c(Q,). Now (4.1) and (4.2) yield A < A, which is
impossible (in both cases) since a > B. O

In Case 1 and in (i) of Case 3, the primal updates applied (that update h) give an
optimal solution to (3.1). In what follows we assume that no augmenting circuit exists,
i.e., we are in Case 2 or in (i) of Case 3. Then the algorithm continues by performing
the dual update described in the next section. For convenience we keep the notation
h for the current circulation in H, and the notation f for a corresponding multiflow
in G (defined up to a decomposition of & ).
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For v € VH, let X, denote the set of nodes reachable from v by active paths in H.
The above analysis shows that, up to symmetry, we deal with one of the following
situations:

4.3)
(D) A(2) < h(2") (= ¢(2)), and q.r €X;
(i) h(2) = (z') < c(2), ¢, 7' € X,, and q € X, ?r
(iii) A(2) = W(2") < c(2), g, r' € X, U Xyoand X, N X, # O
(V) m(2) =h(z') < c(2), q, 1" & X, UX,,and X, NX, =a.

We call (i), (ii), (iii), (iv) Situations (of type) 1,2,3, 4, respectively. In this hierarchy,
type i is considered as more preferable than type j if i <j. We shall see in §6 that
each dual update either solves (3.1), or leads to a primal update, or is followed by
another dual update of the same or a more preferable type. Define R to be {r, q'}in
Situation 3, and {r} in the other situations (R is the set of roots of active paths we are
going to deal with). In what follows by the reachability we always mean the reachabil-
ity by use of active paths (from or to a specified node or subset of nodes). The set of
nodes reachable from R is denoted by X, and the symmetric set o (X) by X",

REMARK. At first glance, it may look artificial to distinguish between Situations 3
and 4 and define R (and, therefore, X) in these situations differently. However, we
shall see later that if R were defined in the same way (to be either {r} or {r, g’} in
these situations, we could not guarantee that both the dual half-integrality and the
property of z to be an edge of the current [-graph are simultaneously maintained.

In Situation 2, we also introduce the set

(4.4) M = {x € VH: x is reachable from ¢’ and reachable to q}.

A subset Y C VH is called tight if h(b) = c(b) for each b 8;(Y) N F, and
h(b) = 0 for each b € 6,(Y) N F; €.g, X is tight. The sets X and X’ have
important properties, which will often be used later on.

STATEMENT4.2. (i) If Y C VH is tight, then VH — o (Y) is also tight; in particular,
VH — X" is tight. (i) X N X' = (iii) X' coincides with the set X" of nodes
reachable to R’ = o (R).

PrROOF. (i) is proved similarly to Statement 4.1. To see (ii), observe that ¢, r’ & X
implies R N X' = . Therefore, RC X — X". Next, it is easy to see that if Y and Z
are tight, then both Y N Z and Y U Z are tight too. This implies that X — X is tight
(since both X and VH — X' are tight). From the fact that each element of X is
reachable from R it easily follows that no proper subset of X which includes R can
be tight. Hence, X — X' = X, yielding (ii). Finally, to see (iii), observe that VI —
(X' N X")is tight (since both VH — X' and VH — X" are tight). Also R’ Cc X' N X".
From the definition of X" it follows that VH — X" is the maximum tight set disjoint
from R’. Therefore, X' N X" = X ", whence X” C X'. The reverse inclusion X' C
X" follows from the inclusion X € o(X") (since o (X") is tight, by (). o

The fact that H contains the set ¥ of arcs, each with nonzero flow, leads to the
following important statement.

STATEMENT 4.3. X N (T' U T?) = J (and, therefore, X’ N (T! U T?) = Q).

PROOF. Suppose that X contains some s' € T' U T2 The existence of an arc
b = (s%s") (in W) with 0 < A(b) < c(b) implies that s°~ is also reachable. Hence,
both s', 5% are in X. By symmetry, s', s> € X', contrary to the fact that X and X' are
disjoint (by Statement 4.2). o
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Finally, in Situation 2, we observe the following:

4.5
() M is self-symmetric, i.e., M = a(M);
(i) M and X U X' are disjoint.

PROOF. M is the intersection of X, and the set Y of nodes reachable to gq.
Arguing as in the proof of (iii) in Statement 4.2, one shows that Y = o(X,.). This
implies (i). Next, if (i) is false, then M and X have a common node (as M = (M)
and X' = o(X)). Hence, there is an active path from r to g; a contradiction. O

5. Dual update. In the classic algorithm by Ford and Fulkerson (1962) for the
min-cost max-flow problem, the current dual vector is transformed within a single cut.
In contrast, the dual update described below deals simultaneously with two cuts,
namely, 8,(X) and 8,(X’), where X and X' were defined in the previous section.
Another feature, which makes the procedure more involved, is that the update of y
may change the [-graph I' and, therefore, the double covering D over I'. In fact, our
method uses some basic ideas of the dual update from the algorithm in Karzanov
(1979). However, compared with the latter, we mainly work with the l-graph T rather
than the double covering D, which seems to be simpler and more enlightening. When
it is not confusing, we omit H in 85(-), 85(-) and 8 ().

