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Abstract

For the ordered set [n] of n elements, we consider the class Bn of bases B of tropical Plücker functions
on 2[n] such that B can be obtained by a series of so-called weak flips (mutations) from the basis formed by
the intervals in [n]. We show that these bases are representable by special wiring diagrams and by certain
arrangements generalizing rhombus tilings on an n-zonogon. Based on the generalized tiling representation,
we then prove that each weakly separated set-system in 2[n] having maximum possible size belongs to Bn,
yielding the affirmative answer to one conjecture due to Leclerc and Zelevinsky. We also prove an analogous
result for a hyper-simplex �m

n = {S ⊆ [n]: |S| = m}.
© 2009 Elsevier Inc. All rights reserved.

MSC: 05C75; 05E99

Keywords: Plücker relations; Octahedron recurrence; Wiring diagram; Rhombus tiling; TP-mutation; Weakly separated
sets

1. Introduction

For a positive integer n, let [n] denote the ordered set of elements 1,2, . . . , n. In this paper we
consider a certain “class” Bn ⊆ 22[n]

. The collections (set-systems) B ⊆ 2[n] constituting Bn have
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equal cardinalities |B|, and for some pairs of collections, one can be obtained from the other by
a single “flip” (or “mutation”) that consists in exchanging a pair of elements of a very special
form in these collections. The class we deal with arises, in particular, in a study of bases of so-
called tropical Plücker functions (this seems to be the simplest source; one more source will be
indicated later). For this reason, we may liberally call Bn along with mutations on it a Plücker
environment.

More precisely, let f be a real-valued function on the subsets of [n], or on the Boolean cube
2[n]. Following [1], f is said to be a tropical Plücker function, or a TP-function for short, if it
satisfies

f (Xik) + f (Xj) = max
{
f (Xij) + f (Xk),f (Xi) + f (Xjk)

}
(1.1)

for any triple i < j < k in [n] and any subset X ⊆ [n]−{i, j, k}. Throughout, for brevity we write
Xi′ . . . j ′ for X∪{i′}∪· · ·∪{j ′}. For sets A,B , A−B stands for the set difference {e: A � e /∈ B}.

The set of TP-functions on 2[n] is denoted by T Pn.

Definition. A collection B ⊆ 2[n] is called a TP-basis, or simply a basis, if the restriction map
res : T P n → RB is a bijection. In other words, each TP-function is determined by its values
on B , and moreover, values on B can be chosen arbitrarily.

Such a basis does exist and the simplest instance is the set In of all intervals {p,p + 1, . . . , q}
in [n] (including the empty set); see, e.g., [2]. In particular, the dimension of the polyhedral conic
complex T P n is equal to |In| =

(
n+1

2

) + 1. The basis In is called standard.
(Note that the notion of a TP-function is extended to other domains, of which most popular

are an integer box Bn,a := {x ∈ Z[n]: 0 � x � a} for a ∈ Z[n] and a hyper-simplex �m
n := {S ⊆

[n]: |S| = m} for m ∈ Z (in the latter case, (1.1) should be replaced by a relation with quadruples
i < j < k < �). Aspects involving TP-bases or related objects are encountered in [1,5,9,10,12–
14] and some other works. Generalizing some earlier known examples, [2] constructs a TP-
basis for a “truncated integer box” {x ∈ Bn,a : m � x1 + · · · + xn � m′}, where 0 � m � m′ �
a1 + · · ·+ an. The domains different from Boolean cubes are beyond the main part of this paper;
they will appear in Section 10 and Appendix A.)

One can see that for a basis B , the collection {[n]−X: X ∈ B} forms a basis as well, called the
complementary basis of B and denoted by co-B . An important instance is the collection co-In

of co-intervals in [n].
Once we are given a basis B (e.g., the standard one), we can produce more bases by mak-

ing a series of elementary transformations relying on (1.1). More precisely, suppose there is a
cortege (X, i, j, k) such that the four sets occurring in the right-hand side of (1.1) and one set
Y ∈ {Xj,Xik} in the left-hand side belong to B . Then the replacement in B of Y by the other
set Y ′ in the left-hand side results in a basis B ′ as well (and we can further transform the latter
basis in a similar way). The basis B ′ is said to be obtained from B by the flip (or mutation) with
respect to X, i, j, k. When Xj is replaced by Xik (thus increasing the total size of sets in the
basis by 1), the flip is called raising. When Xik is replaced by Xj , the flip is called lowering.
We sometimes write j � ik and ik � j for such flips. The standard basis In does not admit
lowering flips, whereas its complementary basis co-In does not admit raising flips.

We now distinguish between two sorts of flips in another way, which inspire consideration of
two classes of bases.
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Definitions. For a TP-basis B and a cortege (X, i, j, k) as above, we say that the flip j � ik

or ik � j is weak. If, in addition, both sets X and Xijk belong to B as well, the flip is called
strong. (The former (latter) is also called a “flip in the presence of four (resp. six) witnesses,” by
terminology in [9].) A basis is called normal (by terminology in [2]) if it can be obtained by a
series of strong flips starting from In. A basis is called semi-normal if it can be obtained by a
series of weak flips starting from In.

Leclerc and Zelevinsky [9] showed that the normal bases (in our terminology) are exactly the
collections C ⊆ 2[n] of maximum possible size |C| that possess the strong separation property
(defined later). Also the class of normal bases admits a nice “graphical” characterization, even
for a natural generalization to the integer boxes (see [2,4]): such bases one-to-one correspond to
the rhombus tilings on a related zonogon.

Let Bn denote the set of semi-normal TP-bases for the Boolean cube 2[n]; this set (together
with weak flips on its members) is just the Plücker environment of our interest mentioned at the
beginning. Note that it is still open at present whether there exists a non-semi-normal (or “wild”)
TP-basis; we conjecture that there is none.

The first goal of this paper is to characterize Bn. We give two characterizations for semi-
normal bases: via a bijection to special collections of curves, that we call proper wirings, and
via a bijection to certain graphical arrangements, that we call generalized tilings, or g-tilings for
short (in fact, these characterizations are interrelated via planar duality). We associate to a proper
wiring W (a g-tiling T ) a certain collection of subsets of [n] called its spectrum. It turns out that
proper wirings and g-tilings are rigid objects, in the sense that any of these is determined by its
spectrum.

(By a general wiring we mean a set of n directed non-self-intersecting curves w1, . . . ,wn on
a disc D in the plane such that: wi begins at a point si and ends at a point s′

i , and the points
s1, . . . , sn, s

′
1, . . . , s

′
n are different and occur in this order in the boundary of D. A special wiring

W that we deal with is, in fact, a certain generalization of the so-called “pseudo-line arrange-
ment” associated with a reduced word of the longest permutation on [n] (see [1] for definitions).
Such a W is defined by three axioms (W1)–(W3). Axiom (W1) is standard, it says that W pre-
serves (topologically) under small deformations, i.e., no three wires have a common point, any
two wires meet at a finite number of points and they cross, not touch, at each of these points.
(W2) says that the common points of wi,wj follow in the opposed orders along these wires
(such an axiom is stated in [10] for a somewhat different sort of wirings, arising in connection
with set-systems in a hyper-simplex �m

n ; see also [12]). The crucial axiom (W3) says that in the
planar graph induced by W , there is a certain bijection between the faces (“chambers”) whose
boundary is a directed cycle and the regions (“lenses”) surrounded by pieces of two wires be-
tween their consecutive common points. W is called proper if none of “cyclic” faces is a whole
lens. The spectrum of W is the collection of subsets X ⊆ [n] associated to the “non-cyclic”
faces F , where X consists of the elements i such that F “lies on the left” from the wire wi , by
the direction of wi .

When any two wires intersect exactly once, W is equivalent to a pseudo-line arrangement
mentioned above (more precisely, to a “commutation class” of these objects). In this case the
dual planar graph is representable by a rhombus tiling (for a more general result of this sort,
see [6]). The construction of a g-tiling is more sophisticated.)

The characterization of semi-normal bases via generalized tilings helps us to answer one
conjecture of Leclerc and Zelevinsky concerning weakly separated set-systems; this is the sec-
ond goal of our work. Recall corresponding definitions from [9], using slightly different binary
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relations on sets. Let X,Y ⊆ [n]. We write X � Y if Y − X 	= ∅ and i < j holds for any
i ∈ X − Y and j ∈ Y − X. We write X � Y if Y − X has a (unique) bipartition {Y1, Y2} such
that Y1, Y2,X − Y 	= ∅ and Y1 � X − Y � Y2. (These relations need not be transitive in gen-
eral. For example, 13 � 23 � 24 but 13 	� 24, where 13 stands for {1,3}, and so on. Similarly,
346 � 256 � 157 but 346 � 157.)

Definitions. Sets X,Y ⊆ [n] are called weakly separated if either X �Y , or Y �X, or X�Y and
|X| � |Y |, or Y � X and |Y | � |X|, or X = Y . If merely either X � Y or Y � X or X = Y takes
place, the sets X,Y are called strongly separated. Accordingly, a collection C ⊆ 2[n] is called
weakly (strongly) separated if any two members of C are weakly (resp. strongly) separated.

We will abbreviate the term “weakly separated collection” to “ws-collection.” (As is seen from
a discussion in [9], an interest in studying ws-collections is inspired, in particular, by the problem
of characterizing all families of quasicommuting quantum flag minors, which in turn comes from
exploration of Lusztig’s canonical bases for certain quantum groups. It is proved in [9] that, in an
n × n generic q-matrix, the flag minors with column sets I, J ⊆ [n] quasicommute if and only if
the sets I, J are weakly separated. See also [8].)

Important properties shown in [9] are that any ws-collection C ⊆ 2[n] has cardinality at most(
n+1

2

) + 1 and that the set of such collections is closed under weak flips (which are defined
as for TP-bases above). Let Cn denote the set of largest ws-collections in [n], i.e., having size
exactly

(
n+1

2

) + 1. It turns into a poset by regarding C as being less than C′ if C can be obtained
from C′ by a series of weak lowering flips. This poset contains In and co-I as minimal and
maximal elements, respectively, and it is conjectured in [9, Conjecture 1.8] that there are no
other minimal and maximal elements in it. This would imply that Cn coincides with Bn. We
prove this conjecture.

The main results in this paper are summarized as follows.

Theorem A (Main). For B ⊆ 2[n], the following statements are equivalent:

(i) B is a semi-normal TP-basis;
(ii) B is the spectrum of a proper wiring;

(iii) B is the spectrum of a generalized tiling;
(iv) B is a largest weakly separated collection.

The paper is organized as follows. Section 2 contains basic definitions and states two results
involved in Theorem A. It introduces the notions of proper wirings and generalized tilings, claims
the equivalence of (i) and (ii) in the above theorem (Theorem 2.1) and claims the equivalence
of (i) and (iii) (Theorem 2.2). Section 3 describes some “elementary” properties of g-tilings that
will be used later. The combined proof of Theorems 2.1 and 2.2 consists of four stages and is
lasted throughout Sections 4–7. In fact, g-tilings are the central objects of treatment in the paper;
we take advantages from their nice graphical visualization and structural features, and all im-
plications that we explicitly prove involve just g-tilings. (Another preference of g-tilings is that
they admit “local” defining axioms; see Remark 1 in Section 3.) Implication (i) → (iii) in The-
orem A is proved in Section 4, (iii) → (i) in Section 5, (iii) → (ii) in Section 6, and (ii) → (iii)
in Section 7. In fact, Section 5 shows that if the spectrum B of a g-tiling is different from In,
then B admits a lowering weak flip. Section 8 establishes important interrelations between g-
tilings in dimensions n and n − 1 (giving, as a consequence, a relation between the classes Bn
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and Bn−1). Here we describe two operations, called the n-contraction and n-expansion; the for-
mer canonically transforms a g-tiling for n into one for n − 1, and the latter is applied to a pair
consisting of a g-tiling for n − 1 and a certain path in it and transforms this pair into a g-tiling
for n. These operations are essentially used in Section 9 where we prove (iv) → (iii) by induc-
tion on n, thus answering Leclerc–Zelevinsky’s conjecture mentioned above. This completes the
proof of Theorem A, taking into account that (i) → (iv) was established in [9]. Section 10 dis-
cusses two generalizations of our theorems: to an integer box and to an arbitrary permutation
on [n]. In Appendix A we show that the equivalence (i) ↔ (iv) as in Theorem A is valid when,
instead of TP-bases and largest ws-collections in 2[n], one considers a natural class of bases of
tropical Plücker functions on a hyper-simplex �m

n and the ws-collections of maximum possible
cardinality in �m

n .
It should be noted that some methods, constructions and results presented in this paper are

essentially used in the sequel [3] where we prove that any inclusion-wise maximal ws-collection
in 2[n] is a largest one and generalize this to ws-collections concerning an arbitrary permutation
on [n], thus answering another conjecture raised in [9].

2. Wirings and tilings

Throughout the paper we assume that n > 1. This section gives precise definitions of the
objects that we call proper wiring and generalized tiling diagrams. Such diagrams live within a
zonogon, which is defined as follows.

In the upper half-plane R × R+, take n non-colinear vectors ξ1, . . . , ξn so that:

(2.1) (i) ξ1, . . . , ξn follow in this order clockwise around (0,0), and
(ii) all integer combinations of these vectors are different.

Then the set

Z = Zn := {λ1ξ1 + · · · + λnξn: λi ∈ R, 0 � λi � 1, i = 1, . . . , n}

is a 2n-gone. Moreover, Z is a zonogon, as it is the sum of n line-segments {λξi : 1 � λ � 1}, i =
1, . . . , n. Also it is the image by the linear projection π of the solid cube conv(2[n]) into the plane
R2, defined by π(x) = x1ξ1 + · · · + xnξn. The boundary bd(Z) of Z consists of two parts: the
left boundary �bd(Z) formed by the points (vertices) z�

i := ξ1 +· · ·+ ξi (i = 0, . . . , n) connected
by the line-segments z�

i−1z
�
i := z�

i−1 + {λξi : 0 � λ � 1}, and the right boundary rbd(Z) formed
by the points zr

i := ξi+1 + · · · + ξn (i = 0, . . . , n) connected by the segments zr
i z

r
i−1. So z�

0 = zr
n

is the minimal vertex of Z, denoted as z0, and z�
n = zr

0 is the maximal vertex, denoted as zn. We
direct each segment z�

i−1z
�
i from z�

i−1 to z�
i and direct each segment zr

i z
r
i−1 from zr

i to zr
i−1. Then

�bd(Z) and rbd(Z) can be regarded as directed paths going from z0 to zn. Let si (resp. s′
i ) denote

the median point of the segment z�
i−1z

�
i (resp. zr

i z
r
i−1).

When it is not confusing, a subset X ⊆ [n] is identified with the corresponding vertex of the
n-cube and with the point

∑
i∈X ξi in the zonogon Z (and we will usually use capital letters to

emphasize that a vertex (or a point) is considered as a set). Due to (2.1)(ii), all such points in Z

are different.
Although the generalized tiling model will be used much more extensively later on, we prefer

to start with describing the special wiring model, which looks more transparent.
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2.1. Wiring diagrams

A special wiring diagram, also called a W-diagram or a wiring for brevity, is an ordered
collection W of n wires w1, . . . ,wn satisfying three axioms below. A wire wi is a continuous
injective map of the segment [0,1] into Z (or the curve in the plane represented by this map)
such that wi(0) = si , wi(1) = s′

i , and wi(λ) lies in the interior of Z for 0 < λ < 1. We say that
wi begins at si and ends at s′

i , and direct wi from si to s′
i . The diagram W is considered up to a

homeomorphism of Z stable on bd(Z), and up to parameterizations of the wires. Axioms (W1)–
(W3) specify W as follows.

(W1) No three different wires wi,wj ,wk have a common point, i.e., there are no λ,λ′, λ′′ such
that wi(λ) = wj(λ

′) = wk(λ
′′). Any two different wires wi,wj intersect at a finite number

of points, and at each of their common points v, the wires cross, not touch (i.e., when
passing v, the wire wi goes from one connected component of Z − wj to the other).

(W2) For 1 � i < j � n, the common points of wi,wj follow in opposed orders along these
wires, i.e., if wi(λq) = wj(λ

′
q) for q = 1, . . . , r and if λ1 < · · · < λr , then λ′

1 > · · · > λ′
r .

