Pictures to "Multiflows and disjoint paths of minimum total cost"

For example, $\varphi(H) = 1$ if |EH| = 1. More generally, $\varphi(H) = 1$ for any complete bipartite graph H, by the multi-terminal version of the min-cost max-flow problem [12]. On the other hand, it is easy to show that $\varphi(H) \geq 2$ for all other graphs H. The next result is less trivial: if $H = K_T$ then (1.2) has a half-integer o.s. [19]; hence, $\varphi(K_T) = 2$ if $|T| \geq 3$. This fact was proved by considering the following slightly more general parameteric problem which combines both objectives figured in (1.2):

(1.5) given $p \in Q_+$, maximize the linear objective function $pval(f) - a_f$ among all multiflows f for G, K_T, c .

Obviously, (1.5) becomes equivalent to (1.2) when p is large enough. The above-mentioned result is an immediate corollary from the following theorem.

Theorem 1 [19]. If $H = K_T$ then for any $p \in \mathbb{Q}_+$ problem (1.5) has a half-integer optimal solution f.

As a consequence, we observe that $\varphi(H) = 2$ for any complete multi-partite graph H with $k \geq 3$ parts (i.e., VH admits a partition $\{T_1, \ldots, T_k\}$ such that $\{s, t\} \in EH$ if and only if $s \in T_i$ and $t \in T_j$ for $i \neq j$). For we can add to G new nodes t_1, \ldots, t_k and edges $t_i s$ ($s \in T_i$) with the same rather large capacities and costs; then any o.s. for the resulting network with the complete graph on $\{t_1, \ldots, t_k\}$ as commodity graph yields an o.s. for the original network. On the other hand, the following is true.

Theorem 2 [20]. If H is not complete multi-partite then $\varphi(H) = \infty$.

This theorem is reduced to examination of few instances of H because of the following simple fact.

Statement 1.1. If H' is an induced subgraph of H then $\varphi(H') \leq \varphi(H)$.

Proof. Given a network N' = (G', H', c', a'), add to G' the elements $s \in VH - VH'$ as isolated nodes and denote the resulting network by N. Then N and N' have the same sets of optimal solutions, whence the result follows. \bullet

There are exactly three minimal, under taking induced subgraphs, graphs that are not complete multi-partite, namely, H_1, H_2, H_3 drawn in Fig. 1. Hence, by Statement 1.1, it suffices to show that $\varphi(H_i) = \infty$, i = 1, 2, 3. We explain why the fractionality for these H_i 's is unbounded in Section 3.

$$H_1: \qquad \qquad t \qquad s \qquad \qquad t \qquad s \qquad \qquad t \qquad s \qquad \qquad t \qquad H_3: \qquad \qquad t \qquad \qquad t' \qquad \qquad s' \qquad \qquad t' \qquad t' \qquad t' \qquad t' \qquad \qquad t'$$

2. The program dual of (1.5) can be written as

(1.6) minimize
$$c\gamma$$
 subject to

$$\gamma \in \mathbb{Q}_+^{EG}$$
 and $\operatorname{dist}_{a+\gamma}(s,t) \geq p$ for all $s,t \in T, \ s \neq t,$

where for $\ell: EG \to \mathbb{Q}_+$, $\operatorname{dist}_{\ell}(u,v)$ denotes the ℓ -distance between nodes u and v, i.e., the minimum ℓ -length $\ell(P)$ of a path P in G that connects u and v.

Example 4. Let G be as in Fig. 2a, $T = \{s_1, \ldots, s_6\}$, $c = \mathbb{I}$ and $a = \mathbb{I}$. There is an only optimal T-multiflow, namely, that takes value 1/2 on the six paths shown in Fig. 2b, and zero on the other T-paths. Suppose p = 7. Then an optimal γ to (1.6) is zero on the edge uv and 2.5 on the other edges.