First of all we have to explain how X can intersect the subgraph H(®) = 0™ '(v)
generated by a central vertex v (H(v) is induced by the v-arcs and called a central
subgraph, or the v-subgraph). For i = 1,2, let Vi(v) denote the set {vi: s € T(v)} (so
(V(v), VX(v)} is a partition of VH(v)).

STATEMENTS.1. Let Y = X N VH(v) be nonempty. Then: (i) Y = (v} U (V) -
{2} for some s € T(v); and (i) h(b) = 0 for each arc from Vi) — {v}} to
V2(v) — (v}

PROOF. Suppose that Y contains v} for some s € T(v). Since X is tight and each
arc (0!, 0?) is not saturated (as it has infinite capacity), X contains v/ for all
¢ € T(v) — {s}. Then X' contains the symmetric nodes v? and v} (¢ # ), and now the
fact that X and X' are disjoint (by Statement 4.2) gives (i). To see (ii), observe that
each arc b from V'(u) — {01} to V() — {v?} is feasible and entries X; therefore,
h(b) = 0.

Next suppose that X contains a node v? and none of the nodes in V(v). Then
h(b) = 0 for each arc b from V'(v) to v2. By the construction of D, no other arcs
enter v2. Therefore, the total flow entering v2 is zero, whence div,(v}) = 0 implies
that h(b) = 0 for each arc b leaving v?. But then v} cannot be reachable from R; a
contradiction. 0O

In order to describe the update of y, we associate with X certain subsets and

functions in I. For s € T, define the sets
(5.1) A, ={ve Vv eX); A;={UEV°:SET(0),US16X};
Bs={u€Vs:vf€X}; V, =V, UAe.

From Statements 4.2(ii) and 5.1 it follows that the sets A, A%, B, for all s € T are
pairwise disjoint, and their preimages in D give a partition of X U X". Let V* =
y* — U(A®: s € T). Define the function p on VT by

(5.2) p(v)=—-1 ifved;udy,seT,
=1 ifveB,seT,

Il

=0 otherwise;
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and the function A on ET" by
(5.3) Ae) =p(v) — p(u) if e =uv,u,v €V, UV, w(u) < m(v),
= —p(u) —p(v) ife=u,ucVg,veV, s+t

The algorithm chooses some rational number € > 0 and makes the e-transformation
vy — y< which replaces y(e), e € ET, by

(5.4) y<(e) = max{0, y(e) + er(e)},

and maintains y“(e) = 0 for e € EG — ET. Accordingly, define the length function
/¢ tobe a + y* Since y* is nonnegative, /€ is positive.

First we show that such an update of vy is correct for a sufficiently small € > 0. The
proof falls into several parts. For j = —2,— 1,0,1, 2, define E/ = {e € ET: Xe) = j}.
For U, W C VH, let (U, W) denote the set of arcs from U to W in H. Let C denote
the set of central arcs in H.

STATEMENT 5.2. Let Z = VH — (X U X'). The following are true:

(5.5) E~?={w(b):be (X' X)-C},

E7' ={w(b):be (Z,X)} (={w(b):be (X, 2)}),

{
{
E'={w(b):be (X,2)} (={w(b):be (Z,Xx")}),
E? = {

o(b): b e (X,X")}.

PrOOF. Consider an arc b = (u,v/) € 6(X). Let b belong to (X', X). Since
i <j (in view of (2.7)) and o(b) € (X', X), we may assume that i = 1. (2.7) shows
that either () s =¢ j=1L ueV, veV,UV® and w(uw) < 7(v), or (i) s # ¢,
j=2ue€V,and v eV, In case (i), X contains u? and v}, and we have u € B, and
veE A, UA? (by (5.1), whence p(u) =1 and p(v) = —1 (by (5.2)). In case (i), X
contains u? and v?, whence p(u) = p(v) = 1. In both cases, A(w(b)) = —2, by (5.3).