Since the order of si , sj in �bd(Z) is different from the order of s′
i , s

′
j in rbd(Z), wires wi,wj

always intersect; moreover, the number r = rij of their common points is odd. Assuming that
i < j , we denote these points as xij (1), . . . , xij (r) following the direction of wi from wi(0)

to wi(1). When r > 1, the (bounded) region in the plane surrounded by the pieces of wi,wj

between xij (q) and xij (q + 1) (where q = 1, . . . , r − 1) is denoted by Lij (q) and called the q-th
lens for wi,wj . The points xij (q) and xij (q + 1) are regarded as the lower and upper points of
Lij (q), respectively. When q is odd (even), we say that Lij (q) is an odd (resp. even) lens. Note
that at each point xij (q) with q odd the wire with the bigger number, namely, wj , crosses the
wire with the smaller number (wi ) from left to right w.r.t. the direction of the latter; we call such
a point white (or orientation-preserving). In contrast, when q is even, wj crosses wi at xij (q)

from right to left. In this case, which will be of especial interest for us, we call xij (q) black (or
orientation-reversing) and say that this point is the root of the lenses Lij (q − 1) and Lij (q). In
the simplest case, when any two distinct wires intersect exactly once, there are no lenses at all
and all intersection points for W are white. (The adjectives “white” and “black” for intersection
points of wires match terminology that we will use for corresponding elements of tilings.)

The wiring W is associated, in a natural way, with a planar directed graph GW embedded
in Z. The vertices of GW are the points z�

i , z
r
i , si , s

′
i and the intersection points of wires. The

edges of GW are the corresponding directed line-segments in bd(Z) and the pieces of wires
between neighboring points of intersection with other wires or with the boundary, which are
directed according to the direction of wires. We say that an edge contained in a wire wi has
color i, or is an i-edge. Let FW be the set of inner (bounded) faces of GW . Here each face F is
considered as the closure of a maximal connected component in Z − ⋃

(w ∈ W). We say that a
face F is cyclic if its boundary bd(F ) is a directed cycle in GW .

(W3) There is a bijection φ between the set L(W) of lenses in W and the set F cyc
W of cyclic faces

in GW . Moreover, for each lens L, φ(L) is the (unique) face lying in L and containing its
root.

We say that W is proper if none of cyclic faces is a whole lens, i.e., for each lens L ∈ L(W),
there is at least one wire going across L. An instance of proper wirings for n = 4 is illustrated in
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the picture; here the cyclic faces are marked by circles and the unique black point is indicated by
the black rhombus.

Now we associate to W a set-system BW ⊆ 2[n] as follows. For each face F , let X(F) be the
set of elements i ∈ [n] such that F lies on the left from the wire wi , i.e., F and the maximal point
z�
n lie in the same of the two connected components of Z − wi . We define

BW := {
X ⊆ [n]: X = X(F) for some F ∈ FW − F cyc

W

}
,

referring to it as the effective spectrum, or simply the spectrum of W . Sometimes it will also be
useful to consider the full spectrum B̂W consisting of all sets X(F), F ∈ FW . (In fact, when W is
proper, all sets in B̂W are different; see Lemma 7.2. When W is not proper, different faces F,F ′
with X(F) = X(F ′) always exist. We can turn such a W into a proper wiring W ′ by getting
rid, step by step, of lenses forming faces (by making a series of Reidemeister moves of type II,
namely, )( →)( operations). This preserves the effective spectrum: BW ′ = BW , whereas the full
spectrum may decrease.)

Note that when any two wires in W intersect at exactly one point (i.e., when no black points
exist), BW is a normal basis, and conversely, any normal basis is obtained in this way. Such a
W one-to-one corresponds to a commutation class of pseudo-line arrangements for the longest
permutation ω0 on [n] and BW is a largest strongly separated collection, as is shown in [9]; for
definitions and a discussion, see also [1,7].

Our main result on wirings is the following

Theorem 2.1. For any proper wiring W (obeying (W1)–(W3)), the spectrum BW is a semi-normal
TP-basis. Conversely, for any semi-normal TP-basis B , there exists a proper wiring W such that
BW = B .

This theorem will be obtained in Sections 6–7.

2.2. Generalized tilings

Assuming that the vectors ξi have the same Euclidean norm, a rhombus tiling diagram is a
subdivision T of Z into rhombi of the form x + {λξi + λ′ξj : 0 � λ,λ′ � 1} for some i < j and
a point x in Z, i.e., the rhombi are pairwise non-overlapping (have no common interior points)
and their union is Z. From (2.1)(ii) it follows that for each rhombus in T determined by x, i, j

as above, x represents a subset in [n] − {i, j}. We associate to T the directed planar graph GT

whose vertices and edges are, respectively, the points and line-segments occurring as vertices and
sides in the rhombi in T (not counting multiplicities). An edge connecting X and Xi is directed



8 V.I. Danilov et al. / Advances in Mathematics 224 (2010) 1–44
from the former to the latter; such an edge (parallel to ξi ) is called an edge of color i, or an
i-edge. It is shown in [2,4] that the vertex set of T forms a normal basis and that each normal
basis is obtained in this way.

In fact, it makes no difference whether we take vectors ξ1, . . . , ξn with equal or arbitrary norms
(subject to (2.1)); to simplify technical details and visualization, we will assume throughout
the paper that these vectors have unit height, i.e., each ξi is of the form (a,1). This leads to
a subdivision T of Z into parallelograms of height 2, and for convenience we refer to T as a
(pure) tiling and to its elements as tiles. A tile τ determined by X, i, j (with i < j ) is called an
ij -tile at X and denoted by τ(X; i, j). The edge from b(τ) to �(τ) is denoted by b�(τ), and the
other three edges of τ are denoted as br(τ ), �t (τ ), rt(τ ) in a similar way. According to a natural
visualization of τ , its vertices X,Xi,Xj,Xij are called the bottom, left, right, top vertices of τ

and denoted by b(τ), �(τ), r(τ ), t (τ ), respectively. Also we say that: a point (subset) Y ⊆ [n]
is of height |Y |; the set of vertices of height h in GT forms h-th level; and a point Y lies on the
right from a point Y ′ if Y,Y ′ have the same height and

∑
i∈Y ξi �

∑
i∈Y ′ ξi .

In a generalized tiling, or a g-tiling, some tiles may overlap. It is a collection T of tiles
τ(X; i, j) which is partitioned into two subcollections T w and T b , of white and black tiles,
respectively, obeying axioms (T1)–(T4) below. When T b = ∅, we will obtain a pure tiling. As
before, we associate to T the directed graph GT = (VT ,ET ), where VT and ET are the sets of
vertices and edges, respectively, occurring in tiles of T .

For a vertex v ∈ VT , the set of edges incident with v is denoted by ET (v), and the set of tiles
having a vertex at v is denoted by FT (v).

(T1) Each boundary edge of Z belongs to exactly one tile. Each edge in ET not contained in
bd(Z) belongs to exactly two tiles. All tiles in T are different, in the sense that no two
coincide in the plane.

(T2) Any two white tiles having a common edge do not overlap, i.e., they have no common
interior point. If a white tile and a black tile share an edge, then these tiles do overlap. No
two black tiles share an edge.

See the picture; here all edges are directed up and the black tiles are drawn in bold.

(T3) Let τ be a black tile. None of b(τ), t (τ ) is a vertex of another black tile. All edges in
ET (b(τ)) leave b(τ), i.e., they are directed from b(τ). All edges in ET (t (τ )) enter t (τ ),
i.e., they are directed to t (τ ).

We refer to a vertex v ∈ VT as a terminal one if v is the bottom or top vertex of some black
tile. A nonterminal vertex v is called ordinary if all tiles in FT (v) are white, and mixed otherwise
(i.e. v is the left or right vertex of some black tile). Note that a mixed vertex may belong, as the
left or right vertex, to several black tiles.

Each tile τ ∈ T corresponds to a square in the solid cube conv(2[n]), denoted by σ(τ):
if τ = τ(X; i, j) then σ(τ) is the convex hull of the points X,Xi,Xj,Xij in the cube (so
π(σ(τ)) = τ ). Axiom (T1) implies that the interiors of these squares are pairwise disjoint, and
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that
⋃

(σ (τ ): τ ∈ T ) forms a 2-dimensional surface, denoted by DT , whose boundary is the
preimage by π of the boundary of Z. Note that the vertices in bd(DT ) correspond to the prin-
cipal intervals ∅, [q] and [q..n], q = 1, . . . , n, where for 1 � p � r � n, we denote the interval
{p,p + 1, . . . , r} by [p..r]. The last axiom is:

(T4) DT is a disc, i.e., it is homeomorphic to {x ∈ R2: x2
1 + x2

2 � 1}.

The reversed g-tiling T rev of a g-tiling T is formed by replacing each tile τ(X; i, j) of T by
the tile τ([n] − Xij ; i, j) (or, roughly speaking, by changing the orientation of all edges in ET ,
in particular, in bd(Z)). Clearly (T1)–(T4) remain valid for T rev.

The effective spectrum, or simply the spectrum, of a g-tiling T is the collection BT of (the
subsets of [n] represented by) nonterminal vertices in GT . The full spectrum B̂T is formed by
all vertices in GT . An example of g-tilings for n = 4 is drawn in the picture, where the unique
black tile is indicated by thick lines and the terminal vertices are surrounded by circles (this
corresponds to the wiring shown on the previous picture).

Our main result on g-tilings is the following

Theorem 2.2. For any generalized tiling T (obeying (T1)–(T4)), the spectrum BT is a semi-
normal TP-basis. Conversely, for any semi-normal TP-basis B , there exists a generalized tiling
T such that BT = B .

(In particular, the cardinalities of the spectra of all g-tilings on Zn are the same and equal
to

(
n+1

2

) + 1.) The first part of this theorem will be proved in Section 5, and the second one in
Section 4.

We will explain in Section 7 that for each semi-normal basis B , there are precisely one proper
wiring W and precisely one g-tiling T such that BW = BT = B (see Theorem 7.5); this is similar
to the one-to-one correspondence between the normal bases and pure tilings.

In what follows, when it is not confusing, we may speak of a vertex or edge of GT as a vertex
or edge of T . The map σ of the tiles in T to squares in conv(2[n]) is extended, in a natural way,
to the vertices, edges, subgraphs or other objects in GT . Note that the embedding of σ(GT ) in
the disc DT is planar (unlike GT and Z, in general), i.e., any two edges of σ(GT ) can meet only
at their end points. It is convenient to assume that the clockwise orientations on Z and DT are
agreeable, in the sense that the image by σ of the boundary cycle (z0, z

�
1, . . . , z

�
n, z

r
1, . . . , z

r
n = z0)

is oriented clockwise around the interior of DT . Then the orientations on a tile τ ∈ T and on the
square σ(τ) are consistent when τ is white, and different when τ is black.
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3. Elementary properties of generalized tilings

In this section we give additional definitions and notation and demonstrate several conse-
quences from axioms (T1)–(T4) which will be used later on. Let T be a g-tiling on Z = Zn.

1. Let us say that the edges of T occurring in black tiles (as side edges) are black, and the
other edges of T are white. For a vertex v and two edges e, e′ ∈ ET (v), let Θ(e, e′) denote the
cone (with angle < π ) in the plane pointed at v and generated by these edges (ignoring their
directions). When another edge e′′ ∈ ET (v) (a tile τ ∈ FT (v)) is contained in Θ(e, e′), we say
that e′′ (resp. τ ) lies between e and e′. When these e, e′ are edges of a tile τ , we also write
Θ(τ ;v) for Θ(e, e′) (the conic hull of τ at v), and denote by θ(τ, v) the angle of this cone taken
with sign + if τ is white, and sign − if τ is black. The sum

∑
(θ(τ, v): τ ∈ FT (v)) is denoted

by θ(v) and called the full angle at v. Axioms (T1)–(T3) show that terminal vertices behave as
follows.

Corollary 3.1. Let v be a terminal vertex belonging to a black ij -tile τ . Then:

(i) v is not connected by edge with any other terminal vertex of T ; therefore, ET (v) contains
exactly two black edges, namely, those belonging to τ ;

(ii) ET (v) contains at least one white edge and all such edges e, as well as all tiles in FT (v),
lie in the cone Θ(τ ;v); in particular, e is a q-edge with i < q < j ;

(iii) θ(v) = 0;
(iv) v does not belong to the boundary of Z; in particular, each boundary edge e of Z, as well

as the tile containing e, is white.

Indeed, since each edge of GT belongs to some tile, at least one of its end vertices has both
entering and leaving edges, and therefore (by (T3)), this vertex cannot be terminal (yielding (i)).
Next, if |ET (v)| = 2, then FT (v) would consist only of the tile τ and its white copy; this is not
the case by (T1). Assume that v = t (τ ). Then v is the top vertex of all tiles in FT (v) (by (T3)).
This together with the facts that all tiles in FT (v) − {τ } are white and that any two white tiles
sharing an edge do not overlap (by (T2)) implies (ii) and (iii). When v = b(τ), the argument is
similar. Finally, v cannot be a boundary vertex z�

k or zr
k for k 	= 0, n since the latter vertices have

both entering and leaving edges. In case v = z0, the tile τ would contain both boundary edges
z0z

�
1 and z0z

r
n−1 (in view of (iii)). But then the white tile sharing with τ the edge rt(τ ) would

trespass the boundary of Z, which is impossible. The case v = z�
n is impossible for a similar

reason. This yields (iv).
In view of (ii) in this corollary, we have:

(3.1) if a black ij -tile τ and a white tile τ ′ share an edge e, then: (a) either b�(τ) = b�(τ ′) or
br(τ ) = br(τ ′) or �t (τ ) = �t (τ ′) or rt(τ ) = rt(τ ′); (b) τ ′ is either an iq-tile or a qj -tile for
some i < q < j ; and (c) τ lies in the cone Θ(τ ′;w), where w is the nonterminal vertex
of e.

2. The following lemma specifies the full angle at nonterminal vertices.
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Lemma 3.2. Let v be a nonterminal vertex of T .

(i) If v belongs to bd(Z), then θ(v) is equal to the (positive) angle between the boundary edges
incident to v.

(ii) If v is inner (i.e., not in bd(Z)), then θ(v) = 2π .

Proof. (i) For v ∈ bd(Z), let e, e′ be the boundary edges incident to v, where e,Z, e′ follow
clockwise around v. Consider the maximal sequence S = (e = e0, τ1, e1, . . . , τr , er ) of edges in
ET (v) and tiles in FT (v) such that for q = 1, . . . , r , eq−1 and eq are distinct edges of the tile τq ,
and τq 	= τq+1 (when q < r). Using (3.1), one can see that all tiles in S are different and give
the whole FT (v); also er = e′ and the tiles τ1, τr are white. For each q , the ray at v containing
eq is obtained by rotating the ray at v containing eq−1 by the angle θ(τq, v) (where the rotation
is clockwise if the angle is positive). Summing the angles at v over the tiles in S, we obtain the
angle of e, e′.

To show (ii), let V := VT and E := ET . Also denote the set of terminal vertices by V t , and
the set of inner nonterminal vertices by V̂ . Since the boundary of Z contains 2n vertices and
by (i),

|V | = ∣∣V t
∣∣ + |V̂ | + 2n and

∑
v∈V ∩bd(Z)

θ(v) = π · 2n − 2π = 2π(n − 1). (3.2)

Let Σ := ∑
(θ(v): v ∈ V ) and Σ̂ := ∑

(θ(v): v ∈ V̂ ). The contribution to Σ from each white
(black) tile is 2π (resp. −2π ). Therefore, Σ = 2π(|T w| − |T b|). On the other hand, in view of
Corollary 3.1(iii) and the second relation in (3.2), Σ = Σ̂ + 2π(n − 1). Then

Σ̂ = 2π
(∣∣T w

∣∣ − ∣∣T b
∣∣ − n + 1

)
. (3.3)

Considering GT as a planar graph embedded (by σ ) in the disc DT and applying Euler formula
to it, we have |V |+ |T | = |E|+ 1. Each tile has four edges, the number of boundary edges is 2n,
and each inner edge belongs to two tiles; therefore, |E| = 2n + (4|T | − 2n)/2 = 2|T | + n. Then
|V | is expressed as

|V | = |E| − |T | + 1 = 2|T | + n − |T | + 1 = |T | + n + 1. (3.4)

Also |V | = |V̂ | + 2|T b| + 2n (using the first equality in (3.2) and the equality |V t | = 2|T b|).
This and (3.4) give

|V̂ | = |V | − 2
∣∣T b

∣∣ − 2n = (|T | + n + 1
) − 2

∣∣T b
∣∣ − 2n = ∣∣T w

∣∣ − ∣∣T b
∣∣ − n + 1.

