
The preflow algorithm for the maximum flow problem

Karzanov’s max-flow algorithm of 1974 given in [1] is based on a concept of pre-
flow introduced there, which is a function on the arcs that may violate, in a certain
way, the flow conservation condition in nonterminal nodes. The algorithm, called the
preflow algorithm (method), takes advantages of handling preflows on intermediate it-
erations (rather than handling flows, as in the previous algorithms), due to which the
running time of the algorithm reduces to O(n3) (compared with O(mn2) for Dinitz’
algorithm [2]); hereinafter n and m are the numbers of nodes and arcs in the input
digraph G = (V (G), A(G)). Subsequently preflows and the idea of push operations
have been widely used in other max-flow algorithms (having the same or smaller run-
ning time), in particular, in Cherkassky’s algorithm [3] (which is slightly faster) and in
Goldberg’s push-relabel algorithm [4] of the same complexity O(n3).

Similar to Dinitz’s algorithm, the preflow algorithm consists of O(n) stages (big
iterations), each solving the following auxiliary problem: find a blocking flow in a
layered network (i.e. a network where all paths from the source to the sink have the
same length; such a network is formed by the nodes and arcs contained in shortest
source-to-sink paths of the residual network w.r.t. the current flow). The preflow
algorithm solves the auxiliary problem in O(n2) time, thus yielding the time bound
O(n3) for the whole algorithm.

In fact, the algorithm of finding a blocking flow given in [1] can be slightly modified
so as to work with an arbitrary acyclic, not necessarily layered, network, and below we
give a description just for this more general situation.

We start with specifying definitions and settings. Consider a network N =
(G, s, t, c), where G = (V,A) is a directed graph, s and t are two distinguished nodes
in G, the source and the sink, respectively, and c : A → R+ is a nonnegative real
function of arc capacities. For a function f : A → R+, the excess of f at a node v ∈ V
is defined to be exf (v) :=

∑
a∈δin(v) f(a)−

∑
a∈δout(v) f(a) (where δin(v) (δout(v)) is the

set of arcs in G entering (resp. leaving) a node v). Then f is a flow from s to t if
f ≤ c (i.e. f(a) ≤ c(a) for each a ∈ A), and f satisfies exf (t) ≥ 0 and exf (v) = 0 for
all v ∈ V − {s, t}. We say that f is a preflow in N if f ≤ c and exf (v) ≥ 0 for all
v ∈ V − {s}. A flow or preflow f is called blocking if any (directed) path from s to t
contains at least one saturated arc a, i.e. such that f(a) = c(a).

Theorem. Let N = (G = (V,A), s, t, c) be an acyclic network. A blocking flow f
from s to t in N can be found in O(n2) time.

Proof. First of all we order the nodes of G topologically, i.e. label them as
v1, . . . , vn so that (vi, vj) ∈ A imply i < j (this takes O(m) time). One may assume
that s = v1, t = vn, and each arc lies on an s–t path and has nonzero capacity.

The algorithm iteratively handles a preflow f : A → R+. For each node v ∈ V , the
following data are explicitly maintained:

(i) The excess ex(v) = exf (v).

(ii) A (double-linked) list Out(v). It is formed by the arcs of G leaving v (each arc
occurs in the list exactly once). Each arc e can be either scanned or unscanned. If e
is unscanned, then f(e) = 0. One arc in this list is distinguished, called active and
denoted by ẽv. The following condition holds:
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(C1) all arcs of Out(v) before ẽv are scanned, while all arcs after ẽv are unscanned (the
arc ẽv itself may be either scanned or not).

Also some arcs in Out(v) can be labeled as “frozen” (the meaning will be clear later).

(iii) A stack In(v) (to work with on the “last come first serve” basis). Its elements
are pairs (e,∆), where e is an arc entering v and ∆ is a nonnegative real. Each arc e
entering v may occur in this stack once or several times or it may not occur there at
all, and the sum of numbers ∆ over the pairs (e,∆) with the same e is equal to f(e).
In particular, if e does not occur in In(v), then f(e) = 0.

The algorithm starts with the function f such that f(e) = c(e) for all arcs e leaving
the source s, and f(e) = 0 otherwise (in the latter case e is unscanned). Accordingly,
for each arc e = (s, v), the pair (e, f(e)) is inserted (as a unique element) in the stack
In(v). The initial stacks In(v′) for the remaining nodes v′ are empty. Clearly f is a
blocking preflow.

The algorithm alternates “pushing” and “balancing” iterations. Although the first
iteration is “pushing”, it is more convenient for us (and more enlightening) to start
with describing a “balancing” iteration.

Balancing. We assume that at the moment of beginning a “balancing” iteration,
the following condition holds:

(C2) f is a blocking preflow; moreover, for each node v with exf (v) > 0, any v–t path
contains a saturated arc e.

Using the topological order on V , we find the node v = vi ̸= t such that exf (v) > 0
and exf (vj) = 0 for j = i+1, . . . , n−1. If such a node does not exist, then f is already
a blocking flow, and the algorithm terminates.