The original proof of Theorem 1 given in [19] was constructive and provided by a pseudo-polynomial algorithm. Being within frameworks of the primal-dual linear programming method, this algorithm is based on a parametric approach, like that used in the classic algorithm of Ford and Fulkerson [12] for the min-cost max-flow problem, but now in a more complicated context. In fact, it finds optimal primal and dual solutions simultaneously for all $p \in \mathbb{Q}_+$. More precisely, it constructs, step by step, a sequence $0 = p_0 \leq p_1 < p_2 < \ldots < p_M$ of rationals, a sequence f_0, f_1, \ldots, f_M of half-integer T-multiflows and a sequence $\gamma_0, \gamma_1, \ldots, \gamma_M, \gamma_{M+1}$ of functions on EG such that: (i) for $i = 0, \ldots, M-1$ and $0 \leq \varepsilon \leq 1$, f_i and $(1-\varepsilon)\gamma_i + \varepsilon\gamma_{i+1}$ are o.s. to (1.5) and (1.6) with $p = (1-\varepsilon)p_i + \varepsilon p_{i+1}$, respectively; and (ii) for $0 \leq \varepsilon < \infty$, f_M and $\gamma_M + \varepsilon \gamma_{M+1}$ are o.s. to these programs with $p = p_M + \varepsilon$. In particular, f_M is a maximum T-multiflow.

The key idea in [19] is that, at each iteration, the new optimal f and γ can be obtained by solving the usual maximum flow problem in a certain "skew-symmetric" digraph, called a *double covering* over G. A shorter, though non-algorithmic, proof of Theorem 1 is described in [21]; it is also based on double covering techniques. We outline this proof in Section 2.

Two more results were obtained in [21]. It was shown that the dual program (1.6) has a half-integer o.s. whenever p is an integer. Also a strongly polynomial algorithm to find a half-integer o.s. to (1.2) with $H = K_T$ was developed there. However, this algorithm is not "purely combinatorial" as it uses the ellipsoid method.

Recently Goldberg and the author [13] designed two polynomial algorithms for finding a half-integer o.s. to (1.2) with $H = K_T$. Both algorithms are combinatorial and they handle within the original graph G itself rather than double coverings. One of these applies scaling on capacitics, while the other scaling on costs (cf. [11,6] and [33,2] for the min-cost max-flow problem).

- (2.3) Let $e = uv \in EG$ and $u, v \in VG^p$. Then $e \in EG^p$ if and only if, up to permutation of u and v, either (i) $u \in V_s$, $v \in V_s \cup V^{\bullet}$ and $\pi(v) \pi(u) = \ell_e$ for some $s \in T$, or (ii) $u \in V_s$, $v \in V_t$ and $\pi(v) + \ell_c = p$ for some distinct $s \neq T$.
- (2.4) Let $P = (v_0, e_1, v_1, \dots, e_k, v_k)$ be a path in G^p connecting distinct terminals $s = v_0$ and $t = v_k$. Then $P \in \mathcal{P}^p$ if and only if there is $0 \le i < k$ such that $v_0, \dots, v_i \in V_s$; $v_{i+2}, \dots, v_k \in V_t$; $\pi(v_0) < \dots < \pi(v_i)$; $\pi(v_{i+2}) > \dots > \pi(v_k)$; and either $v_{i+1} \in V^*$, or $v_{i+1} \in V_t$ and $\pi(v_{i+1}) > \pi(v_{i+2})$.

Property (2.3) enables us to construct a digraph $\Gamma = (V\Gamma, \Lambda\Gamma)$, the double covering over G^p , as follows. Split each $v \in VG^p$ into 2|T(v)| nodes v_s^1 and v_s^2 $(s \in T(v))$. If $T(v) = \{s\}$, we also denote v_s^i as v^i . The arcs of Γ are assigned as follows:

- (i) each $e = uv \in EG^p$ with $u \in V_s$, $v \in V_s \cup V^\bullet$ and $\pi(u) < \pi(v)$ generates two arcs (u_s^1, v_s^1) and (v_s^2, u_s^2) ;
- (ii) each $e = uv \in EG^p$ with $u \in V_s$ and $v \in V_t$ ($s \neq t$) generates two arcs (u_s^1, v_t^2) ; and (v_t^1, u_s^2) ;
- (iii) each $v \in V^{\bullet}$ generates arcs (v_s^1, v_t^2) for all distinct $s, t \in T(v)$;

see Fig. 3 where $T = \{s, l, q\}$, p = 4, the numbers on edges indicate values of ℓ , and the arcs of Γ are directed up. Arcs in (i) have capacities c_e , and arcs in (iii) have capacities c_e , and arcs in (iii) have capacities of Γ are directed up. Arcs in (i) have capacities in Γ and think of $T^1 = \{s^1 : s \in T\}$ and $T^2 = \{s^2 : s \in T\}$ as the sets of sources and think of respectively. Define $\sigma(v_s^i) = v_s^{3-i}$. This gives a skew symmetry of Γ because for each $D = \{v_s^i, v_t^j\} \in \Lambda\Gamma$, $\{v_t^{3-j}, v_s^{3-j}\}$ is also an arc of Γ , denoted as $\sigma(b)$. We extend σ to

the dipaths of T in a natural way.

The construction of Γ yields a natural mapping ω of $V\Gamma \cup \Lambda\Gamma$ to $VG^p \cup FG^p$; it brings a node v^1_s to v, an arc (y^1_s, z^1_t) as in (ii) to the edge yz, and an arc (v^1_s, v^1_t) as in (iii) to the node v. We extend ω in a natural way to a mapping of the dipaths of Γ into paths of Γ ? From (2.4) one can derive the following key property:

(2.5) (i) for a dipath P in Γ , P and $\sigma(P)$ are disjoint, and $\omega(\sigma(P))$ is reverse to $\omega(P)$;

 G^p . Third, find an integer flow h in Γ with the restrictions $h_b = c_b$ for $b \in A^+$ (such an h must exist). Now an integer decomposition of h determines the desired half-integer multiflow for G.

3. Unbounded fractionality

As mentioned in the Introduction, to prove Theorem 2 it suffices to show that $\varphi(H)=\infty$ for $H=H_1,H_2,H_3$ as in Fig 1. Following [20], we design "bad networks" N=(G,H,c,a) for these H's. Let k be an odd positive integer. Take k disjoint paths $(v_1^i,e_2^i,v_2^i,\ldots,e_{2k}^i,v_{2k}^i),\ i=1,\ldots,k.$ Connect v_j^i and v_j^{i+1} by edge u_j^i for all i,j such that $i-j\equiv 1\pmod 2$. Add nodes s,t,s',t',y,z,y',z' and edges

- (i) sy, tz, s'y', t'z';
- (ii) yv_1^i and zv_{2k}^i for i = 1, ..., k;
- (iii) $y'v_j^1$ for each odd j, and $z'v_j^k$ for each even j, obtaining graph G. Assign the capacity k-1 to the edges s'y', t'z', and 1 to the other edges of G. Assign the edge costs as follows:
 - 0 for tz and e_{2j}^{i} , i, j = 1, ..., k;
 - 1 for all edges u_i^i and the remaining edges e_j^i ;
 - k for s'y', t'z' and the edges as in (ii) and (iii);
 - 2k for sy.

Fig. 4

(See Fig. 4 where k=3 and the numbers on edges indicate non-zero costs.) We identify s,t,s',t' with the corresponding nodes of the graph $H \in \{H_1,H_2,H_3\}$ in question; therefore $\{st,s't'\}\subseteq EH\subseteq \{st,s't',ss',st'\}$.

For i = 1, ..., k, let $P_i(L_i)$ be the simple path going through the nodes $s, y, v_1^i, ..., v_{2k}^i, z, t$ (respectively, $s', y', v_{2i-1}^1, v_{2i}^1, v_{2i}^2, v_{2i-1}^2, ..., v_{2i-1}^{k-1}, v_{2i-1}^k, v_{2i}^k, z', t'$). Assign