Comparing this with (3.3), we obtain Σ̂ = 2π |V̂ |. Now the desired equality θ(v) = 2π for each
vertex v ∈ V̂ follows from the fact that θ(v) equals 2π · d for some integer d � 1. The latter is
shown as follows. Let us begin with a white tile τ1 ∈ FT (v) and its edges e0, e1 ∈ ET (v), in this
order clockwise, and form a sequence e0, τ1, e1, . . . , τr , er , . . . similar to that in (i) above, until
we return to the initial edge e0. Let Rq be the ray at v containing eq . Since θ(τq, v) > 0 when
τq is white, and θ(τq, v) + θ(τq+1, v) > 0 when τq is white and τq+1 is black (cf. (3.1)), the
current ray R• must make at least one turn clockwise before it returns to the initial ray R0. If the
sequence uses not all tiles in FT (v) (which is, in fact, impossible by (T4)), we can start with a
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new white tile to form a next sequence (for which the corresponding ray makes at least one turn
clockwise as well), and so on. Thus, d � 1, as required (implying d = 1). �

Remark 1. If we postulate property (ii) in Lemma 3.2 as axiom (T4′) and add it to axioms (T1)–
(T3), then we can eliminate axiom (T4); in other words, (T4′) and (T4) are equivalent subject to
(T1)–(T3). Indeed, reversing reasonings in the above proof, one can conclude that Σ̂ = 2π |V̂ |
implies |V | + |T | = |E| + 1. The latter is possible only if DT is a disc. (Indeed, if DT forms
a regular surface with g handles and c cross-caps, from which an open disc is removed, then
Euler formula is modified as |V | + |T | = |E| + 1 − 2g − c. Also |V | decreases when some
vertices merge.) Note that each of the axioms (T1)–(T3), (T4′) is “local”; this gives rise to a local
characterization for semi-normal bases.

3. Using (3.1) and Lemma 3.2, one can obtain the following useful description of the local
structure of edges and tiles at nonterminal vertices.

Corollary 3.3. Let v be a nonterminal (ordinary or mixed) vertex of T different from z0, zn. Let
e1, . . . , ep be the sequence of edges leaving v and ordered clockwise around v (i.e., by increasing
their colors), and e′

1, . . . , ep′ the sequence of edges entering v and ordered counterclockwise
around v (i.e., by decreasing their colors). Then there are integers r, r ′ � 0 such that:

(i) r + r ′ < min{p,p′}, the edges er+1, . . . , ep−r ′ and e′
r+1, . . . , e

′
p′−r ′ are white, the other

edges in ET (v) are black, r = 0 if v ∈ �bd(Z), and r ′ = 0 if v ∈ rbd(Z);
(ii) for q = r + 1, . . . , p − r ′ − 1, the edges eq, eq+1 are spanned by a white tile (so such tiles

have the bottom at v and lie between er+1 and ep−r ′ );
(iii) for q = r +1, . . . , p′ − r ′ −1, the edges e′

q, e′
q+1 are spanned by a white tile τ (so such tiles

have the top at v and lie between e′
r+1 and e′

p′−r ′ );
(iv) unless v ∈ �bd(Z), each of the pairs {e1, e

′
r+1}, {e2, e

′
r}, . . . , {er+1, e

′
1} is spanned by a white

tile, and each of the pairs {e1, e
′
r}, {e2, e

′
r−1}, . . . , {er , e

′
1} is spanned by a black tile (all tiles

have the right vertex at v);
(v) unless v ∈ rbd(Z), each of the pairs {ep, e′

p′−r ′ }, {ep−1, e
′
p′−r ′+1}, . . . , {ep−r ′, e′

p′ } is

spanned by a white tile, and each of the pairs {ep, e′
p′−r ′+1}, {ep−1, e

′
p′−r ′+2}, . . . ,

{ep−r ′+1, e
′
p′ } is spanned by a black tile (all tiles have the left vertex at v).

In particular, (a) there is at least one white edge leaving v and at least one white edge enter-
ing v; (b) the tiles in (ii)–(v) give a full list of tiles in FT (v); and (c) any two tiles τ, τ ′ ∈ FT (v)

with r(τ ) = �(τ ′) = v do not overlap (have no common interior point).
Also: for v = z0, zn, all edges in ET (v) are white and consecutive pairs of these edges are

spanned by white tiles.

(When v is ordinary, we have r = r ′ = 0.) The case with p = 4, p′ = 5, r = 2, r ′ = 1 is
illustrated in the picture; here the black edges are drawn in bold and the thin (bold) arcs indicate
the pairs of edges spanned by white (resp. black) tiles.
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Note that Corollary 3.3 implies the following property (which will be used, in particular, in
Section 4.3):

(3.5) for a tile τ ∈ T and a vertex v ∈ {�(τ), r(τ )}, let e, e′ be the edges of τ entering and leaving
v, respectively, and suppose that there is an edge ẽ 	= e, e′ incident to v and lying between
e and e′; then ẽ is black; furthermore: (a) e′ is black if ẽ enters v; (b) e is black if ẽ leaves v.

4. We will often use the fact (implied by (2.1)(ii)) that for any g-tiling T ,

(3.6) the graph GT = (VT ,ET ) is graded for each color i ∈ [n], which means that for any closed
path P in GT , the numbers of forward i-edges and backward i-edges in P are equal.

Hereinafter, a path in a directed graph is meant to be a sequence P = (ṽ0, ẽ1, ṽ1, . . . , ẽr , ṽr )

in which each ẽp is an edge connecting vertices ṽp−1, ṽp; an edge ẽp is called forward if it
is directed from ṽp−1 to ṽp (denoted as ẽp = (ṽp−1, ṽp)), and backward otherwise (when ẽp =
(ṽp, ṽp−1)). When v0 = vr and r > 0, P is a closed path, or a cycle. The path P is called directed
if all its edges are forward, and simple if all vertices v0, . . . , vr are different. P rev denotes the
reversed path (ṽr , ẽr , ṽr−1, . . . , ẽ1, ṽ0).

4. From semi-normal bases to generalized tilings

In this section we prove the second assertion in Theorem 2.2, namely, the inclusion

Bn ⊆ B Tn, (4.1)

where Bn is the set of semi-normal bases in 2[n] and B Tn denotes the collection of the spectra of
g-tilings on Zn. The proof falls into three parts, given in Sections 4.1–4.3.

4.1. Flips in g-tilings

Let T be a g-tiling. By an M-configuration in T we mean a quintuple of vertices of
the form Xi,Xj,Xk,Xij,Xjk with i < j < k (as it resembles the letter “M”), which is
denoted as CM(X; i, j, k). By a W -configuration in T we mean a quintuple of vertices
Xi,Xk,Xij,Xik,Xjk with i < j < k (as resembling “W”), denoted as CW(X; i, j, k). A con-
figuration is called feasible if all five vertices are nonterminal, i.e., belong to BT .

We know that any normal basis B (in particular, B = In) is expressed as BT for some pure
tiling T , and therefore, B ∈ B Tn. Thus, to conclude with (4.1), it suffices to prove the following
assertion, which says that the set of g-tilings is closed under transformations analogous to weak
flips for semi-normal bases.
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Proposition 4.1. Let a g-tiling T contain five nonterminal vertices Xi, Xk, Xij , Xjk, Y , where
i < j < k and Y ∈ {Xik,Xj}. Then there exists a g-tiling T ′ such that BT ′ is obtained from BT

by replacing Y by the other member of {Xik,Xj}.

Proof. We may assume that Y = Xik, forming a feasible W-configuration CW(X; i, j, k) (since
an M-configuration in T turns into a W-configurations in the reversed g-tiling T rev). We rely on
the following two facts which will be proved in Sections 4.2 and 4.3.

(4.2) Any pair of nonterminal vertices of the form X′,X′i′ in T is connected by edge.

(Therefore, T as above contains the edges (Xi,Xij), (Xi,Xik), (Xk,Xik) and (Xk,Xjk). Note
that vertices X′,X′i′ need not be connected by edge if some of them is terminal; e.g., in the pic-
ture before the statement of Theorem 2.2, the vertices with X′ = ∅ and i′ = 2 are not connected.)

(4.3) T contains the jk-tile τ with b(τ) = Xi and the ij -tile τ ′ with b(τ ′) = Xk.

Then �(τ) = Xij , r(τ ) = �(τ ′) = Xik, r(τ ′) = Xjk, and t (τ ) = t (τ ′) = Xijk. Since the vertices
Xi,Xk are nonterminal, both tiles τ, τ ′ are white. See the picture.

Assuming that (4.2) and (4.3) are valid, we argue as follows. First of all we observe that

(4.4) the vertex v := Xik is ordinary.

Indeed, since both vertices Xi,Xik are nonterminal, the edge (Xi,Xik) cannot belong to a
black tile. So this edge (which belongs to the white tile τ and enters v) is white. Also the edge
(Xik,Xijk) of τ that leaves v is white (for if it belongs to a black tile τ̄ , then τ̄ should have
v′ := Xijk as its top vertex, but then the cone of τ̄ at v′ cannot simultaneously contain both
edges (Xij,Xijk) and (Xjk,Xijk), contrary to Corollary 3.1(ii)). Now one can conclude from
Corollary 3.3(b) that there is no black tile having its left or right vertex at v. So v is ordinary.

Let e0, . . . , eq be the sequence of edges entering v in the counterclockwise order; then e0 =
(Xi,Xik) and eq = (Xk,Xik). Since v is ordinary, each pair ep−1, ep (p = 1, . . . , q) belongs to
a white tile τp . Two cases are possible.

Case 1. The edges e := (Xij,Xijk) and e′ := (Xjk,Xijk) do not belong to the same black tile.
Consider two subcases.

(a) Let q = 1. Then the tiles τ, τ ′, τ1 give a subdivision of a hexagon, and we replace in T

these tiles by three new white tiles: τ(X; i, j), τ(X; j, k) and τ(Xj ; i, k). So the vertex v = Xik

is replaced by Xj . See the picture.
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(b) Let q > 1. We remove the tiles τ, τ ′ and add four new tiles: the white tiles τ(X; i, j),
τ(X; j, k), τ(Xj ; i, k) (as before) and the black tile τ(X; i, k) (so v becomes terminal). See the
picture with q = 3; here the added black tile is indicated in bold.

Case 2. Both edges e and e′ belong to a black tile τ̄ (which is nothing else than τ(Xj ; i, k)). We
act as in Case 1 with the only differences that τ̄ is removed from T and that the white ik-tile
at Xj (which is a copy of τ̄ ) is not added. Then the vertex Xijk vanishes, v either vanishes or
becomes terminal, and Xj becomes nonterminal. See the picture; here (a’) and (b’) concern the
subcases q = 1 and q > 1, respectively, and the arc above the vertex Xj indicates the bottom
cone of τ̄ in which some white edges (not indicated) are located.

Let T ′ be the resulting collection of tiles. It is routine to check that in all cases the transfor-
mation of T into T ′ maintains the conditions on tiles and edges involved in axioms (T1)–(T3) at
the vertices Xi,Xk,Xij,Xjk, as well as at the vertices Xik and Xijk when the last ones do not
vanish. Also the conditions continue to hold at the vertex X in Cases 1(a) and 2(a’) (with q = 1),
and at the vertex Xj in Case 2 (when the terminal vertex Xj becomes nonterminal). A less trivial
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task is to verify for T ′ the correctness at Xj in Case 1 and at X in Cases 1(b) and 2(b’). We assert
that

(4.5) (i) VT does not contain Xj in Case 1; and
(ii) VT does not contain X in Cases 1(b) and 2(b’).

Then these vertices (in the corresponding cases) are indeed new in the arising T ′, and now the
required properties for them become evident by the construction. Note that this implies (T4) as
well. We will prove (4.5) in Section 4.3.

Thus, assuming validity of (4.2), (4.3), (4.5), we can conclude that T ′ is a g-tiling and that
BT ′ = (BT − {Xik}) ∪ {Xj}, as required. �
Remark 2. Adopting terminology used for set-systems, we say that for the g-tilings T ,T ′ as
in the proof of Proposition 4.1, T ′ is obtained from T by the (weak) lowering flip w.r.t. the
feasible W-configuration CW(X; i, j, k). One can see that Xi,Xj,Xk,Xij,Xjk are nonterminal
vertices of T ′; so they form a feasible M-configuration for it. Moreover, one can check that the
corresponding lowering flip applied to the reverse of T ′ results in the g-tiling T rev. Equivalently:
the raising flip for T ′ w.r.t. the configuration CM(X; i, j, k) returns the initial T . An important
consequence of this fact will be demonstrated in Section 7 (see Theorem 7.5).

4.2. Strips in a g-tiling

In this subsection we show property (4.3), subject to (4.2). For this purpose, we introduce the
following notion (which will be extensively used subsequently as well).

Definition. For i ∈ [n], an i-strip (or a dual i-path) in a g-tiling T is a maximal sequence Q =
(e0, τ1, e1, . . . , τr , er ) of edges and tiles in it such that: (a) τ1, . . . , τr are different tiles, each
being an iq- or qi-tile for some q , and (b) for p = 1, . . . , r , ep−1 and ep are the opposite i-edges
of τp .

(Recall that speaking of an i′j ′-tile, we assume that i′ < j ′.) Clearly Q is determined uniquely,
up to reversing it and up to shifting cyclically when e0 = er , by any of its edges or tiles. Also,
unless e0 = er , one of e0, er lies on the left boundary, and the other on the right boundary of Z;
we default assume that Q is directed so that e0 ∈ �bd(Z). In this case, going along Q, step by
step, and using (T2), one can see that

(4.6) for consecutive elements e, τ, e′ in an i-strip Q: (a) if τ is either a white iq-tile or a black
qi-tile (for some q), then e leaves b(τ) and e′ enters t (τ ); and (b) if τ is either a white
qi-tile or a black iq-tile, then e enters t (τ ) and e′ leaves b(τ) (see the picture where the
i-edges e, e′ are drawn vertically and q stands for the color of corresponding edges).

Let vp (resp. v′
p) be the beginning (resp. end) vertex of an edge ep in Q. Define the right

boundary of Q to be the path RQ = (v0, a1, v1, . . . , ar , vr ), where ap is the edge of τp connecting
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vp−1, vp . The left boundary LQ of Q is defined in a similar way, regarding the vertices v′
p .

From (4.6) it follows that

(4.7) for an i-strip Q, the forward edges of RQ are exactly those edges in it that belong to either
a white iq-tile or a black qi-tile in Q, and similarly for the forward edges of LQ.

For I ⊆ [n], we call a maximal alternating I -subpath in RQ a maximal subsequence P of
consecutive elements in RQ such that each edge ap ∈ P is a q-edge with q ∈ I , and in each pair
ap, ap+1, one edge is forward and the other is backward in RQ (i.e., one of the tiles τp, τp+1 is
black). A maximal alternating I -subpath in LQ is defined in a similar way. The following fact is
of importance.

Lemma 4.2. A strip Q cannot be cyclic, i.e., its first and last edges are different.

Proof. For a contradiction, suppose that some i-strip Q = (e0, τ1, e1, . . . , τr , er ) is cyclic
(e0 = er ). One may assume that (4.6) holds for Q (otherwise reverse Q). Let a1, . . . , ar = a0

be the sequence of edges of the right boundary RQ of Q. For q ∈ [n], let αq (βq ) denote the
number of forward (resp. backward) q-edges in RQ. Since GT is graded, αq = βq (cf. (3.6)).

Assume that RT contains a q-edge with q > i. Put I> := [i + 1..n] and consider a maxi-
mal alternating I>-subpath P in RQ (regarding Q up to shifting cyclically and taking indices
modulo r). Using (3.1), we observe that if ap is an edge in P such that τp is black, then the
edges ap−1, ap+1 are contained in P as well; also both tiles τp−1, τp+1 are white. This together
with (4.7) implies that the difference �P between the number of forward edges and the number
of backward edges in P is equal to 0 or 1, and that �P = 0 is possible only if P coincides with the
whole RQ (having equal numbers of forward and backward edges). On the other hand, the sum of
numbers �P over all maximal alternating I>-subpaths P must be equal to

∑
q>i(αq − βq) = 0.