The cases with b in (Z, X), (X, Z) or (X, X') are examined in a similar way (note
that in these cases b is noncentral, by Statement 5.1). Also a similar analysis shows
that if b is noncentral and not in §(X) U §(X’'), then AMw(b)) = 0. A careful
examination of these remaining cases is left to the reader. 0O

For i = —1,— 2, define J' = {e € ET: y(e) = 0, Me) = i}. Expression (5.5) and
the tightness of X imply that

(5.6)
() zeE'UE™?
(i) {f(e) =0 foreach e € J 1 UJ 72
(iii) ¢/(e) = c(e) for each edge e # z in (E™2 —J ) U(E"' —J ) UE' U E2

Therefore, increasing e decreases y(z), and each edge e #z with y<(e) > 0
remains saturated by f. The choice of e for the update of vy is restricted by several
factors. The first upper bound on € is

(5.7) € = min{min{y(e):e € E™' —J '}, min{y(e)/2: e € E7> —J?}}.

In particular, €; < y(z). Obviously, €, > 0. In other words, €, is the minimum e for
which the e-transformation reduces some positive y(e) to zero. In what follows we

14
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always assume that 0 < e < €,. Another important property provided by the choice of
€, is as follows.

STATEMENT 5.3. Let P be a (7T, [)-line. Then /*(P) > p. Moreover, [*(P) = p if
f(P) > 0.

PrRoOF. Consider the T to 77 dipath Q = o~ '(P). By Statement 4.3, the ends of
Q are outside both X and X'. Hence, Q enters X as many times as it leaves X, and
similarly for X'. Also if 6(X) U 8(X’) contains a central arc b, then b € (X', X).
These arguments together with (5.5) show that A(P) = 2«, where « is the number of
times Q meets central arcs in 6(X) (clearly « is 0 or 1). Next, since € < €,, we derive
from (5.4) and (5.7) that y(P) = y(P) + eX(P) + €B, + 2€f3,, where B, is the
number of edges of P in J~'. Hence,

[°(P) =a(P) + y(P) =a(P) + y(P) + 2ea + €B, + 2¢B,
> a(P) +y(P) =I(P) =p.

The second part of the statement is valid because if f(P) > 0 then 8, = 8, = 0
(by (5.6)(ii)) and « = 0 (by Statement 5.1 and the fact that A(b) > 0 for all arcs b
of Q). o

A (T, !)-line P with [°(P) = p is called a nonbroken line. By Statement 5.3, each
edge e € ET with {/(e) > 0 belongs to a nonbroken line. Let us call an arc b of D
forbidden if it is feasible (i.e., y(b) = 0) and either enters X or leaves X' or both.
From the above proof one can see that

(5.8) for a (T, )-line P, the following are equivalent:
(i) P is nonbroken;
(ii) @ '(P) has no forbidden arcs;
(i) P neither meets J~' UJ™> nor contains three consecutive nodes u € V,,
veAdAt,weV, fors #1,1t'.

Statement 5.3 implies that for a sufficiently small e, the /Sdistance between
distinct terminals is at least p, and f goes along (T, /¢)-lines (taking into account that
[ is continuous in e, that /(P) > p for each T-path P in G which is not a (T, [)-line,
and that the number of these (simple) paths is finite). Our aim is to find a reasonable
bound on € to guarantee these properties.

Let I'" be the subgraph of I' formed by 7 and the nodes and edges of nonbroken
lines. By Statement 5.3, f goes along lines in I''. This implies that y€ takes nonzero
values only within ET"" U {z} (since the edges in E' U E? are saturated, by (5.6)ii)).
Using (5.8), one can give an efficient procedure to extract I'’ from I'. There is a
simple explicit description of I'’, as follows.

Let J be the set of edges e of I' such that any (7, /)-line passing through e meets
J1UJ7?; clearly J can be found efficiently. By (5.8), the elements of J cannot
belong to nonbroken lines. The converse property also holds, as shown by the
following statement which will be proved in the next section.

STATEMENT 5.4. Each of the following belongs to a nonbroken line: (i) the node
o(x) for each x € X; (ii) each edge in ET — J; (iii) the edge z.

Thus, assuming that this statement is true, we observe that EI"" = ET — J, that T
includes A, A and B, for all s € T, and that y*(e) = O for all e € EG — ET". For
seT,letV{=V.NVT' andlet V'®* = V* N VI’ (cf. (5.1)). Then 4, A%, B, C V.
For v € VT, define

(5.9 m(v) = w(v) + ep(v).
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Comparing (2.5) with (5.3) and (5.4), we observe that for e = uv € ET,
(5.10) I¢(e) =m(v) — m<(u)l ifu,peV;uV'*,seT,
=p-—m(u) —w(v) fueV,veV/, s+t

When e is growing from zero, 7 decreases by e on the elements of each A4, U A%,
increases by € on the elements of each B, and remains unchanged on the other
nodes of T. This motivates the next upper bound on € to be

(5.11) €, = min{p/2 — w(v): v € B,,s € T},

which says that the growth of € should be stopped as soon as some increasing number
m<(v) achieves p /2. From (5.10) it follows that 7 is the potential function for /€ in
I’ whenever € < ¢, (ie., for each v € VT', 7 () is the minimum /“length of a path
from T to v in I'’). Since each set B, has no central nodes for /, €; > 0.