We perform “balancing” at this v so as to reduce the excess at it to zero. To
do so, we use the stack In(v) and decrease the numbers ∆ there step by step in a
natural way. More precisely, take the last (chronologically) member (e,∆) of In(v)
and let δ := min{∆, exf (v)}. Update f(e) := f(e) − δ, ∆(e) := ∆(e) − δ, and
ex(v) := ex(v) − δ. If the new ∆(e) becomes 0, we handle the previous pair (e′,∆)
in In(v) is a similar way (whenever ex(v) is still nonzero), and so on. Eventually, we
obtain f with exf (v) = 0.

All arcs of G entering v are labeled as “frozen” (which means that the function f
on such arcs should not be changed on subsequent iterations).

Pushing. Note that after performing a balancing iteration, the current function
f is a preflow and, moreover, a blocking preflow (which can be easily checked), but the
second condition in (C2) need not hold. A “pushing” iteration increases f on certain
arcs and restores validity of (C2). Recall that the first iteration in the algorithm is
“pushing” as well.

We scan the nodes in the increasing order, starting with v2 (where v1 = s). Every
time we meet a node v = vi with exf (v) > 0 (for a current f), we try to reduce the
excess at v as much as possible by increasing f on appropriate arcs leaving v. (Note
that a growth of f at an arc (v, u) increases the excess at u (which may be zero before).
However, since u = vj for some j > i, the node u will be scanned on a subsequent step
of this iteration.)

More precisely, we take the active arc ẽv and do the following:
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(P) starting from ẽv, we scan step by step the (unscanned) arcs in Out(v) skipping
the “frozen” arcs (if they exist); when scanning a current arc e = (v, u) (which is
made “active” at this moment), we increase f(e) as much as possible, i.e. letting
δ := min{c(e)−f(e), exf (v)}, we update f(e) := f(e)+δ and ex(v) := ex(v)−δ,
and accordingly insert the pair (e, δ) in the stack In(u).

We stop as soon as either the list Out(v) terminates, or the excess at v becomes zero.
In the former case, all arcs in Out(v) are saturated or “frozen” (and the active arc is
formally the last arc), and in the latter case, the current arc e = (v, u) becomes active,
the arcs before e are saturated or “frozen”, and the arcs after e remain unscanned.

After scanning v = vi, we repeat the procedure with the next vertex v′ = vj (j > i)
where the excess w.r.t. the current f is positive. And so on (until we reach the sink t).
One can see that the number of operations during a “pushing” iteration is O(n + q),
where q is the number of (new) arcs that become saturated at the iteration plus the
number of “frozen” arcs skipped when scanning the lists Out(v).

The following fact is easy.

Lemma 1. After performing a “pushing” iteration, the obtained f satisfies (C2).

This implies that the next “balancing” iteration has a correct input, and the whole
process of alternating “pushing” and “balancing” iterations is well-defined. The key
observation is as follows.

Lemma 2. Suppose a node v = vi is handled at some “balancing” iteration. Then
for any arc e incident to v, the value f(e) is not changed on subsequent iterations.

Proof. This relies on the fact that at the moment of balancing f at v, one has
exf (vj) = 0 for j = i + 1, . . . , n− 1. Analyzing the algorithm and using this fact, one
can realize that for any subsequent function f ′ and for any arc e′ incident to vj, the
value f ′(e′) cannot be less than f(e). In particular, f ′(e) ≥ f(e) for each e leaving v.

On the other hand, since all arcs entering v becomes “frozen”, the value of a sub-
sequent function f ′ on an arc e cannot be greater than f(e).

This implies that f preserves on the arcs incident to v (in view of exf (v) = 0).

As a result, any node can be balanced at most once, implying that the number
of iterations is O(n). Also if an arc e = (u, v) becomes saturated, the number of
subsequent operations involving e is O(1) (a possible operation is a decrease of f(e)
during balancing v, after which e becomes “frozen” and it can be scanned once during
pushing from u).

Thus, using the above-mentioned bound O(n + q) for one “pushing” iteration, we
can conclude that to perform all “pushing” iterations takes O(n2 +m) time. A similar
bound is valid for all “balancing” iterations taken together.

Thus, the algorithm runs in O(n2 +m) time, yielding the theorem.

References

[1] A.V. Karzanov, Determining a maximal flow in a network by the method of pre-
flows, Doklady Akademii Nauk SSSR, 215, 1974, 49–52, in Russian. (English
translation in Soviet Math. Dokl., 15, No.2, 1974, 434–437.)

3



[2] E.A. Dinic, Algorithm for solution of a problem of maximum flow with power esti-
mation, Doklady Akademii Nauk SSSR, 194, 1970, 754–757, in Russian. (English
translation in Soviet Math. Dokl., 11, 1970, 1277–1280.)

[3] B.V. Cherkassky, Algorithm for construction of maximal flow in networks with
complexity of (O(n2√p) operations, In: Mathematical Methods in Economical
Research, issue 7, Nauka, Moscow, 1977, pp. 117–126.

[4] A.V. Goldberg, A new max-flow algorithm, Technical Report MIT/LCS/TM-291,
Cambridge, 1985.

4