So RQ is an alternating I>-cycle. To see that this is impossible, notice that if ap−1, ap, ap+1

are q ′-, q-, and q ′′-edges, respectively, and if the tile τp is black, then (3.1) implies that
q ′, q ′′ < q . Therefore, taking the maximum edge color q in RQ, we obtain αq = 0 and βq > 0;
a contradiction. Thus, RQ has no q-edges with q > i at all.

Similarly, considering maximal alternating [i − 1]-subpaths in RQ and using (3.1) and (4.7),
we conclude that RQ has no q-edge with q < i. Thus, a cyclic i-strip is impossible. �
Corollary 4.3. For a g-tiling T and each i ∈ [n], there is a unique i-strip Qi . It contains all
i-edges of T , begins at the edge z�

i−1z
�
i and ends at the edge zr

i z
r
i−1 of bd(Z).

Based on strip techniques, we now prove property (4.3) in the assumption that (4.2) is valid
(the latter will be discussed in the next subsection).

Proof of (4.3). Let X, i, j, k be as in the hypotheses of Proposition 4.1 (with Y = Xik). We
consider the part Q of the j -strip between the j -edges e := (Xi,Xij) and e′ := (Xk,Xjk) (these
edges exist by (4.2) and Q exists by Corollary 4.3). Suppose that Q begins at e and ends at e′
and consider the right boundary RQ of Q. This is a path from Xi to Xk; let a1, . . . , ar be the
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sequence of edges in it. Comparing RQ with the path P̃ from Xi to Xk formed by the forward
k-edge (Xi,Xik) and the backward i-edge (Xik,Xk), we have (since GT is graded):

αq − βq =
{−1 for q = i,

1 for q = k,
0 otherwise,

(4.8)

where αq (βq ) is the number of forward (resp. backward) q-edges in RQ. We show that αi = 0,
βi = 1, αk = 1, βk = 0 and αq = βq = 0 for q 	= i, k, by arguing as in the proof of Lemma 4.2.

Let P1, . . . ,Pd be the sequence of maximal alternating J>-subpaths in RQ, where J> :=
[j +1..n]. Each path Ph begins and ends with forward edges (taking into account (3.1), (4.7) and
the fact that the edges e, e′ are white). Therefore, �Ph

= 1. Then �P1 +· · ·+�Pd
= ∑

q>j (αq −
βq) = αk −βk = 1 (cf. (4.8)) implies d = 1. Moreover, |P1| = 1. For if |P1| > 1, then P1 contains
a backward edge (belonging to a black tile in Q), and taking the maximum edge color q in P1,
we obtain αq = 0 and βq > 0, which is impossible. Hence P1 consists of a unique forward edge,
and now (4.8) implies that it is a k-edge.

By similar reasonings, there is only one maximal alternating [j − 1]-subpath P ′ in RQ, and
P ′ consists of a unique backward i-edge.

Thus, RQ = (a1, a2), and one of a1, a2 is a forward k-edge, while the other is a backward
i-edge in RQ. If RQ = P̃ (i.e., a1 is a k-edge), then the tiles in Q are as required in (4.3). The
case when a1 is an i-edge is impossible. Indeed, this would imply that the first tile τ in Q is
generated by the edges a1 = (X,Xi) and e = (Xi,Xij); but then the cone of τ at Xi contains
the white edge (Xi,Xik), contrary to (3.5).

Now suppose that Q goes from e′ to e. Then LQ begins at Xk and ends at Xi. Define the
numbers αq,βq as before. Then the sum

∑
q>j (αq − βq) (equal to the number of maximal

alternating J>-subpaths in LQ) is nonnegative. But a similar value for the path reverse to P̃

(going from Xk to Xi as well) is equal to −1, due to the k-edge (Xi,Xik) which is backward in
this path; a contradiction. �
4.3. Strip contractions

The remaining properties (4.2) and (4.5) are proved by induction on n, relying on a natural
contracting operation on g-tilings (also important for purposes of Sections 8, 9).

Let T be a g-tiling on Zn and i ∈ [n]. Partition T into three subsets T 0
i , T −

i , T +
i consisting,

respectively, of all i∗- and ∗i-tiles, of the tiles τ(X; i′, j ′) with i′, j ′ 	= i and i /∈ X, and of the
tiles τ(X; i′, j ′) with i′, j ′ 	= i and i ∈ X. Then T 0

i is the set of tiles in the i-strip Qi , and the
tiles in T −

i are vertex disjoint from those in T +
i .

Definition. The i-contraction of T is the collection T/i of tiles obtained from T by removing
the members of T 0

i , keeping the members of T −
i , and replacing each τ(X; i′, j ′) ∈ T +

i by τ(X −
{i}; i′, j ′). The black/white coloring of tiles in T/i is inherited from T .

The tiles of T/i live within the zonogon generated by the vectors ξq , q ∈ [n] − {i} (and cover
this zonogon). The regions DT −

i
and DT +

i
in the disc DT are simply connected, as they arise

when the interior of (the image by σ of) the strip Qi is removed from DT . The shape DT/i is
obtained as the union of DT −

i
and DT +

i
− εi , where εi is the i-th unit base vector in R[n]. In

other words, D + is shifted by −εi and the (image by σ of) the left boundary LQ of Qi in it
Ti
i
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merges with (the image of) RQi
in DT −

i
. In general, DT −

i
and DT +

i
− εi may intersect at some

other points, and therefore, DT/i need not be a disc (this happens when GT contains two vertices
X,Xi not connected by edge, or equivalently, such that X /∈ RQi

and Xi /∈ LQi
).

For our purposes, it suffices to deal with the case i = n. We take advantages from the important
property that

(4.9) T/n is a feasible g-tiling, i.e., it obeys (T1)–(T4).

Instead of a direct proof of this property (which is rather tiresome technically), we prefer to
appeal to explanations in Section 7 where a similar property is obtained on the language of
wirings; see Corollary 7.4 in Remark 4. (More precisely, by results in Sections 6, 7, there is a
bijection β of the g-tilings to the proper wirings. Furthermore, one shows that removing wn from
a proper n-wiring W = (w1, . . . ,wn) results in a proper (n − 1)-wiring W ′. It turns out that the
g-tiling β−1(W ′) is just (β−1(W))/n, yielding the desired property.)

Assuming that (4.9) is valid, we make two observations, exposed in (i), (ii) below.
(i) Validity of (T4) for T/n implies that

(4.10) any two vertices of the form X′,X′n in GT are connected by an (n-)edge in Qn (in par-
ticular, X′ ∈ RQn and X′n ∈ LQn ).

(ii) For a black i′j ′-tile τ ∈ T with i′, j ′ 	= n, none of the terminal vertices t (τ ), b(τ ) can
occur in (the boundary of) Qn. Indeed, all edges incident to such a vertex are q-edges with
q � j ′ < n, whereas each vertex occurring in Qn is incident to an n-edge. Also for a vertex X′
not in Qn, the local tile structure of T/n at X′ − {n} (including the white/black coloring of tiles)
is inherited by that of T at X′. It follows that

(4.11) if X′ is a nonterminal vertex for T , then X′ − {n} is such for T/n.

Now we are ready to prove (4.2) and (4.5).

Proof of (4.2). Let X′,X′i′ be nonterminal vertices for T . If i′ = n then these vertices are con-
nected by edge in GT , by (4.10). Now let i′ 	= n. Then GT/n contains the vertices X̃, X̃i′, where
X̃ := X′ − {n}, and these vertices are nonterminal, by (4.11). We assume by induction that these
vertices are connected by an edge e in GT/n. Let τ ′ be a tile in T/n containing e. Then the tile
τ ∈ T −

n ∪ T +
n generating τ ′ has an edge connecting X′ and X′i′, as required. �

Proof of (4.5). We use notation as in the proof of Proposition 4.1 and consider three possible
cases.

(A) Let k < n and n /∈ X. Then all tiles in T containing the vertex v = Xik are tiles in T/n,
and Xi,Xk,Xik,Xij,Xjk are vertices for T/n forming a feasible W-configuration in it (as they
are nonterminal, by (4.11)). By induction GT/n contains as a vertex neither Xj in Case 1, nor X

in Cases 1(b) and 2(b’). Then the same is true for GT , as required.
(B) Let k < n and n ∈ X. The argument is similar to that in (A) (taking into account that all

vertices X′ for T that we deal with contain the element n, and the corresponding vertices for T/n

are obtained by removing this element).
(C) Let k = n. First we consider Case 1 and show (i) in (4.5). Suppose GT contains the vertex

Xj . Then GT contains the n-edge ẽ = (Xj,Xjn), by (4.10). This edge lies between the edges
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br(τ ′) = (Xn,Xjn) and e′ = rt(τ ′) = (Xjn,Xijn) of the white tile τ ′. By (3.5), the presence
of the edge ẽ (entering Xjn) in the cone Θ(τ ′;Xjn) implies that the edge e′ of τ ′ is black. Let
τ̃ be the black tile containing e′; then τ̃ has the top vertex at Xijn (since Xjn is nonterminal).
Obviously, the n-edge e = (Xij,Xijn) coincides with �t (τ̃ ). So both e, e′ are edges of the same
black tile τ̃ , which is not the case.

Now we consider Cases 1(b) and 2(b’) and show (ii) by arguing in a similar way. Suppose GT

contains the vertex X. Then GT contains the n-edge ẽ = (X,Xn), by (4.10). This edge lies in
the cone of τq at Xn (where, according to notation in the proof of Proposition 4.1, τq is the white
tile in T with rt(τq) = (Xn,Xin)). By (3.5), the edge rt(τq) is black (since ẽ enters Xn). But
each of the end vertices Xn,Xin of rt(τq) has both entering and leaving edges, and therefore, it
cannot be terminal; a contradiction. �

This completes the proof of inclusion (4.1) (provided validity of (4.9)).

5. From generalized tilings to semi-normal bases

In this section we complete the proof of Theorem 2.2 by proving the first assertion in it,
namely, we show the inclusion

B Tn ⊆ Bn. (5.1)

This together with the reverse inclusion (4.1) will give B Tn = Bn, as required.
Let T be a g-tiling on Zn. We have to prove that BT is a semi-normal basis.
If T has no black tile, then BT is a normal basis, and we are done. So assume T b 	= ∅. Our

aim is to show the existence of a feasible W-configuration CW(X; i, j, k) for T (formed by
nonterminal vertices Xi,Xk,Xij,Xik,Xjk, where i < j < k). Then we can transform T into a
g-tiling T ′ as in Proposition 4.1, i.e., with BT ′ = (BT −{Xik})∪{Xj}. Under such a lowering flip
(concerning g-tilings), the sum of sizes of the sets involved in B• decreases. Then the required
relation BT ∈ Bn follows by induction on

∑
(|X′|: X′ ∈ BT ) (this sort of induction is typical

when one deals with tilings or related objects, cf. [2,4,9]).
In what follows by the height h(v) of a vertex v ∈ VT we mean the size of the corresponding

subset of [n]. The height h(τ) of a tile τ ∈ T is defined to be the height of its left vertex; then
h(τ) = h(r(τ )) = h(b(τ)) + 1 = h(t (τ )) − 1. The height of a W-configuration CW(X; i, j, k) is
defined to be |X| + 2.

In fact, we are able to show the following sharper version of the desired property.

Proposition 5.1. Let h ∈ [n]. If a g-tiling T has a black tile of height h, then there exists a feasible
W -configuration CW(X; i, j, k) of the same height h. Moreover, such a CW(X; i, j, k) can be
chosen so that Xijk is the top vertex of some black tile (of height h).

Proof. Let τ be a black tile of height h. Denote by M(τ) the set of vertices v such that there is
a white edge from v to t (τ ). This set is nonempty (by Corollary 3.1(ii)) and each vertex in it is
nonterminal. Suppose that some v ∈ M(τ) is ordinary, and let λ and ρ be the (white) tiles sharing
the edge (v, t (τ )) and such that v = r(λ) = �(ρ). Then the five vertices b(λ), b(ρ), �(λ), v, r(ρ)

form a W-configuration of height h (since h(v) = h(τ) = h). Moreover, this configuration is
feasible. Indeed, the vertices �(λ), v, r(ρ) are nonterminal (since each has an entering edge and
a leaving edge). And the tile τ̃ that shares the edge (b(λ), v) with λ has v as its top vertex (taking



V.I. Danilov et al. / Advances in Mathematics 224 (2010) 1–44 21
into account that τ̃ is white and overlaps neither λ nor ρ since v is ordinary); then b(λ) is the
left vertex of τ̃ , and therefore b(λ) is nonterminal. The vertex b(ρ) is nonterminal for a similar
reason. For an illustration, see the left fragment on the picture.

We assert that a black tile τ of height h whose set M(τ) contains an ordinary vertex does exist
(yielding the result).

Suppose this is not so. Let us construct an alternating sequence of white and black edges
as follows. Choose a black tile τ of height h and a vertex v ∈ M(τ). Let e be the white edge
(v, t (τ )). Since v is mixed (by the supposition), there is a black tile τ ′ (of height h) such that
either (a) v = r(τ ′) or (b) v = �(τ ′). We say that τ ′ lies on the left from τ in the former case, and
lies on the right from τ in the latter case. Let u′ be the edge rt(τ ′) of τ ′ in case (a), and �t (τ ′) in
case (b). Case (a) is illustrated on the right fragment of the above picture.

Repeat the procedure for τ ′: choose v′ ∈ M(τ ′) (which is mixed again by the supposition);
put e′ := (v′, t (τ ′)); choose a black tile τ ′′ such that either (a) v′ = r(τ ′′) or (b) v′ = �(τ ′′); and
define u′ to be the edge rt(τ ′′) in case (a), and �t (τ ′′) in case (b). Repeat the procedure for τ ′′,
and so on. Sooner or later we must return to a black tile that has occurred earlier in the process.
Then we obtain an alternating cycle of white and black edges.

More precisely, there appear a cyclic sequence of different black tiles τ1, . . . , τr−1, τr = τ0 of
height h and an alternating sequence of white and black edges C = (e0 = er , u1, e1, . . . , ur = u0)

(forming a cycle in GT ) with the following properties:

• for q = 1, . . . , r : (a) eq is the edge (vq, t (τq)) for some vq ∈ M(τq); (b) τq+1 is a black tile
whose right of left vertex is vq ; and (c) uq+1 = rt(τq+1) when r(τq+1) = vq , and uq+1 =
�t (τq+1) when �(τq+1) = vq ,

where the indices are taken modulo r . We consider C up to renumbering the indices cyclically
and assume that τq is an iqkq -tile, that eq is a jq -edge, and that uq is a pq -edge. Then iq <

jq < kq , pq = iq if τq lies on the left from τq−1, and pq = kq if τq lies on the right from τq−1.
Note that in the former (latter) case the vertex vq lies on the left (resp. right) from vq−1 in the
horizontal line at height h in Zn. This implies that there exists a q such that τq lies on the left
from τq−1, and there exists a q ′ such that τq ′ lies on the right from τq ′−1.

To come to a contradiction, consider a maximal subsequence Q of consecutive tiles in the
above sequence in which each but first tile lies on the left from the previous one; one may assume
that Q = (τ1, τ2, . . . , τd). Then τ1 lies on the right from τ0; so u1 = �t (τ1), whence p1 = k1. We
observe that

k1 � k2 � · · · � kd . (5.2)



22 V.I. Danilov et al. / Advances in Mathematics 224 (2010) 1–44
Indeed, for 1 � q < d , let λ be the (white) tile containing the edge eq and such that r(λ) = vq

(then eq = rt(λ)). This tile lies in the cone of τq at t (τq). So λ is an i′k′-tile with iq � i′ < k′ �
kq , and therefore the edge ẽ := br(λ) entering vq has color k′ � kq . Since the edge eq of λ is
white, we observe from Corollary 3.3 that the edge ẽ of λ lies in the cone of the black tile τq+1
at vq = r(τq+1). This implies that the edge e′ := br(τq+1) (entering vq ) has color at most k′.
Therefore, we obtain kq+1 � k′ � kq , as required.