Consider two nodes u and v in I'’. Let d(u, v) be the minimum cost a(P) of a path
P from u to v in G with all edges and inner nodes (if any) not in I'’; if such a path
does not exist, d(u, v) = co. When € is growing, it may happen at some moment that
such a minimum cost path P becomes a line for the current length function (and
further growing e would make the distance between some terminals less than p). To
account for such a moment, we associate with the ordered pair (u,v) two numbers
i(u, v) and Mu, v), where

(5.12)  I(u,v) = w(v) — w(u) and Mu,v) = p(v) — p(u)
ifu,veV;ulV'*,seT,
I(u,0) =p — m(u) — m(v) and Mu,v) = —p(u) = p(v)
ifueV ,veV/,s+t.
One can see that if u and v are connected by a line (e.g., an edge) P in T'’, then

I5(P) equals max{i(u,v) + ex(u, v), I(v, u) + €M, u)}. Our third upper bound on
€IS

(5.13) e; = min{ e(u,v): u,0 € VI, e(u,v) = 0},
where
(5.14) e(u,v) = (d(u,v) — I(u,0))/Mu,v).

We observe that d(u, v) > I(u, v); therefore, €; > 0.

STATEMENT 5.5. Let 0 < € < min{e,, €,, €5}. Then dist,(s,t) > p for all distinct
s,t € T. In particular, I'’ is a subgraph of I'""

PROOF. We know that if €’ < €, €,, then < is the potential function for /¢
within ['’. Suppose that [¢(P) < p for some T-path P. Using the potentials 7 in I
and the fact that each node of T’ belongs to a (7, [€)-line in it, one can see that there
is a part P’ of P, say, from u to v, such that both u, v are in T’ while the other nodes
of P’ are not, and either () u,v € ¥/ U V’® and I“(P') < |7 “(v) — a<(u)|, or (i)
ueV, ,veV, (s#t)and I(P) <p — w(u) — m<(v).

13
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In case (i), assume for definiteness 7 <(v) > m<(u). We have [¢(P') = a(P') >
d(u,v) (by the definition of d). Also 7<(v) — m(w) = 7(v) + ep(v) — w(w) —
ep(u) = i(u,v) + eMu,v). Therefore, [(P") < m<(v) — 7w*(u) implies d(u,v) <
I(u, v) + €X(u, v). This is impossible when A(u, v) < 0 (since d(u, v) > I(u, v)). And if
Au,v) = 0, then e(u,v) > 0, and now (5.14) and € < €; < e(u, v) imply d(u,v) >
I(u,v) + eXu, v); a contradiction.

Case (ii) leads to a contradiction in a similar way. ©

Thus, the choice of € to be min{¢,, €,, €;} gives y€ which, together with f, satisfies
2.2)-(2.4) for é. In the next section we show that such a choice ensures fast
convergence to optimal solutions for (3.1).

6. Complexity of the algorithm and dual half-integrality. Our goal is to show
that O(|VG)|) consecutive dual updates either reduces y(z) to zero or make it possible
to apply the primal update increasing the total multiflow at z. First of all we establish
three facts (Statements 6.1-6.3).

STATEMENT 6.1. The edge z belongs to a nonbroken line, ie., (iii) in Statement
5.4 is true.

PrOOE. If (/(z) > 0, the result immediately follows from Statement 5.3. So
assume that ¢/(z) = 0. Then A(Z) = h(Z') = 0, therefore, we are in Situation 2, 3 or
4 (see (4.3)). Choose a dipath Q, from r to 7% in D, and let b be the first arc of Q,
leaving X. Since A(b) > 0 (as X is tight), we may assume that Q, is chosen so that all
its arcs following b have nonzero flow. Then Q, has no forbidden arcs.

Suppose that a situation of type 3 takes place. Then ¢ € X' (as R = {r, q'}). The
argument “symmetric” to that above shows that there is a T' to g dipath Q, without
forbidden arcs. Now the concatenation of the path Q,, the arc z and the path Q,
gives a T! to T? dipath which contains Z and has no forbidden arcs.

In Situation 4, we argue in a similar way using the facts that g belongs to the set
o(X,) which is disjoint from X and that VH — o(X,) is tight (as X, N X, =,
o(X,)NX, =D and X, is tight).

