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bipartite graph H, by the multi-terminal version of the min-cost max-flow problem
[12]. On the other hand, it is easy to show that o(H) > 2 for all other graphs H.
The next result is less trivial: if H = Ky then (1.2) has a half-integer o.s. [19]; hence,
e(Kp) = 2if |T| > 3. This fact was proved by considering the following slightly more
general parameteric problem which combines both objectives figured in (1.2):

(1.5) given p € O, mazimize the linear objective function pval(f) — a; among all mul-
tiflows [ for G, Kr,c.
Obviously, (1.5) becomes equivalent to (1.2) when p is large enough. The above-

mentioned result is an immediate corollary from the following theorem.

Theorem 1 [19]. If H = K then for any p € € problem (1.5) has a half-integer
optimal solution f.

As a consequence, we observe that o(H) = 2 for any complete multi-partite graph
H with k& > 3 parts (i.e., VH admits a partition {T%,...,T}} such that {s,t} € £H if
and only if s € T; and ¢ € T} for i # j). For we can add to G new nodes #1, ..., ¢ and
edges t;s (s € T;) with the same rather large capacitics and costs; then any o.s. for the
resulting network with the complete graph on {t1,...,#;} as commodity graph yields
an o.s. for the original network. On the other hand, the [ollowing is true.

Theorem 2 [20]. If H is not complete multi-partite then p(H) = oc.
This theorem is reduced to examination of few instances of H because of the
following simple fact.
Statement 1.1. If H' is an induced subgraph of H then ¢(H') < ().
Proof. Given a network N’ = (G', H',c',a’), add to G’ the elements s €« VH — VH’

as isolated nodes and denote the resulting network by N. Then N and N’ have the

sanie sets of optimal solutions, whence the result follows. e

Therc are exactly three minimal, under taking induced subgraphs, graphs that are
not complete multi-partite, namely, Hy, Ho, Hs drawn in Fig. 1. IHence, by Statement
1.1, it suffices to show that ¢(H;) = oo, i = 1,2,3. We explain why the fractionality
for these H;’s is unbounded in Section 3.
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2. The program dual of (1.5) can be written as

(1.6) minimize ¢y  subject to
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v & (Q}EG and distoi(s,t) > p forall s,;t €T, s #t,

where for ¢ : EG — @ . dist,(u,v) denotes the {-distance between nodes v and v, i.c.,
the minimum ¢-length ¢(P) of a path P in G that connects u and v.

Example 4. Let G be as in Fig. 2a, T' = {s1,...,86}, ¢ = T and a = 1. There
is an only optimal T-multiflow, namely, that takes value 1/2 on the six paths shown in
Fig. 2b, and zero on the other T-paths. Suppose p = 7. Then an optimal v to (1.6) is
zero on the edge wv and 2.5 on the other cdges.
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Fig. 2 (a)

The original proof of Theorem 1 given in [19] was constructive and provided by
a psendo-polynomial algorithm. Being within frameworks of the primal-dual linear
programming method, this algorithm is based on a parametric approach, like that used
in the classic algorithm of Ford and Fulkerson [12] for the min-cost max-flow problem,
but now in a more complicated context. In fact, it finds optimal primal and dual
solutions simultaneously for all p € Q. More precisely, it constructs, step by step,

asequence 0 = pg < p1 < p2 < ... <PM of rationals, a sequence fo, f1,...,fm of
half-integer T-multiflows and a sequence Yo, V1, -+ YM> VM +1 of functions on F'G such
that: (i) fori =0,....M -1 and 0 < ¢ < 1, fi and (1 — &)y + v are 0.8, to

(1.5) and (1.6) with p = (1 - &)pi + epit1, respectively; and (ii) for 0 < e < 00, fu
and v + evar41 are 0.8 to these programs with p = pas + €. In particular, [y is a
maximum 7-multiflow.

The key idea in [19] is that, at each iteration, the new optimal f and ~v can be
obtained by solving the usual maximum flow problem in a certain “skew-symmetric”
digraph, called a double covering over G. A shorter, though non-algorithmic, proof
of Theorem 1 is described in [21]; it is also based on double covering techniques. We
outline this proof in Section 2.

Two more results were obtained in [21]. Tt was shown that the dual program (1.6)
has a half-integer 0.s. whenever p is an integer. Also a strongly polynomial algorithm
to find a half-integer o.s. to (1.2) with H = Kr was developed there. However, this
algorithm is not “purely combinatorial” as it uses the ellipsoid method.

Recently Goldberg and the author [13] designed two polynomial algorithms for
finding a half-integer o.s. to (1.2) with H = K. Both algorithms are combinatorial
and they handle within the original graph G itself rather than double coverings. One
of these applics scaling on capacitics, while the other scaling on costs (cf. [11,6] and
[33,2] for the min-cost max-flow problem).
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G?. Third, find an integer flow h in I' with the restrictions hy = ¢, for b € A™ (such an
h must exist). Now an integer decomposition of h determincs the desired hall-integer
multiflow for G.

3. Unbounded fractionality

As mentioned in the Introduction, to prove Theorem 2 it suffices to show that
o(H) = oo for H = 1, H», Hs as in Fig 1. Following [20], we design “bad networks”
N = (G, H,c,a) for these H’s. Let k be an odd positive integer. Take k disjoint paths
(v, eb vl .. eh, vi), i =1,... k. Comnect vj and v}“
that i —j = 1 (mod 2). Add nodes s.t, s, t',y,2,9, 2" and edges

by edge ug for all ¢, 7 such

(i) sy, tz, 8"y’ t'2"

(ii) yvi and zvh, for i =1,... k;

(iil) y"u} for each odd j, and N’Uj‘ for each even 7,
obtaining graph G. Assign the capacity k — 1 to the edges s'y’,¢'2’, and 1 to the other
edges of GG. Assign the edge costs as follows:

0 fortzand ey, i,j=1,....k
1 for all edges ué- and the remaining edges e};

ko for s’y t'2" and the edges as in (ii) and (iii);
Y g

2k lor sy.

Fig. 4
(See Fig. 4 where k = 3 and the numbers on edges indicate non-zero costs.) We identify
s,t,8',t" with the corresponding nodes of the graph H € {Hy, Hy, Hs} in question;
therefore {st,s't'} C EH C {st,s't',ss’, st'}.

Fori=1,...,k let P, (L;) be the simple path going through the nodes s,y, v},

i : Joa a1 1 2 2 k=1 k k Y i
L Uh, 2t (vespectively, sy, U3, 1, Vs, Vs;, Vs 1y e+ Vg 1, Vh; 15V, 2, t1). Assign
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