By (5.2), we have jq < kq � k1 = p1 for all q = 1, . . . , d . Also if a tile τq ′ lies on the
right from the previous tile τq ′−1, then uq ′ = �t (τq ′), whence jq ′ < kq ′ = pq ′ . Thus, the max-
imum of p1, . . . , pr is strictly greater than the maximum of j1, . . . , jr . This is impossible since
all u1, . . . , ur are forward edges, all e1, . . . , er are backward edges in C, and the graph GT is
graded. �

This completes the proof of Theorem 2.2.

Remark 3. For black tiles τ, τ ′ ∈ T b , let us denote τ ′ ≺� τ if there is a white edge (v, t (τ )) such
that v is the right or left vertex of τ ′. The proof of Proposition 5.1 gives the following additional
result.

Corollary 5.2. The relation ≺� determines a partial order on T b.

Similarly, the relation ≺� determines a partial order on T b , where for τ, τ ′ ∈ T b , we write
τ ′ ≺� τ if there is a white edge (b(τ ), v) such that v is r(τ ′) or �(τ ′).

We conclude this section with one more result which follows from Proposition 5.1.

Proposition 5.3. Let a g-tiling T be such that, for some h < n, all nonterminal vertices of height
h + 1 are intervals in [n] and there is no feasible W-configuration of height h. Then all nonter-
minal vertices of height h are intervals as well. Symmetrically, if for some h > 0, all nonterminal
vertices of height h − 1 are co-intervals and there is no feasible M-configuration of height h,
then all nonterminal vertices of height h are co-intervals.

Proof. If T has a black tile of height h, then there exists a feasible W-configuration of height h,
by Proposition 5.1. So this is not the case.

Let u be a nonterminal vertex of height h and take an edge (u, v). Then the vertex v (of height
h + 1) is nonterminal (for otherwise v would be the top vertex of a black tile of height h). Let
τ, τ ′ be the tiles sharing the edge (u, v); then both tiles are white and non-overlapping. Suppose
b(τ) = u. Then both vertices �(τ), r(τ ) lie in level h + 1, and therefore, they are intervals. This
easily implies that u is an interval as well. Similarly, u is an interval if b(τ ′) = u.

Now suppose that u is neither b(τ) nor b(τ ′). Then t (τ ) = t (τ ′) = v. Letting for definiteness
that u = r(τ ) = �(τ ′), we obtain that the vertices u,b(τ), b(τ ′), �(τ ), r(τ ′) form a feasible W-
configuration of height h; a contradiction (the case when b(τ) or b(τ ′) is terminal is impossible,
otherwise it would belong to a black tile of height h).

The second assertion in the proposition follows from the first one applied to T rev. �
(Note also that if all nonterminal vertices of height h in a g-tiling are intervals, then there is no

feasible W-configuration of height h. Indeed, suppose such a configuration CW(X; i, j, k) exists.
Then Xik is a nonterminal vertex of height h. Since i < j < k and j /∈ X, the set Xik is not an
interval.)
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In view of the coincidence of the set of spectra of g-tilings on Zn with the set of largest
weakly separated collections in 2[n] (proved in Section 9), Proposition 5.3 answers affirmatively
Conjecture 5.5 in Leclerc and Zelevinsky [9].

Finally, analyzing the proof of Proposition 5.3, one can see that this proposition can be slightly
strengthened as follows: if there is no feasible W-configuration of height h, then each nonterminal
vertex Y ⊂ [n] of height h not contained in the boundary of Zn is representable as Y ′ ∩ Y ′′
for some nonterminal vertices Y ′, Y ′′ ⊂ [n] of height h + 1. (Similarly, if there is no feasible
M-configuration of height h, then each nonterminal vertex Y of height h not contained in the
boundary of Zn is representable as Y ′ ∪Y ′′ for some nonterminal vertices Y ′, Y ′′ of height h−1.)

6. From generalized tilings to proper wirings

In this section we show the following

Proposition 6.1. For any g-tiling T on Zn, there exists a proper wiring W on Zn such that
BW = BT .

This and the converse assertion established in the next section will imply that the collection
B Tn of the spectra BT of g-tilings T on Zn coincides with the collection B Wn of the spectra BW

of proper wirings W on Zn, and then Theorem 2.1 will follow from Theorem 2.2.

Proof of Proposition 6.1. For convenience we use the same notation for vertices, edges and tiles
concerning a g-tiling T on Z = Zn and their corresponding points, line-segments and squares
(respectively) in the disc DT (every time it will be clear from the context or explicitly indicated
which of Z and DT we deal with). Accordingly, the planar graph GT = (VT ,ET ) is regarded as
properly embedded in DT .

In order to construct the desired wiring, we first draw curves on DT corresponding to strips
(dual paths) in GT . More precisely, for each i ∈ [n], take the i-strip Qi = (e0, τ1, e1, . . . , τr , er )

for T (defined in Section 4), considering it as the corresponding sequence of edges and squares
in DT . (Recall that Qi contains all i∗- and ∗i-tiles in T , e0 is the edge z�

i−1z
�
i on the left boundary

�bd(Z), and er is the edge zr
i z

r
i−1 on rbd(Z); cf. Corollary 4.3.) For q = 1, . . . , r , draw the line-

segment on the square τq connecting the median points of the edges er−1 and er . This segment
meets the central point of τq , denoted by c(τq). The concatenation of these segments gives the
desired (piece-wise linear) curve ζi corresponding to Qi ; we direct ζi according to the direction
of Qi .

Fix a homeomorphic map γ :DT → Z such that each boundary edge of DT is linearly mapped
onto the corresponding edge of bd(Z). Then the curves (“wires”) ζi on DT generate the wires
wi := γ (ζi) on Z (where wi begins at the median point si of z�

i−1z
�
i on �bd(Z) and ends at the

medial point s′
i of zr

i z
r
i−1 on rbd(Z)). We assert that the wiring W = (w1, . . . ,wn) is as required

in the proposition.
Obviously, W satisfies axiom (W1). To verify the other axioms, we first explain how the

planar graphs GT and Gζ on DT are related to each other, where Gζ is the “preimage” by γ

of the graph GW (defined as in Section 2.1 by considering ζ1, . . . , ζn in place of w1, . . . ,wn).
The vertices of Gζ are the central points c(τ ) of squares τ (where corresponding wires cross
one another) and the points si , s

′
i . (We identify corresponding points on the boundaries of DT

and Z, writing si for γ −1(si).) Each vertex v of GT one-to-one corresponds to the face of Gζ

where v is located, denoted by v∗. The edges of color i in Gζ (which are the pieces of ζi in its
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subdivision by the central points of squares lying on ζi ) one-to-one correspond to the i-edges
of GT . More precisely, if an i-edge e ∈ ET belongs to squares τ, τ ′ and if τ, e, τ ′ occur in this
order in the i-strip, then the i-edge of Gζ corresponding to e, denoted by e∗, is the piece of ζi

between c(τ ) and c(τ ′), and this e∗ is directed from c(τ ) to c(τ ′). Observe that e crosses e∗ from
right to left on the disc. (We assume that the clockwise orientation on DT is agreeable by γ with
that of Z.) The first and last pieces of ζi correspond to the boundary i-edges z�

i−1z
�
i and zr

i z
r
i−1

of GT , respectively.
Consider an ij -tile τ ∈ T , and let e, e′ be its i-edges, and u,u′ its j -edges, where e,u leave

b(τ) and e′, u′ enter t (τ ). We know that: (a) if τ is white, then e occurs in Qi before e′, while
u occurs in Qj after u′, and (b) if τ is black, then e occurs in Qi after e′, while u occurs in Qj

before u′. In each case, in the disc DT , both e, e′ cross the wire ζi from right to left (w.r.t. the
direction of ζi ), and similarly both u,u′ cross ζj from right to left. Also (by (T1), (T2)) when
τ is white, the orientation of the tile τ in Z coincides with that of the square τ in DT , whereas
when τ is black, the clockwise orientation of τ in Z turns into the counterclockwise orientation
of τ in DT (causing the “orientation-reversing” behavior of wires at the vertex c(τ ) of Gζ ). It
follows that: in case (a), ζj crosses ζi at c(τ ) from left to right, and therefore, the vertex c(τ ) of
Gζ is white, and in case (b), ζj crosses ζi at c(τ ) from right to left, and therefore, the vertex c(τ )

is black. (Both cases are illustrated in the picture.) So the white (black) tiles of T generate the
white (resp. black) vertices of Gζ .

Consider a vertex v of GT and an edge e ∈ ET (v). Then the edge e∗ belongs to the boundary
of the face v∗ of Gζ . As mentioned above, e crosses e∗ from right to left on DT . This implies
that e∗ is directed clockwise around v∗ if e leaves v, and counterclockwise if e enters v. In view
of axiom (T3), we obtain that

(6.1) the terminal vertices of GT and only these generate cyclic faces of GW � Gζ ; moreover,
for τ ∈ T b , the boundary cycle of (t (τ ))∗ is directed counterclockwise, while the boundary
cycle of (b(τ ))∗ is directed clockwise.

(We use the fact that any nonterminal vertex v 	= z0, zn has both entering and leaving edges,
and therefore, the boundary of the face v∗ has edges in both directions. When v = z0 (v = zn),
a similar fact for v∗ is valid as well, since v∗ contains the edges (z0, s1) and (z0, s

′
n) (resp. (sn, zn)

and (s′
1, zn)) lying on the boundary of Z.)

Next, for each i ∈ [n], removing from DT the interior of the i-strip Qi (i.e., the relative
interiors of all edges and tiles in it) results in two closed regions Ω1,Ω2, the former containing
the vertex ∅, and the latter containing the vertex [n] (regarding the vertices as subsets of [n]).
The fact that all edges in Qi (which are the i-edges of GT ) go from Ω1 to Ω2 implies that each
vertex v of GT occurring in Ω1 (in Ω2) is a subset of [n] not containing (resp. containing) the
element i. So i /∈ X(v∗) if v ∈ Ω1, and i ∈ X(v∗) if v ∈ Ω2. This implies the desired equality for
spectra: BW = BT .
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A less trivial task is to check validity of (W2) for W . One can see that axiom (W2) is equiv-
alent to the condition that if wires wi,wj intersect at a white point x, then the parts of wi,wj

after x do not meet. So it suffices to show the following

Claim. Let wires ζi, ζj with i < j intersect at a white point x. Then the part ζ of ζi from x to s′
i

and the part ζ ′ of ζj from x to s′
j have no other common points.

Proof. Suppose this is not so and let y be the common point of ζ, ζ ′ next to x in ζ . Since x is
white, y is black. Therefore, the ij -tile τ such that x = c(τ ) is white, and the ij -tile τ ′ such that
y = c(τ ′) is black. Also in both strips Qi and Qj , the tile τ occurs earlier than τ ′. One can see
(cf. (4.6)) that in the strip Qi , the edge succeeding τ is rt(τ ) and the edge preceding τ ′ is rt(τ ′),
whereas in the strip Qj , the edge succeeding τ is br(τ ) and the edge preceding τ ′ is br(τ ′). So
the right boundary of Qi passes the vertices r(τ ) and r(τ ′), in this order, and similarly for the
left boundary of Qj .

Consider the part R of RQi
from r(τ ) to r(τ ′) and the part L of LQj

from r(τ ) to r(τ ′).
For q ∈ [n], let αq , α′

q , βq , β ′
q be the numbers of q-edges that are forward in R, forward in L,

backward in R, and backward in L, respectively. Since GT is graded, we have (∗) αq − βq =
α′

q − β ′
q .

Next we argue in a similar spirit as in the proof of Lemma 4.2. Define I := [i + 1..j − 1],
� := ∑

q∈I (αq −βq), and �′ := ∑
q∈I (α

′
q −β ′

q). We assert that � > 0 and �′ < 0, which leads
to a contradiction with (∗) above.

To see � > 0, consider a q-edge e in R with q ∈ I , and let τ e denote the tile in Qi contain-
ing e. Since q > i, τ e is white if e is forward, and τ e is black if e is backward in R (cf. (4.7)).
Using this, one can see that:

(i) for a q-edge e ∈ R such that q ∈ I and τ e is black, the next edge e′ in RQi
is a forward

q ′-edge in R with q ′ ∈ I (since the fact that τ e is a black iq-tile implies that τ e′
is a white

q ′q-tile with i < q ′ < q , in view of (3.1)); a similar property holds for the edge in RQi

preceding e;
(ii) the last edge e of R is a forward q-edge with q ∈ I (since the tile τ e shares an edge with the

black ij -tile τ ′);
(iii) if the first edge e of R is backward, then it is a q-edge with q /∈ I (since τ e is black and

shares an edge with the white ij -tile τ ).

These observations show that the first and last edges of any maximal alternating I -subpath P

in R are forward, and therefore, P contributes +1 to �. Also at least one such P exists, by (ii).
So � > 0, as required.

The inequality �′ < 0 is shown in a similar way, by considering L and swapping “forward”
and “backward” in the above reasonings (due to replacing q > i by q < j ). More precisely, for a
q-edge e in L with q ∈ I , the tile τ e in Qj containing e is black if e is forward, and white if e is
backward (in view of q < j and (4.7)). This implies that:

(i’) for a q-edge e ∈ L such that q ∈ I and τ e is black, the next edge e′ in LQj
is a backward

q ′-edge in L with q ′ ∈ I ; and similarly for the edge in LQj
preceding e;

(ii’) the last edge e of L is a backward q-edge with q ∈ I ;
(iii’) if the first edge e of R is forward, then it is a q-edge with q /∈ I .
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Then the first and last edges of any maximal alternating I -subpath P in L are backward,
and therefore, P contributes −1 to �′. Also at least one such P exists, by (ii’). Thus, �′ < 0,
obtaining a contradiction with � = �′. �

Thus, (W2) is valid. Considering lenses formed by a pair of wires and using (6.1) and (W2),
one can easily obtain (W3). Finally, since |ET (v)| � 3 for each terminal vertex v in GT (by
Corollary 3.1(ii)), each cyclic face in GW is surrounded by at least three edges, and therefore,
this face cannot be a lens. So the wiring W is proper.

This completes the proof of Proposition 6.1. �
7. From proper wirings to generalized tilings

In this section we complete the proof of Theorem 2.1 by showing the converse to Proposi-
tion 6.1.

Proposition 7.1. For a proper wiring W on Z = Zn, there exists a g-tiling T on Z such that
BT = BW .

Proof. The construction of the desired T is converse, in a sense, to that described in the proof of
Proposition 6.1; it combines planar duality techniques and geometric arrangements.

We associate to each (inner) face F of the graph GW the point (viz. subset) X(F) in the
zonogon, also denoted as F ∗. These points are just the vertices of tiles in T . The edges concerning
T are defined as follows. Let faces F,F ′ ∈ FW have a common edge e formed by a piece of a
wire wi , and let F lie on the right from wi according to the direction of this wire (and F ′ lies
on the left from wi ). Then the vertices F ∗,F ′∗ are connected by edge e∗ going from F ∗ to F ′∗.
Note that in view of the evident relation X(F ′) = X(F) ∪ {i}, the direction of e∗ matches the
edge direction for g-tilings.

The tiles in T one-to-one correspond to the intersection points of wires in W . More precisely,
let v be a common point of wires wi,wj with i < j . Then the vertex v of GW has four incident
edges ei, ēi , ej , ēj such that: ei, ēi ⊂ wi ; ej , ēj ⊂ wj ; ei, ej enter v; and ēi , ēj leave v. Also one
can see that for the four faces F containing v, the subsets X(F) are of the form X,Xi,Xj,Xij

for some X ⊂ [n]. The tile surrounded by the edges e∗
i , ē

∗
i , e

∗
j , ē

∗
j connecting these subsets (re-

garded as points) is just the ij -tile in T corresponding to v, denoted as v∗. Observe that the
edges ei, ej , ēi , ēj follow in this order counterclockwise around v if v is black (orientation-
reversing), and clockwise if v is white. The tile v∗ is regarded as black in T if v is black, and
white otherwise. Both cases are illustrated in the picture where the right fragment concerns the
orientation-reversing case.

Next we examine properties of the obtained collection T of tiles. The first and second con-
ditions in (T2) (concerning overlapping and non-overlapping tiles with a common edge) follow
from the above construction and explanations.