Now consider a situation of type 2. Let P = (x4, by, x4,..., by, x;) be an active
path from ¢’ to g. Note that P cannot contain only forward arcs; for otherwise there
would exist a T' to T? dipath L in D which passes through both z and Z’, implying
that the path w(L) is not a T-line, contrary to (2.9). Thus, P has a backward arc; let
b, be the last of such arcs. Since A(b,) > 0, there is a dipath Q, from T' to x; with
nonzero flow at all its arcs. Concatenating the path Q,, the part of P from x; to g,
the arc Z and the path Q,, we obtain a 7' to 7' dipath which contains Z and avoids
forbidden arcs. O

STATEMENT 6.2. Let b = (x, y) be an arc of D with x, y € X. Then the element
w(b) belongs to a nonbroken line.

PrROOF. Choose a dipath Q, from y to 7? and an active path P from R to x. By
the argument as in the proof of Statement 6.1, we may assume that 4(b) = 0, and Q,
has no forbidden arcs. Let w be the last node of P such that either w € R or w is
the tail of an arc with nonzero flow. Then there is a 7' to w dipath Q, without
forbidden arcs (if w € R, Q, exists by Statement 6.1). Now the concatenation of the
path Q,, the part of P from w to x, the arc b and the path Q; gives a T to T?
dipath which contains b and has no forbidden arcs. O

STATEMENT 6.3. Assuming that situation of type 2 occurs, let M be the set
defined in (4.4). Let b = (x, y) be an arc of D with x, y € M. Then the element w(b)
belongs to a nonbroken line.




A. V. GOLDBERG AND A. V. KARZANOV 45\

PrROOF. Choose an active path P from y to ¢ and a dipath Q from g to T?
passing through Zz. Arguing as in the proofs of Statements 6.1 and 6.2, one can
transform P and Q into a y to T? dipath Q, without forbidden arcs. Similarly, there
exists a T! to x dipath Q, without forbidden arcs. Then the concatenation of Q,, b
and Q, is as required. O

As a corollary from Statements 6.1 and 6.2, we immediately obtain (i) in Statement
5.4 from the previous section. To see (ii) in that statement, consider e € ET —J and
take a T-line P which contains e but none of the elements of J~' UJ ~2. Let
0 = o '(P) = (x4, by Xp,..., by, x;) and e = w(b,). Suppose that Q has a forbid-
den arc b, and let for definiteness j < i. Since P does not meet J -1y J72, the only
possible case is when b; is a central arc going from X' to X. Choose a T! to T?
dipath L = (Vgr dis V1o -+ » B> V) which contains x; (x; =y say) and has no
forbidden arcs (L exists by (i)). Then the concatenation of the part of L from y, to i
and the part of Q from x; 10 X contains b, and none of forbidden arcs, whence (ii)
follows.

Return to consideration of the dual update described in the previous section and
suppose that it finishes with vé(z) > 0, where € = minfe,, €,, €3). Let T, D and H
stand for the I5graph T'*", double covering D'* and extended double covering H K
respectively, and let & and & be the corresponding mappings for D. We know that
the graph I'" generated by the nonbroken lines (see §5) is a subgraph of I'. However,
the subgraph D' = o™ '(I'") of D! can differ from the subgraph D’ = & ' (I'") of D.
This happens if the sets of central nodes in T’ for I and [¢ are different.

More precisely, for s € T, let B? be the set of nodes v € B, with 7<(v) = p/2,
and let A® = U(A%: s € T) and B® = U(B®: s € T) (where A3 and B, are de-
fined in (5.1)). We observe that the set of central nodes for (I'", I€) is_ (V' — A®) U B®,
where V'® is the set of central nodes for (T, 1). This implies that D' is obtained from
D' by the following operations which destroy the v-subgraphs generated by the
elements v € A® and create the v-subgraphs for the elements v € B*:

(6.1
() for v e A®, s €T, delete the v-arcs, identify the nodes v} and v? for all
¢t € T(v) — {s} with a new node p! (the first copy of v in D"), and identify the nodes
v? and v}, t € T(v) — {s}, with a new node 92 (the second copy of v in D"); then
(i) for each v € B?, s € T, split v} into nodes 07, t € T'(v), split v} into nodes 2,
¢ € T'(v), and add central arcs (8}, 07 for all distinct ,¢t" € T'(v), where T'(v) is the
set of terminals of I'’ closest to v with respect to /°.

Let £ stand for the node in D' inducedby x € VI', t € T'(x) and i € {1,2}. One
can see that, under transformation (6.1), for each v &€ A$, an arc of the form
(ul,v}) (respectively, (02, wh), t € T(w) = {s}) in D’ becomes an arc of the form
(a1, b)) (respectively, (5, w2)) in D'; and for each v € B?, an arc of the form (u}, v?)
(respectively, (v2,w?)) in D' becomes an arc of the form (4!,9}) (respectively,
(2,w?) in D'; and accordingly for the symmetric arcs. (Note that for v € B®, no arc
of the form (u2, v?) can exist.)

Based on these observations, we introduce the mapping 7 from VD' to nodes or
subsets of nodes of D’ that brings v} to 8y if v € VT — (A® U B*®), brings each of v;
and v? (t #5) to D} if v € A4S, and brings v? to {62} U (v): t # 5} if v € B and
accordingly for the symmetric nodes. This induces a one-to-one mapping, also
denoted by 7, of the set of arcs of D’ different from v-arcs for v € A® to the set of
arcs of D' different from v-arcs for v € B® (so that for b = (x, y), 7(b) goes from
7(x) to 7(y)). Moreover, obviously, A(r(b)) = h(b) holds for all arcs b to which 7 is
applicable, where h is a circulation in H corresponding to f (h is determined
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uniquely within D). Also each arc b € AD’ with both ends in X satisfies ve(r (b)) =
v(b) (in view of (5.5)); in particular, if b is feasible for vy, then 7(b) is feasible for y*,
Let £ =(4,#) and 2" = (7', ') be the arcs 7(Z) and 7(Z"), respectively, and let X
be the set of nodes of H reachable by active (for y¢ and h) paths from the
corresponding set R (that is {7} or {7, § '}). We distinguish between two situations:

6.2
(i) X contains some of g, 7';
(i) none of g, 7’ is in X.

Case (i) (giving “bAreakAthrough”) will be studied later, and now we consider case ().
By Statement 42, X n X' = J, where X' = &(X). Define X to be the set of nodes
of D occurring in 7(x) for x € X. Summing up the above observations and using
Statement 6.2, one can see that each active path from R in D' determines in a
natural way an active path from R in H. Moreover, the following important property
holds (in fact, this is valid in case (i) of (6.2) as well):

(6.3) X cX (and therefore, o(X) C o(X)).

One can see that the first inclusion in (6.3) is strict if and only if the second
inclusion is strict.

Note also that, in Situation 2, the set (M), as well as the subgraph of I' induced
by this set, is contained in T, by Statement 6.3. Moreover, since M and X U X' are
disjoint (by (4.5)), we have o(M) N w(X) =  (taking into account that if X meets a
central subgraph, then X U X' contains all nodes of this subgraph). Therefore, the
subgraph of D' induced by M remains in D. This implies that every node of M
remains reachable from §' and reachable to § in H. So the set as in (4.4) does not
decrease under the dual update in question. Moreover, if the resulting set X meets
M, then an active path from 7 to § is created, and we obtain “breakthrough” (6.2)(0).
Similar arguments show that, in Situation 4, the transformation preserves the sub-
graph induced by X,., and the set reachable from §’ does not decrease.

Next, case (6.2)(ii) is further divided into three subcases depending on which of the
bounds €, €,, €; is achieved by e. We show that each of them results in at least one
of the following:
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(i) &(X) strictly includes w(X); or
(ii) A strictly includes A.

Here A denotes U(A,UAS: s € T), and A denotes the analogous set for [, X
Note that A € A always holds because for each s € T and v € A, U AS, we have
7(v) < #(v) < p/2 (so v is noncentral for /¢, and vl € X implies ] € X, whence
veA,).

(A) Let € = €,. This means that y<(e) = 0 for some edge e # z with v(e) > 0 and
Ae) < 0. At least one arc b = (x, y) in w (e) enters X, and h(b) = c(b) > 0. The
corresponding arc 7(b) = (%, $) of D enters X. Therefore (in view of (6.3)), X is
reachable from R by an active path that uses 7(b) as a backward arc. So % is in X.
Since £ & X, we obtain (i) in (6.4).

(B) Let € = €. This means that there appears a new line P which connects some
u,v € VI’ and has no inner node in I'. Suppose that u,v € V! U V'® and m(u) <
(v) for some s. Then 7 <(u) < 7(v), and the dipath Q = &~ 1(P) goes from x = il
to y = d!. Furthermore, d(u, v) — u,v) = e(p(v) — p(w)) > 0 shows that either (a)
ueA, v, or(b)u & B, >, orboth.
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In case (a), we have il e X. Since all arcs of Q are feasible and nonsaturated, y is
reachable, i.e., y € X. On the other hand, y cannot be in X. Indeed, y € X would
imply v € B, (as v & A,). Then X contains v?, whence 0} € X. But X cannot
contain both ! and 52 Thus, we have (i) in (6.4).

In case (b), applying similar arguments to the symmetric dipath 6(Q), we deduce
that the end #2 of 6(Q)is in X but not in X.

Finally, let u € V/ and v € V} for s # t. Then p(u) + p(v) < 0 (cf. (5.12)). This is
possible only if some of u and v, u say, is in the A-set, while the other, v, is not in the
B-set. Arguing as above, one shows that p? is in X but not in X, again obtaining (i)
in (6.4).