1) Consider an i-edge e = (u, v) in GW (a piece of the wire wi ). If u 	= si and v 	= s′
i , then

the dual edge e∗ belongs to exactly two tiles, namely, u∗ and v∗. If u = si , then e∗ belongs to
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the unique tile v∗. Furthermore, for the faces F,F ′ ∈ FW containing e, the sets X(F),X(F ′) are
the principal intervals [i − 1] and [i] (letting [0] := ∅). This implies that e∗ is the boundary edge
z�
i−1z

�
i of Z, and this edge belongs to a unique tile in T (which is, obviously, white). Considering

v = s′
i , we obtain a similar property for the edges in rbd(Z). This gives the first and second

condition in (T1).
The proper wiring W possesses the following important property, which will be proved later

(see Lemma 7.2): (∗) each face F in GW has at most one i-edge for each i, and all sets X(F)

among F ∈ FW are different. This implies that T has no tile copies, yielding the third condition
in (T1). Also property (∗) and the planarity of GW imply validity of axiom (T4).

2) For a face F ∈ FW , let E(F) denote the set of its edges not contained in bd(Z). By the
construction and explanations above,

(7.1) the edges in E(F) one-to-one correspond to the edges incident to the vertex v = F ∗ of GT ;
moreover, for e ∈ E(F), the corresponding edge e∗ enters v if e is directed counterclock-
wise around F , and leaves v otherwise.

This implies that v has both entering and leaving edges if and only if F is non-cyclic, unless
v = z0 or zn. (Here we also use the observation that if F contains a vertex z�

i or zr
i for some

1 � i < n, then E(F) has edges in both directions.)
Consider a cyclic face F ∈ F cyc

W , and let C = (v0, e1, v1, . . . , er , vr = v0) be its boundary
cycle, where each edge ep goes from vp−1 to vp . Denote the color of ep by ip . Suppose C is
directed clockwise. Then for each p, we have ip < ip+1 if vp is white, and ip > ip+1 if vp is
black (taking the indices modulo r). Hence C contains at least one black point (for otherwise we
would have i1 < · · · < ir < i1). Moreover,

(7.2) C contains exactly one black point, and if vp is black, then the color of each edge of C is
between ip+1 and ip .

Indeed, let vp be black. Then vp is the root of the (even) lens L of wires wip+1 and wip such that
F ⊆ L. By axiom (W3), L is bijective to F . The existence of another black vertex in C would
cause the appearance of another lens bijective to F , which is impossible. This implies (7.2). As
a consequence, the vertex F ∗ (which has leaving edges only, by (7.1)) is the bottom vertex of
exactly one black tile. When C is directed counterclockwise, we have ip > ip+1 if vp is white,
and ip < ip+1 if vp is black, and (7.2) is valid again. As a consequence, F ∗ is the top vertex of
exactly one black tile.

Thus, T obeys (T3).
3) If a cyclic face F and another face F ′ in GW have a common edge e = (u, v), then F ′ is

non-cyclic. Indeed, the edge e′ preceding e in the boundary cycle of F enters the vertex u. The
wire in W passing through e′ leaves u by an edge e′′. Obviously, e′′ belongs to F ′. Since the
edges e, e′′ of F ′ have the same beginning vertex, F ′ is non-cyclic. Hence the cyclic faces in
GW are pairwise edge-disjoint, implying that no pair of black tiles in T share an edge (the third
condition in (T2)).

Thus, T is a g-tiling. If a face F of GW lies on the left from a wire wi , then the vertices F ∗
and [n] occur in the same region when the interior of the i-strip is removed from the disc DT .
This implies that the sets X(F), F ∈ FW , are just the vertices of T , i.e., the full spectra for T

and W are the same. Now the correspondence between cyclic faces for W and terminal vertices
for T yields BT = BW , as required. �
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It remains to show the following (cf. (∗) in the above proof).

Lemma 7.2. Let W be a proper wiring. Then:

(i) for each face F in GW , all edges surrounding F belong to different wires;
(ii) there are no different faces F,F ′ ∈ FW such that X(F) = X(F ′).

Proof. Suppose that a face F contains two i-edges e, e′ for some i. One can see that:

(a) e, e′ have the same direction in the boundary of F , and
(b) the face F ′ 	= F containing e is different from the face F ′′ 	= F containing e′.

Property (a) implies X(F ′) = X(F ′′). Therefore, (i) follows from (ii).
To show (ii), we use induction on n (the assertion is obvious if n = 2). Let W ′ :=

(w1, . . . ,wn−1). Clearly W ′ obeys axioms (W1), (W2). In its turn, (W3) for W ′ follows from
the property that the cyclic faces for W ′ are exactly those cyclic faces for W that are bijective
to the lenses formed by wires in W ′. To see the latter, consider a lens L formed by wires wi,wj

with i, j < n, the root v of L, and the face F in GW such that v ∈ F ⊂ L. This face is cyclic
(by (W3) for W ), and the color of each edge in the boundary C of F is between i and j , by (7.2).
So no edge of C belong to wn, whence F is a (cyclic) face of GW ′ as well. Conversely, let F ′ be
a cyclic face of GW ′ . Then the boundary C′ of F ′ must contain a black point v (by monotonicity
reasonings as above). Let e, e′ be the edges of C′ incident to v; then their colors are strictly less
than n. Take the face F of GW such that v ∈ F ⊆ F ′. The facts that v is black for W and that
one of e, e′ enters v and the other leaves v imply that the face F (which, obviously, contains
e, e′) is cyclic. By (7.2), the color of each edge in the boundary of F is less than n. This implies
F = F ′.

Thus, W ′ is a wiring (obeying (W1)–(W3)). Moreover, W ′ is proper. Indeed, suppose that
some lens L formed by wires wi,wj (i, j < n) is “empty,” i.e., it is a face of GW ′ . Let v be the
root of L, and F the face of GW such that v ∈ F ⊆ L. Then F is cyclic and the colors of all
edges in its boundary are between i and j (by (7.2)). This implies F = L, contradicting the fact
that W is proper.

Now we prove (ii) in the lemma as follows. By induction all sets X(F), F ∈ FW ′ , are different.
Suppose that there are different faces F̃ , F̃ ′ ∈ FW such that X(F̃ ) = X(F̃ ′). Let F and F ′ be
the faces for W ′ containing F̃ and F̃ ′, respectively. Then X(F) = X(F̃ ) − {n} and X(F ′) =
X(F̃ ′) − {n}. This implies X(F) = X(F ′), and therefore F = F ′. Furthermore, wn goes across
F at least twice (for if it traversed F only once, we would have F = F̃ ∪ F̃ ′, which implies
X(F̃ ) 	= X(F̃ ′)).

It follows that wn and the boundary of F have two common points u,v such that:

(a) u occurs in wn earlier than v, and
(b) the piece P of wn between u and v (not including u,v) lies outside F .

Let Q be the part of the boundary of F between u and v such that the simply connected region
Ω surrounded by P and Q is disjoint from the interior of F . Consider the case when P goes
clockwise around Ω ; see the picture.
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Let e be the edge of GW contained in Q and incident to v; then e has color i < n. Take
the maximal connected piece Q′ of wi lying in Ω and containing e. Since wi does not meet
the interior of F , the end x of Q′ different from v lies on P . Then Q′ and the piece P ′ of P

from x to v form an in-lens L for W . Since P ′ is directed from x to v, Q′ must be directed
from v to x (by (W2)); in particular, e leaves v. So wn crosses wi at v from right to left, and
therefore, the vertex v is black and is the root of L. Let F ′ be the cyclic face in GW lying in L and
containing v, and let C be its boundary cycle. Since W is proper, F ′ 	= L, whence C 	= P ′ ∪ Q′.
Then C contains an edge e′ with color j 	= i, n (one can take as e′ the edge of C that either
succeeds e or precedes the last edge on P ). Take the maximal connected piece R of wj , from a
point y to a point z say, that lies in Ω and contains e′. It is not difficult to realize that y occurs in
P earlier than z. This violates (W2) for wj ,wn.

When P goes counterclockwise around Ω , a contradiction is shown in a similar way. (In this
case, we take as e the edge on Q incident to u; one shows that e enters u, whence the vertex u is
black.)

Thus, Lemma 7.2 is proven, and this completes the proof of Proposition 7.1. �
Propositions 6.1 and 7.1 imply the desired equality B Tn = B Wn, and now Theorem 2.1 fol-

lows from Theorem 2.2. Analyzing the transformation of a g-tiling into a proper wiring described
in Section 6 and the converse transformation described above, one can conclude that their com-
position returns the initial g-tiling (or the initial proper wiring). This implies the following result
(where, as before, BT and B̂T stand for the effective and full spectra of a g-tiling T , respectively,
and similarly for wirings).

Theorem 7.3. There is a bijection β of the set Tn of g-tilings to the set Wn of proper wirings
on Zn such that BT = Bβ(T ) holds for each T ∈ Tn. Furthermore, for each proper wiring W , all
subsets X(F) ⊆ [n] determined by the faces F for W are different, and one holds B̂W = B̂β−1(W).

We conclude this section with several remarks and additional results.

Remark 4. As is shown in the proof of Lemma 7.2, for any proper wiring W = (w1, . . . ,wn),
the set W ′ = (w1, . . . ,wn−1) forms a proper wiring as well (concerning the zonogon Zn−1).
Clearly a similar result takes place when we remove the wire w1. As a generalization, we obtain
that for any 1 � i < j � n, the set (wi, . . . ,wj ) forms a proper wiring on the corresponding
subzonogon. One can see that removing wn from W corresponds to the n-contraction operation
applied to the g-tiling β−1(W) (described in Section 4.3), and that the resulting set T/n of tiles
just corresponds to W ′. This gives the following important result to which we have appealed in
Section 4.
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Corollary 7.4. For a g-tiling T on Zn, its n-contraction T/n is a g-tiling on Zn−1.

Remark 5. Properties of g-tilings and proper wirings established during the proofs of Theo-
rems 2.1 and 2.2 enable us to obtain the following result saying that these objects are determined
by their spectra.

Theorem 7.5. For each semi-normal basis B , there are a unique g-tiling T and a unique proper
wiring W such that B = BT = BW .

Proof. Due to Theorem 7.3, it suffices to prove such a rigidity property for the set of g-tilings.
We apply induction on h(B) := ∑

(|X|: X ∈ B). Suppose there are different g-tilings T ,T ′ with
BT = BT ′ =: B . This is impossible when none of T ,T ′ has black tiles. Indeed, the vertices
of GT and GT ′ (which are the sets in B) are the same and they determine the edges of these
graphs, by (4.2). So GT = GT ′ . This graph is planar and subdivides Zn into little parallelograms,
which are just the tiles in T and the tiles in T ′. Then T = T ′. Now let T (say) have a black
tile. By Proposition 5.1, T has a feasible W-configuration CW(X; i, j, k), and we can make
the corresponding lowering flip for T , obtaining a g-tiling T̃ with B

T̃
= (B − {Xik}) ∪ {Xj}.

Since BT = BT ′ , CW(X; i, j, k) is a feasible W-configuration for T ′ as well, and making the
corresponding lowering flip for T ′, we obtain a g-tiling T̃ ′ such that B

T̃ ′ = B
T̃

. We have
h(B

T̃
) < h(B), whence, by induction, T̃ = T̃ ′. But the raising flip in T̃ w.r.t. the (feasible) M-

configuration CM(X; i, j, k) returns T , as mentioned in Remark 2 in Section 4.1. Hence T = T ′;
a contradiction. �

One can develop an efficient procedure that, given the spectrum BT of a g-tiling T , restores T

itself (in essence, the procedure uses only “local” operations). This is provided by the possibility
of efficiently constructing the graph GT , as follows. We know that BT is the set of nonterminal
vertices of GT , and the edges connecting these vertices are of the form (X,Xi) for all corre-
sponding X, i; let G′ be the graph formed by these vertices and edges. The goal is to construct
the terminal vertices (if any) and the remaining edges of GT (in particular, obtaining the full
spectrum B̂T ). This relies on the observation that each terminal vertex X one-to-one corresponds
to a maximal collection Y ⊂ BT such that |Y | � 3 and: either (a) each Y ∈ Y is of the form
Y = Xi for some i and at least one member of Y has no entering edge in G′; or (b) each Y ∈ Y
is of the form Y = X − {i} for some i and at least one member of Y has no leaving edge in G′.
In case (a), X is the bottom vertex of a black tile τ , and ET (X) = {(X,Y ): Y ∈ Y }. In case (b),
X is the top vertex of a black tile τ , and ET (X) = {(Y,X): Y ∈ Y }. So, by extracting all such
collections Y , we are able to obtain the whole GT . Now to construct the tiles of T is easy (using
Corollary 3.3). Note also that, in view of the equivalence (i) ↔ (iv) in Theorem A, it is “easy” to
decide, given a collection B ⊆ 2[n], whether or not B forms a semi-normal basis.

Remark 6. There is an alternative method of proving Theorems 2.1 and 2.2 in which the former
theorem is proved directly and then the latter is obtained via the relationship of g-tilings and
proper wirings established in this and previous sections. (Other possible methods: prove the first
(second) assertion in Theorem 2.1 and the second (resp. first) assertion in Theorem 2.2.) This
alternative method (which is beyond this paper) is based on ideas and techniques different from
those applied in Sections 4, 5: the former extensively exploit Jordan curve theorem (a “topo-
logical” approach), while the latter extensively appeal to the fact that the graph of a g-tiling is
graded for each color (a “geometrical” approach). For some illustration, let us briefly outline
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how the lowering flip is viewed on the language of wirings, for simplicity considering the sit-
uation corresponding to Case 1(a) in the proof of Proposition 4.1. Here we handle three wires
wi,wj ,wk of a wiring W such that i < j < k and there are five non-cyclic faces A,B,C,D,E

whose local configuration is as illustrated on the left fragment of the picture below. The sets
X(A),X(B),X(C),X(D),X(E) are, respectively, Xij,Xi,Xik,Xk,Xjk, the face C looks like
a triangle, and no other wire in W traverses some open neighborhood Ω of C.

The lowering flip replaces Xik by Xj . This corresponds to a deformation of the wire wj within
Ω which makes it pass below the intersection point of wi and wk , as illustrated on the right
fragment of the picture. The triangle-shaped face C′ arising instead of C satisfies X(C′) = Xj

and is non-cyclic (as well as the modified A,B,D,E).
Note that if, in the initial wiring W , the face above C is also triangle-shaped (i.e., the wires

wi,wk form a lens L containing C and such that wj is the unique wire going across L), then the
above flip turns L into a face and the wiring becomes non-proper. In this case the flip should be
followed by the corresponding operation )( →)( which eliminates L and makes the wiring proper
again. Such a transformation of W corresponds to that in Case 2(a’) in the proof of Proposi-
tion 4.1.

8. n-Contraction and n-expansion

In Section 4.3 we introduced the n-contraction operation for a g-tiling on the zonogon Zn.
In this section we examine this operation more systematically. Then we introduce and study a
converse operation that transforms a g-tiling on Zn−1 into a g-tiling on Zn. The results obtained
here (which are interesting by its own right) will be essentially used in Section 9.

Consider a g-tiling T on Zn. Let P be the reversed path to the right boundary RQ of the
n-strip Q. It possesses a number of important features, as follows:

(8.1) For the path P = (v0, e1, v1, . . . , er , vr ) as above and the colors i1, . . . , ir of its edges
e1, . . . , er , respectively, the following hold:

(i) P begins at the minimal point z0 of Zn and ends at the point z�
n−1;

(ii) none of v0, . . . , vr is the top or bottom vertex of a black ij -tile with i, j < n;
(iii) P has no pair of consecutive backward edges;
(iv) if eq = (vq−1, vq) and eq+1 = (vq+1, vq) (i.e., eq is forward and eq+1 is backward in

P ), then iq > iq+1;
(v) if eq = (vq, vq−1) and eq+1 = (vq, vq+1) (i.e., eq is backward and eq+1 is forward

in P ), then iq < iq+1.