(C) Let € = €;. Then B* is nonempty. Consider some v € BS. We know that X
contains 52 and 8} for all # € 7"(v) — {s}. On the other hand, Statement 5.1 shows
thatif X N X" = 7 then the set X N & '(v) is of the form {vl} U {v}: 1 e T(v) —
{s"}}. Hence, |T(v)| = 3 is impossible (in this case “breakthrough” happens). Now
assuming that 7'(v) consists of two elements s and s’, we conclude that v becomes a
member of A_.. This gives (i) in (6.4).

Thus, (6.4) is always valid. In case (6.2)(ii), the next iteration of the algorithm
makes the dual update for y<, and so on until (i) in (6.2) happens. (6.4) gives an
obvious upper bound on the number of such iterations.

STATEMENT 6.3. The number of consecutive dual updates does not exceed VG|
o

We now consider case (i) in (6.2). If § is reachable from 7, the algorithm makes the
corresponding primal update increasing the total multiflow at z; and similarly if 7" is
reachable from 4’ when 2’ is not saturated (recall that h(2) = c(z) — 1 < h(2"). So
we may assume that

6.5) 7,7 €X 2§ and either (a) (3D = c(z), or (b) A(Z)) = c(2) — 1 and 7' is
unreachable from g'.

Statement 4.1 applied to /4 and X shows that (a) is impossible. Consider (b). If
before the gual update we were in Situation 2, then, as it was shown above, the
current H, b,y admit an active path P within M which goes from ¢’ to g. Also 7' is
reachable from 7 by an active path Q. Since X N M = (J, these paths are disjoint.
Therefore, P and Q along with Z and 2’ form an augmenting circuit.

Thus, if we cannot augment the total multiflow at z acting as above, then before
the dual update we were in Situation 3 or 4. On the other hand, after the update we
fall in Situation 2 (with % and 2’ permuted). The algorithm continues by making the
dual update with respect to the set reachable from 4’. Summing up the above
arguments, we conclude with the following.

STATEMENT 6.4. The above algorithm solves (3.1) in O(|VG)) iterations, and each
iteration is performed in time polynomial in [VG|,|EG|. O

Thus, the whole capacity scaling algorithm for (1.2) is polynomial and has the
complexity as indicated in the Introduction.

It remains to show that the optimal dual solution y' found by the algorithm is
half-integral. Since the function vy in the input of (3.1) is assumed to be half-integral,
it suffices to prove the following.

STATEMENT 6.5. The numbers €,, €, and €; found at the dual iteration are
half-integers.

PrROOE. By (5.7), €, is a half-integer if y(e) is an integer for each edge e with
y(e) > 0 and AMe) = —2. To see the latter, consider an arc b=(x,y) € o (),
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then x € X' and y € X (cf. (5.5)). Choose in H a path P, from r to y and a path P,
from x to r' such that all nodes of P; are in X, all nodes of P, are in X', and all
arcs of these paths are feasible. Such a P, (and similarly, P,) exists because, in
situation of each type, the subgraph induced by feasible arcs with both ends within X
is connected and spans X (this is just the point where we essentially use distinction in
the definition of X for types 3 and 4).

The images of the arcs of P; and P, together with e form a subgraph of T' which
contains a circuit C = (U, €, Vys - - » € U = Up) Involving e; let e = e,. Since the
arcs of P, and P, are feasible, l(e;) = ale,) for i =2,...,k. Also I(e;) is either
lm(u_) — w(@)l or p— m(v_y) = 7(v), i=1,...,k (cf. (2.5). Therefore, the
integrality of p and a and the half-integrality of  (as 7y is half-integral) imply that
the numbers 27 (v;) are integers and have the same parity, ie., 2m(v) = =
27(v,_,) = 27(vy) (mod?2). Now y(e) = l(e) — ale) and I(e) € {Im(vy) — (vl
p — w(vy) — w(v))} show that y(e) is an integer, whence €; € 1Z.

The half-integrality of €, follows from the integrality of d(u,v) — I(u, v) for each
pair (u,v) with Mu,v) =2 (cf. (5.13)-(5.14)). The latter is shown by arguments
similar to those for ,. Finally, €, is a half-integer since p is an integer and 7 is
half-integral (see (5.11)). O

7. Cost scaling algorithm. It is based on ideas and tools similar to those of the
capacity scaling algorithm. As before, a is assumed to be positive. At the high level,
the algorithm consists of at most [ |EG]| big iterations, where I = max{[logza(e)]:
ec EG). Fori=0,1,...,1 and e € EG, define a'(e) = [a(e)/2']. Then a®(e) =
ale), a'(e) = 1, a'(e) > 0 and 241t 1(e) — a'(e) € {0,1}.