Indeed, the first and last edges of Q are z�
n−1zn and z0z

r
n−1, yielding (i). Property (ii) follows

from the facts that each vertex vq has an incident n-edge (which belongs to Q) and that all edges
incident to the top or bottom vertex of a black ij -tile have colors between i and j (cf. Corol-
lary 3.1(ii)). The forward (backward) edges of P are the backward (resp. forward) edges of RQ.
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Therefore, each forward (backward) edge eq of P belongs to a white (resp. black) iqn-tile, taking
into account the maximality of color n; cf. (4.7). Then for any two consecutive edges eq, eq+1,
at least one of them is forward, yielding (iii). Next, let τ be the iqn-tile (in Q) containing eq , and
τ ′ the iq+1n-tile containing eq+1. If eq is forward and eq+1 is backward in P , then τ ′ is black,
vq is the left vertex of τ ′, and the iq -edge e opposite to eq in τ enters the top vertex of τ ′. Since
e lies in the cone of τ ′ at t (τ ′), we have iq+1 < iq < n, as required is (iv). And if eq is backward
and eq+1 is forward, then τ is black and vq is its bottom vertex. Since eq+1 lies in the cone of τ

at b(τ), we have iq < iq+1 < n, as required in (v).
Recall that the n-contraction operation applied to T shrinks the n-strip in such a way that RQ

merges with the left boundary LQ of Q. From (8.1)(ii) it follows that in the resulting g-tiling
T/n on Zn−1, the path P as above no longer contains terminal vertices at all.

Next we describe a converse operation that transforms a pair consisting of an arbitrary g-tiling
T ′ on Zn−1 and a certain path in GT ′ into a g-tiling on Zn. To explain the construction, we first
consider an arbitrary simple path P in GT ′ which begins at z0, ends at the maximal point z�

n−1 of
Zn−1, and may contain backward edges. Since the graph GT ′ has planar layout (by σ ) in the disc
DT ′ , the path P subdivides GT ′ into two connected subgraphs G′ = G′

P and G′′ = G′′
P such that:

G′ ∪ G′′ = GT ′ , G′ ∩ G′′ = P , G′ contains �bd(Zn−1), and G′′ contains rbd(Zn−1); we call G′
(G′′) the left (resp. right) subgraph w.r.t. P . Then each tile of T ′ becomes a face of exactly one
of G′,G′′ (and all inner faces of G′,G′′ are such), and for an edge e of P not in bd(Zn−1), the
two tiles sharing e occur in different subgraphs. So T ′ is partitioned into two subsets, one being
the set of faces of G′, and the other of G′′.

The n-expansion operation for (T ′,P ) disconnects G′,G′′ by cutting GT ′ along P and then
glue them by adding the corresponding n-strip. More precisely, we shift the vertices of G′′ by the
vector ξn, i.e., each vertex X in it changes to Xn; this induces the corresponding shift of edges
and tiles in G′′. The vertices of G′ preserve. So each vertex X occurring in the path P produces
two vertices, namely, X and Xn. As a result, for each edge e = (X,Xi) of P , there appears its
copy ẽ = (Xn,Xin) in the shifted G′′; we connect e and ẽ by the corresponding (new) in-tile,
namely, by τ(X; i, n). This added tile is colored white if e is a forward edge of P , and black if e

is backward. The colors of all old tiles are inherited.
We refer to the resulting set T of tiles, with the partition into white and black ones, as the n-

expansion of T ′ along P . Since the right boundary of the shifted G′′ becomes the part of rbd(Zn)

from the point zr
n−1 (= {n}) to zn (= [n]), it follows that the union of the tiles in T is Zn. Also

it is easy to see that the shape DT in conv(2[n]) associated to T is again a disc (as required in
axiom (T4)), and that T obeys axiom (T1). The path P generates the n-strip Q for T (consisting
of the added ∗n-tiles and the edges of the form (X,Xn)), and we observe that RQ = P rev and
that LQ is the shift of P rev by ξn. Therefore, the n-contraction operation applied to T returns T ′.

To ensure validity of the remaining axioms (T2) and (T3), we have to impose additional
conditions on the path P . In fact, they are similar to those exposed in (8.1). Moreover, these
conditions are necessary and sufficient.

Lemma 8.1. Let P = (z0 = v0, e1, v1, . . . , er , vr = z�
n−1) be a simple path in GT ′ . Then the

following are equivalent:

(i) the n-expansion T of T ′ along P is a (feasible) g-tiling on Zn;
(ii) P contains no terminal vertices for T ′ and satisfies (8.1)(iii), (iv), (v).
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Proof. Let P be as in (ii). We have to verify axioms (T2), (T3) for T . Let P ′ = (v′
0, e

′
1, v

′
1, . . . ,

e′
r , v

′
r ) and P ′′ = (v′′

0 , e′′
1 , v′′

1 , . . . , e′′
r , v′′

r ) be the copies of P in the graphs G′ and G′′ (taken
apart), respectively. It suffices to check conditions in (T2), (T3) for objects involving elements of
P ′,P ′′ (since for any vertex of G′ not in P ′, the structure of its incident edges and tiles, as well
as the white/black coloring of tiles, is inherited from GT ′ , and similarly for G′′).

Consider a vertex vq with 1 � q < r . Let EL
q (ER

q ) denote the set of edges in ET ′(vq) lying
on the left (resp. right) in the zonogon when we move along P and pass through eq, vq, eq+1; we
include eq, eq+1 in both EL

q and ER
q . Let FL

q (FR
q ) denote the set of tiles in FT ′(vq) of which

both edges incident to vq belong to EL
q (resp. ER

q ). Note that each tile τ ∈ FT ′(vq) must occur
in either FL

q or FR
q , i.e., τ is not separated (in Zn−1) by eq or eq+1 (taking into account that all

vertices of P are nonterminal, and therefore the edges of P are white, and using Corollary 3.3).
By the construction of G′,G′′, any two tiles of T ′ that share an edge not in P are faces of the
same graph among G′,G′′, and if a tile τ ∈ T ′ has an edge contained in �bd(Zn−1) − P (resp.
rbd(Zn−1) − P ), then τ is a face of G′ (resp. G′′). Using these observations, one can conclude
that

(8.2) for 1 � q < r , EL
q and FL

q are entirely contained in G′, while ER
q and FR

q are entirely
contained in G′′.

For q = 1, . . . , r , let τL
q (τR

q ) denote the tile in T ′ (if exists) that contains the edge eq and lies
on the left (resp. right) when we traverse eq from vq−1 to vq . By (8.2), τL

q is in G′ and τR
q is

in G′′. Also each of τL
q , τR

q is white. Let τq be the iqn-tile in T that was added to connect the
edges e′

q and e′′
q . Then

e′
q = b�(τq) and e′′

q = rt(τq). (8.3)

Suppose that eq is forward in P . Then τq is white. Since eq is directed from vq−1 to vq and
τL
q lies on the left from eq when moving from vq−1 to vq , eq belongs to the right boundary

of τL
q . This and (8.3) imply that τq and τL

q do not overlap. In its turn, τR
q contains eq in its

left boundary; this together with (8.3) implies that τq and the shifted τR
q (sharing the edge e′′

q )
do not overlap as well. Now suppose that eq is backward in P . Then τq is black. Since eq is
directed from vq to vq−1 and τL

q lies on the left from eq when moving from vq−1 to vq , eq

belongs to the left boundary of τL
q . This implies that τq and τL

q overlap. Similarly, τq and τR
q

overlap. Thus, (T2) holds for τq, τL
q and for τq, τR

q , as required. Also the non-existence of pairs
of consecutive reverse edges in P implies that no two black tiles in T share an edge.

To verify (T3), consider a black tile τq . Then 1 < q < r , the edges eq−1, eq+1 are forward, and
eq is backward in P . Also iq−1, iq+1 > iq (by (8.1)(iv), (v)). Observe that the set ER

q−1 consists
of the edges in ET ′(vq−1) that enter vq−1 and have color j such that iq � j � iq−1 (including
eq−1, eq ). All these edges are white (as is seen from Corollary 3.3). The second copies of these
edges (shifted by ξn) plus the n-edge (v′

q−1, v
′′
q−1) are exactly those edges of GT that are incident

to the top vertex v′′
q−1 of τq . It its turn, the set EL

q consists of the edges in ET ′(vq) that leave vq

and have color j such that iq � j � iq+1, and these edges are white. Exactly these edges plus the
n-edge (v′

q, v′′
q ) form the set of edges of GT incident to b(τq). (See the picture.) This gives (T3)

for T .
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Thus, (ii) implies (i) in the lemma. The converse implication (i) → (ii) follows from (8.1)
and the fact (mentioned earlier) that for the n-expansion T of T ′ along P , the n-contraction
operation applied to T produces T ′, and under this operation the n-strip for T shrinks into P rev.
This completes the proof of the lemma. �

Let us call a path P as in (ii) of Lemma 8.1 legal. It is the concatenation of P1, . . . ,Pn−1,
where Ph is the maximal subpath of P whose edges connect levels h − 1 and h, i.e., are of the
form (X,Xi) with |X| = h − 1. We refer to Ph as h-th subpath of P and say that this subpath is
ordinary if it has only one edge, and zigzag otherwise. The beginning vertices of these subpaths
together with z�

n−1 are called critical in P (so there is exactly one critical vertex in each level);
these vertices will play an important role in what follows. Note that the critical vertices of a legal
path P = (v0, e1, v1, . . . , er , vr ) are v0 = z0, vr = z�

n−1 and the intermediate vertices vq such
that eq enters and eq+1 leaves vq . We distinguish between two sorts of non-critical vertices vq

by saying that vq is a ∨-vertex if both eq, eq+1 leave vq , and a ∧-vertex if both eq, eq+1 enter vq .
Observe that

(8.4) regarding a vertex of P as a subset X of [n − 1], the following hold: (a) if X is critical,
then both X,Xn are in BT ; (b) if X is a ∧-vertex, then X ∈ BT and Xn /∈ BT ; and (c) if X

is a ∨-vertex, then X /∈ BT and Xn ∈ BT (where T is the n-expansion of T ′ along P ).

Indeed, from the proof of Lemma 8.1 one can see that: if X is critical, then both vertices X,Xn

of GT have entering and leaving edges, so they are nonterminal; if X is a ∧-vertex, then Xn is
terminal while X is not; and if X is a ∨-vertex, then X is terminal while Xn is not (see the above
picture).

It follows that

(8.5) (i) BT = B ′ ∪ B ′′, where B ′ consists of all nonterminal vertices X in G′
P that are not

∨-vertices in P , and B ′′ consists of all Xn such that X is a nonterminal vertex in G′′
P

and is not a ∧-vertex of P ;
(ii) for each h = 0, . . . , n − 1, there is exactly one set X ⊆ [n − 1] with |X| = h such that

both X and Xn belong to BT ; moreover, this X is just the unique critical vertex of P

in level h.

Summing up the above observations and results, we can conclude with the following

Corollary 8.2. The correspondence (T ′,P ) �→ T , where T ′ is a g-tiling on Zn−1, P is a legal
path for T ′, and T is the n-expansion of T ′ along P , gives a bijection between the set of such
pairs (T ′,P ) and the set of g-tilings on Zn. Moreover, under this correspondence, T ′ is the
n-contraction T/n of T and P is the reverse to the right boundary of the n-strip in T .
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We conclude this section with an additional result which will be important for purposes of
the next section. For a g-tiling T on Zn and for 1 � h � n, let Hh denote the subgraph of GT

induced by the set of white edges connecting levels h − 1 and h.

Lemma 8.3. For each h = 1, . . . , n, the graph Hh is a forest. Furthermore:

(i) there exists a (connected) component K of Hh that contains both boundary edges z�
h−1z

�
h

and zr
hz

r
h−1 and such that all vertices of K are nonterminal; moreover, K has planar layout

in the zonogon (i.e., non-adjacent edges in K do not intersect);
(ii) any other component K ′ of Hh contains exactly one terminal vertex v and all edges of K ′

are incident to v (i.e., K ′ is a star).

Proof. We observe that

(8.6) for any edge e = (u, v) of Hh, if there are edges e′, e′′ 	= e in Hh such that e′ leaves
u and e′′ enters v, then one of e′, e′′ lies on the right from e, and the other on the left
from e; equivalently: either i′, i′′ < i or i′, i′′ > i, where i, i′, i′′ are the colors of e, e′, e′′,
respectively.

Indeed, if e /∈ �bd(Zn), then e belongs to the right boundary of some white tile τ , i.e., either
e = br(τ ) or e = rt(τ ). By (3.5), any edge incident to r(τ ) and lying strictly in the cone of τ at
r(τ ) is black. Similarly, if e /∈ rbd(Zn), then e belongs to the left boundary of some white tile τ ′
and, by (3.5), any edge incident to �(τ ′) and lying strictly in the cone of τ ′ at �(τ ′) is black. This
implies (8.6).

In view of (8.6), any edge-simple path P in Hh goes monotonically in one direction, either
from left to right or from right to left; so P is not a cycle. Hence Hh is a forest in which any
component K (a tree) has planar layout in Zn. Suppose that Hh contains a terminal vertex u in
level h−1, and consider an edge e = (u, v) in Hh. Since u is terminal, each of the two white tiles
τ ′, τ ′′ containing e has the bottom vertex at u and the right of left vertex at v. By (3.5), there is
no white edge incident to v and lying strictly inside the cone of τ ′ at v, and similarly for τ ′′. This
implies that e is the unique edge of Hh incident to v. Hence the component of Hh containing u

is a star of which all edges are incident to u. A similar property holds for the components of Hh

meeting a terminal vertex in level h.
Finally, consider a component K without terminal vertices (it exists since the boundary edge

z�
h−1z

�
h is white and both of its ends are nonterminal). We assert that K contains z�

h−1z
�
h. Indeed,

take the leftmost edge e = (u, v) in K and suppose that e 	= z�
h−1z

�
h. Then there is a white tile

τ containing e on its right boundary. Assume that b(τ) = u; then r(τ ) = v. Then the edge e′ :=
b�(τ) is black (as e′ connects levels h − 1 and h and lies on the left from e). Since �(τ) has both
entering and leaving edges, it cannot be terminal. So b(τ) is terminal, contradicting the choice
of K . The case t (τ ) = v leads to a similar contradiction. Thus, K contains z�

h−1z
�
h. Considering

the rightmost edge of K and arguing similarly, we conclude that K contains the boundary edge
zr
hz

r
h−1 as well. �
We will refer to the component K as in (i) of this lemma as the principal one. Considering a

legal path P for T and taking into account that all vertices of P are nonterminal and that h-th
subpath in it is contained in Hh, for each h, we obtain the following property as a consequence
of Lemma 8.3.
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Corollary 8.4. Any legal path for a g-tiling is determined by the set of its critical vertices.

9. Weakly separated set-systems

The goal of this section is to prove the following theorem answering Leclerc–Zelevinsky’s
conjecture on weakly separated collections (or ws-collections) mentioned in Section 1.

Theorem 9.1. Any largest ws-collection C ⊆ 2[n] is a semi-normal TP-basis.

Recall that a ws-collection C ⊆ 2[n] is largest if its cardinality |C| is maximum among all ws-
collections in 2[n]; this maximum is equal to

(
n+1

2

) + 1 [9]. An important example is the set In

of intervals in [n] (including the empty set). Also it was shown in [9] that a (lowering or raising)
weak flip in a ws-collection produces again a ws-collection. Moreover, its cardinality preserves
under a flip since it replaces one set in some pair {Xj,Xik} (say) by the other and these sets
are not weakly separated from each other. Due to these facts, the set Cn of largest ws-collections
includes Bn (the set of semi-normal bases for T Pn). Theorem 9.1 says that the converse inclusion
takes place as well. As a result, we will conclude with the following

Corollary 9.2. Cn = Bn.

In view of Theorem 2.2, to obtain Theorem 9.1, it suffices to show the following

Theorem 9.3. Any C ∈ Cn is the spectrum BT of some g-tiling T on Zn.

This theorem is proved by combining additional facts established in [9] and results from the
previous sections. Let C ∈ Cn. To construct the desired tiling for C, we consider the projection
C′ of C into 2[n−1], i.e., the collection of subsets X ⊆ [n − 1] such that either X ∈ C or Xn ∈ C

or both. Partition C′ into three subcollections M,N,S, where

M := {X: X ∈ C /� Xn}, N := {X: Xn ∈ C /� X}, S := {X: X,Xn ∈ C}.
Also for h = 0, . . . , n − 1, define

C′
h := {X ∈ C′: |X| = h}, Mh := M ∩ C′

h, Nh := N ∩ C′
h.

It is shown in [9] that

(9.1) for each h = 0, . . . , n − 1, S ∩ C′
h contains exactly one element.

We call S the separator of C′ and denote its elements by S0, . . . , Sn−1, where |Sh| = h. In view
of (9.1), |C′| = |C| − |S| = (

n+1
2

) + 1 − n = (
n
2

) + 1, and as is shown in [9],

(9.2) C′ is a ws-collection, and therefore it is a largest ws-collection in 2[n−1].