For i=0,...,1—1,let U’ be the set of edges e with a’ < 2a'"!, and let these
edges be zy,...,Zyy (K@) = |U}. For j=0,...,k(i), define ai(e) = ai(e)
(=2ai*'(e) — D fore =z,...,2; and ai(e) = 2ai*1(e) for the other edges e of G.
In particular, aj = 2a'"".

Let p’ be a large enough positive integer (for our purposes, it suffices to assume
that p’ > 2|EGI|c(EG)), and let p' = 2'=ip’. In the beginning we find optimal primal
and dual solutions f' and v! for G,T,c, a’, p’, using the pseudo-polynomial combi-
natorial algorithm from Karzanov (1979). Since a'(EG) = |EG], this takes strongly
polynomial time. Note that f I is half-integral, while ¥y’ may not be so (the above-
mentioned algorithm does not guarantee the dual half-integrality). Nevertheless,
Karzanov (1994) suggests a strongly polynomial combinatorial procedure that trans-
forms an arbitrary optimal dual vector to a half-integer one. So we may assume that
y! is half-integral as well.

The input of a current big iteration consists of optimal primal and dual solutions
fiy and y/_, for G,T,c, ai_,, p', and the goal is to transform them into optimal fi
and y/ for G,T,c,aj, p'. Here we put fi=f" and y§ = 2y'"", where fi*! and
yi*1 “are optimal solutions found for a'*! and p'*'. Hence, the last big iteration
finds optimal solutions for a and p° = 2/p’ (thus solving (1.1)).

So we come to the following auxiliary problem, to be solved at most I|EG]| times;
for convenience we keep the original notation.

(7.1) Given optimal half-integral f and y for G,T,c, 4, p, and an edge z, find
optimal half-integral f' and y' for G,T,c,a, p, where a coincides with 4 everywhere
except for z for which a(z) = a(z) —1>0.

First of all we examine complementary slackness conditions (2.3) and (2.4) for
a, v, f. If (2.3) is violated, we restore it by updating y(z) == y(z) + 1 (thus compen-
sating the decrease of the cost of z by one). Therefore, without loss of generality we
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may assume that (2.3) is valid; also we may assume that z belongs to a T-line for
a, v, p (otherwise y(z) should be duly decreased). If (2.4) is violated at z, we have a
situation similar to that in §3. The only difference is that now c(z) — ¢(z) may be an
arbitrary positive half-integer, while y(z) is exactly one (as (2.4) holds for the initial
v). Again our aim is either to saturate z or to reduce y(z) to zero. We act in a way
similar to that in §§4 and 5 for solving (3.1). In what follows we outline only the
differences between two algorithms, leaving it to the reader to check the necessary
details in full.

We construct T', D, H, h as in §§2 and 3 and attempt to increase h at z = (g,r)
and/or 2’ = (r',q") (where {2,2'} = w~'(2)). More precisely, first we try to change
the circulation & on feasible arcs plus Z and z' so as to get an integer circulation A’
with #'(Z) as large as possible provided that h'(Z") = h(z') (therefore, our primal
update corresponds to several primal updates from §4). This is done in strongly
polynomial time by use of one of numerous strongly polynomial maximum flow
algorithms (for a survey, see, €.g., Ahuja et al. (1993), Goldberg et al. (1990)). Then
we change A’ in a similar way to get a circulation A’ with 2”(Z') maximum provided
that 4" (2) = h'(2).

Thus, we may assume that / is subject to one of the situations in (4.3) (with A(Z")
not necessarily equal to ¢(z) in (4.3)i)). Accordingly, define R, X and M as in §4.
Obviously, (4.5) and Statements 4.2 and 4.3 remain valid for our case. Next the
algorithm makes the dual update with respect to X as described in §5. It results in a
new function y' = y¢ for which y'(z) < y(z). By Statement 6.5 (which remains
valid), y' is half-integral; therefore, y'(z)is 0 or 1/2 (as y(z) = D. If v'(z) =0, we
are done, and if y'(z) = 1/2, the algorithm continues with either the next dual
update (solving (7.1)) or the primal update as above. In the latter case the total
multiflow at z increases, and if z still remains nonsaturated, one more dual update is
applied, which eventually solves (7.1). Thus, we obtain the following.

STATEMENT 7.1. The algorithm for (7.1) consists of at most two primal updates
and at most two dual updates. Each update is executed in strongly polynomial time.
O

Moreover, the final multiflow f' and dual vector y' are half-integral, as required.
Summing up the above arguments we conclude that the whole cost scaling algorithm
solves (1.2) for a rather large p and runs in polynomial time as indicated in the
Introduction.
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