Two more observations in [9] are:

(9.3) (i) S0 � S1 � · · · � Sn−1;
(ii) for each h = 0, . . . , n − 1, any sets Y ∈ Mh and Y ′ ∈ Nh satisfy Y � Sh and Sh � Y ′.
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An important consequence of (9.3) is that the collection C can be uniquely restored from the
pair C′, S. Indeed, C consists of the sets X,Xn such that X ∈ S, the sets X ⊆ [n − 1] such that
X � S|X|, and the sets Xn such that X ⊆ [n − 1] and S|X| � X.

The proof of Theorem 9.3 is led by induction on n. The result is trivial for n � 2. Let n > 2
and assume by induction that there is a g-tiling T ′ on Zn−1 such that BT ′ = C′. Our aim is to
transform T ′ into a g-tiling on Zn whose spectrum is C. The following assertion is crucial.

Lemma 9.4. There exists a legal path P for T ′ whose set of critical vertices coincides with the
separator S.

Proof. It uses the following fact from [9]:

(9.4) for distinct A,A′,A′′ ⊆ [n′], if |A| � |A′| � |A′′|, A�A′�A′′, and A′′ is weakly separated
from A, then A � A′′.

The desired path P is constructed by relying on Lemma 8.3. For h = 1, . . . , n − 1, let Hh be
the subgraph of GT ′ induced by the white edges connecting levels h − 1 and h, and let Kh be
the principal component of Hh. Since all vertices of Kh are nonterminal, they (regarded as sets)
belong to C′.

Consider two vertices X,Y with |X| � |Y | in Kh. If they are connected by edge, then Y = Xi

for some i ∈ [n] and, obviously, X � Y . If the path P from X to Y in Kh has two or more edges
and goes from left to right, then X � Y as well. (When X,Y belong to different levels, we say
that P goes from left to right if the vertex Y ′ preceding Y in P lies on the right from X in the
level containing X,Y ′.) Indeed, for any three consecutive vertices Z,Z′,Z′′ in P (occurring in
this order) either Z = Z′i and Z′′ = Z′j , or Z = Z′ − {j} and Z′′ = Z − {i} for some i < j

(since Z′′ lies on the right from Z), which implies Z � Z′′. Then X � Y follows by transitivity
from (9.4).

We assert that the separating vertex Sh−1 belongs to Kh. Indeed, suppose this is not so. Then
Sh−1 belongs to a star component K ′ of Hh, and therefore, the white edge e in Hh leaving
Sh−1 enters the top vertex of some black tile τ = τ(X;p,q). We have Sh−1 = Xpq − {i} and
p < i < q , where i is the color of e. On the other hand, the bottom vertex X of τ has a leaving
j -edge (X,Xj) for some p < j < q (cf. Corollary 3.1). The vertex Xj is nonterminal, and we
have: |Xj | = |Sh−1|, Sh−1 − Xj = {p,q}, and Xj − Sh−1 = {i, j}. Since p < i, j < q , we come
to a contradiction with the fact that Sh−1 is comparable by � with any nonterminal vertex in
level h − 1. Thus, Sh−1 is in Kh. Arguing similarly, one shows that Sh is in Kh as well. Let Ph

be the path from Sh−1 to Sh in Kh. Since Sh−1 � Sh (by (9.3)), Ph goes from left to right (when
it has two or more edges).

Concatenating P1, . . . ,Pn−1, we obtain a legal path P for T ′ in which h-th subpath is Ph and
the critical vertices are exactly S0, . . . , Sn−1, as required. �

Now we finish the proof of Theorem 9.3 as follows. Let T be the n-expansion of T ′ along P .
Then BT is a ws-collection, moreover, it is a largest ws-collection since |BT | = (

n+1
2

) + 1.
By (8.5) and Corollary 8.2, the projection of BT into 2[n−1] (defined by X �→ X − {n}) is just
BT ′ = C′ and, moreover, the set of X ⊆ [n−1] such that X,Xn ∈ BT is exactly the set of critical
vertices in P , i.e., S. Since the pair C′, S generates the corresponding largest ws-collection in
2[n] in a unique way, we obtain BT = C, and Theorem 9.3 follows.

This yields Theorem 9.1 and completes the proof of Theorem A.
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10. Generalizations

In this section we outline two generalizations, omitting details and proofs.

A. The obtained relationships between semi-normal bases, proper wirings and generalized tilings
are extendable to the case of an integer n-box Bn,a = {x ∈ Z[n]: 0 � x � a}, where a ∈ Zn+.
A description in details will be given in a separate paper. Recall that a function f on Bn,a is a
TP-function if it satisfies

f (x + εi + εk) + f (x + εj )

= max
{
f (x + εi + εj ) + f (x + εk), f (x + εi) + f (x + εj + εk)

}
(10.1)

for any x and 1 � i < j < k � n, provided that all six vectors occurring as arguments in this
relation belong to Bn,a , where εq is q-th unit base vector in R[n]. In this case the standard basis
of TP-functions consists of the vectors x such that xi, xj > 0 for i < j implies xq = aq for
q = i + 1, . . . , j − 1 (see [2] where such vectors are called fuzzy-intervals). Normal and semi-
normal bases are corresponding collections of integer vectors in Bn,a , defined by a direct analogy
with the Boolean case.

The semi-normal bases in the box case admit representations via natural generalizations of
proper wiring and g-tiling diagrams for the Boolean case. They are viewed as follows.

The zonogon for a given a is the set Zn,a := {λ1ξ1 + · · · + λnξn: λi ∈ R, 0 � λi � ai, i =
1, . . . , n}, where the vectors ξi are chosen as above. For each i ∈ [n] and q = 0,1, . . . , ai , define
the point z�

i,q := a1ξ1 + · · · + ai−1ξi−1 + qξi (on the left boundary of Zn,a) and the point zr
i,q :=

anξn + · · ·+ ai+1ξi+1 + qξi (on the right boundary). These points are regarded as the vertices on
the boundary of Zn,a , and the edges in it are the directed line-segments z�

i,q−1z
�
i,q and zr

i,qzr
i,q−1.

When q � 1, we define si,q (s′
i,q ) to be the median point on the edge z�

i,q−1z
�
i,q (resp. zr

i,qzr
i,q−1).

A generalized tiling T on Z = Zn,a is defined by essentially the same axioms (T1)–(T4)
from Section 2.2. A wiring W on Z consists of wires wi,q going from si,q to s′

i,q , i = 1, . . . , n,
q = 1, . . . , ai . Again, it is defined by the same axioms (W1)–(W3) from Section 2.1.

Note that for any i and 1 � q < q ′ � ai , the point s′
i,q occurs earlier than s′

i,q ′ in the right
boundary of Z (beginning at z0), which corresponds to the order of si,q , si,q ′ in the left boundary
of Z. This and axiom (W2) imply that the wires w := wi,q and w′ := wi,q ′ are always disjoint.
Indeed, suppose that w and w′ meet and take the first point x of w′ that belongs to w. Let Ω0,Ω1
be the connected components of Z − (P ∪ P ′), where P is the part of w from x to s′

i,q , P ′ is the
part of w′ from si,q ′ to x, and Ω0 contains z0. Then the end point s′

i,q ′ of w′ is in Ω1. Furthermore,
w′ crosses w at x from left to right (since x is the first point of w′ where it meets w); this implies
that when passing x, the wire w′ enters the region Ω0. Therefore, the part of w′ from x to s′

i,q ′
must intersect P ∪ P ′ at some point y 	= x. But y ∈ P is impossible by (W2) and y ∈ P ′ is
impossible because w′ is not self-intersecting.

Like the Boolean case, for a g-tiling T , the spectrum BT is defined to be the set of nonterminal
vertices (viz. n-vectors) for T . For a wiring W and an (inner) face F of its associated planar
graph, let x(F ) denote the n-vector whose i-th entry is the number of wires wi,q such that F lies
on the left from wi,q . Then BW is defined to be the collection of vectors x(F ) over all non-cyclic
faces F .

Theorems 2.1 and 2.2 remain valid for these extended settings (where Zn is replaced by Zn,a),
and proving methods are essentially the same as those in Sections 4–7, with minor refinements on
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some steps. (E.g., instead of a unique dual i-path (i-strip) for each i, we now deal with ai dual i-
paths Qi,1, . . . ,Qi,ai

, each Qi,q connecting a boundary edge z�
i,q−1z

�
i,q to zr

i,q−1z
r
i,q , which does

not cause additional difficulty in the proof.)

B. The second generalization involves an arbitrary permutation ω on [n]. (In fact, so far we have
dealt with the longest permutation ω0, where ω0(i) := n + 1 − i.) For i, j ∈ [n], we write i ≺ω j

if i < j and ω(i) < ω(j). This relation is transitive and gives a partial order on [n]. Let Xω ⊆ 2[n]
be the set (lattice) of ideals X of ([n],≺ω), i.e., i ≺ω j and j ∈ X implies i ∈ X; such an X is
called in [1,9] an ω-chamber set. In particular, Xω is closed under taking a union or intersection
of its members. Below we specify settings and outline how results concerning ω0 can be extended
to ω.

(i) Speaking of a TP-function for ω, or an ω-TP-function, we mean a function f defined on
the set Xω (rather than 2[n]) and satisfying (1.1) when all six sets in it belong to Xω. Note that
Xi,Xk,Xij,Xjk ∈ Xω implies that each of X,Xj,Xik,Xijk is in Xω as well (since each of
the latter sets is obtained as the intersection or union of a pair among the former ones). The
notion of TP-basis is extended to the set T Pω of ω-TP-functions in a natural way. It turns out
that the role of standard basis is now played by the set Iω of ω-dense sets X ∈ Xω, which means
that there are no triples i < j < k such that i, k ∈ X /� j and each of the sets X − {i}, X − {k}
and (X − {i, k}) ∪ {j} belongs to Xω. In particular, Iω contains the sets [i], {i′: i′ �ω i} and
{i′: ω(i′) � ω(i)} for each i ∈ [n]; when ω = ω0, Iω turns into the set In of intervals in [n].
(It is rather easy to prove that any ω-TP-function is determined by its values on Iω; this is done
by exactly the same method as applied in [2] to show a similar fact for T Pn and In. The fact
that the restriction map T Pω → RIω is surjective (which is more intricate) can be shown by
extending a flow approach developed in [2] for the cases of TP-functions on Boolean cubes and
integer boxes.) Normal and semi-normal bases for the ω-TP-functions are defined via flips from
the standard basis Iω , by analogy with those for ω0.

(ii) Instead of the zonogon Zn, we now should consider the region Zω in the plane bounded
by two paths: the left boundary of Zn and the path Pω formed by the points v0

ω := z0 and
vi
ω := ξω−1(1) + · · · + ξω−1(i) for i = 1, . . . , n, that are connected by the directed line-segments

e1
ω, . . . , en

ω, where e
j
ω begins at v

j−1
ω and ends at v

j
ω. (Then e

j
ω is a parallel translation of the vector

ξω−1(j). Observe that Pid = �bd(Zn) and Pω0 = rbd(Zn), where id is the identical permutation.)
A wiring for ω is a collection W of wires w1, . . . ,wn on Zω satisfying axioms (W1)–(W3) and
such that each wi begins at the median point si of the i-edge on �bd(Zn) (as before) and ends
at the median point s

ω(i)
ω of the i-edge e

ω(i)
ω (a wire wi degenerates into a single point if these

edges coincide). Note that if i ≺ω j then s
ω(i)
ω occurs earlier than s

ω(j)
ω in the right boundary Pω

of Zω, and therefore, the wires wi and wj does not meet (as explained in part A above). This
implies that all sets in the full spectrum of W belong to Xω.

In its turn, a generalized tiling T for ω is defined by axioms (T2), (T3) as before and slightly
modified axioms (T1), (T4), where: in (T1), the first condition is replaced by the requirement that
each edge in (�bd(Zn) ∪ Pω) − (�bd(Zn) ∩ Pω) belong to exactly one tile; and in (T4), it is now
required that the region DT ∪ σ(�bd(Zn) ∩ Pω) be simply connected. Also we should include
in the graph GT all common vertices and edges of �bd(Zn) and Pω. One easily shows that the
union of tiles in T and edges in �bd(Zn)∩Pω is exactly Zω, and that all vertices in the boundary
of Zω are nonterminal.

The constructions and arguments in Sections 6, 7, based on planar duality, can be transferred
without essential changes to the ω case, giving a natural one-to-one correspondence between
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the g-tilings and proper wirings for ω. (In particular, i-th wire wi in a proper wiring W for ω

turns into the i-strip Qi in the corresponding g-tiling T , which begins with the i-edge z�
i−1z

�
i in

�bd(Zn) and ends with the i-edge e
ω(i)
ω in Pω.) The arguments in Sections 4, 5 continue to work

in the ω case as well. As a result, one can obtain direct generalizations of Theorems 2.1 and 2.2
to an arbitrary permutation ω.

(iii) It is shown in [9] that the maximum possible cardinality of a weakly separated collection
C in Xω is equal to �(ω) + n + 1, where �(ω) is the length of ω (i.e., the number of inversions in
it). It turns out (see [3]) that such largest ω-chamber ws-collections C are precisely the spectra
of g-tilings on Zω, similar to the equivalence of (iii) and (iv) in Theorem A.

Summing up the above explanations, one can conclude with a corresponding generalization
of Theorem A to the case of an arbitrary permutation ω on [n].

Remark 7. In fact, the generalization in part A is a special case of the one in part B. More
precisely, given a ∈ Zn+, define āi := a1 + · · · + ai , i = 0, . . . , n (letting ā0 := 0). Let us form a
permutation ω′ on [ān] as follows: for i = 1, . . . , n and q = 1, . . . , ai ,

ω′(āi−1 + q) := ān − āi + q,

i.e., ω′ permutes the blocks B1, . . . ,Bn, where Bi := {āi−1 + 1, . . . , āi}, according to the permu-
tation ω0 on [n], and preserves the order of elements within each block. Then there is a one-to-one
correspondence between the vectors x ∈ Bn,a and the ideals X of ([ān],≺ω′), namely: X ∩ Bi

consists of the first xi elements of Bi , for each i. Under this correspondence, (10.1) is equivalent
to (1.1). Although the shape of the zonogon Zn,a looks somewhat different compared with Zω′
(since the generating vectors ξ• for different elements in a block are non-colinear), it is easy to
see that the wirings for the former and the latter are, in fact, the same. (This implies an equiva-
lence of the g-tilings for these two cases, which is not seen immediately.) So the integer box case
is reduced, in all aspects we deal with, to the permutation one.
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Appendix A. TP-bases and weakly separated set-systems on a hyper-simplex

Our results on TP-bases, generalized tilings and weakly separated set-systems and techniques
elaborated in previous sections enable us to obtain an analog of the equivalence (i) ↔ (iv) in
Theorem A to hyper-simplexes. Let us start with basic definitions and backgrounds.

When dealing with a hyper-simplex �m
n = {S ⊆ [n]: |S| = m} rather than the Boolean

cube 2[n], the notion of TP-functions and TP-bases are modified as follows. Let f :�m
n → R.

Instead of relation (1.1) involving triples i < j < k, one considers relation

f (Xik) + f (Xj�) = max
{
f (Xij) + f (Xk�), f (Xi�) + f (Xjk)

}
(A.1)

for a quadruple i < j < k < � in [n] and a subset X ⊆ [n] − {i, j, k, �} of size m − 2. When this
holds for all such X, i, j, k, �, we refer to f as a TP-function on �m. Let T P m denote the set
n n
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of such functions f . By an analogy with the Boolean cube case, a subset B ⊆ �m
n is called a

TP-basis if the restriction map T P m
n → RB is bijective.

An important instance of TP-bases for �m
n is the collection I S m

n = I m ∪ S m, where I m = I m
n

consists of the intervals of size m and S m = S m
n consists of the sets of size m representable as the

union of two nonempty intervals [1..p] and [q..r] with q > p + 1 (see [2] where the elements of
S m are called sesquialteral intervals).

When a TP-basis contains four sets Xij,Xk�,Xi�,Xjk as above and one set Y ∈ {Xik,Xj�},
the replacement of Y by the other set Y ′ in {Xik,Xj�} gives another TP-basis B ′. We call such
a transformation Y � Y ′ (or B �→ B ′) a raising (lowering) 4-flip if Y = Xik (resp. Y = Xj�).
One can see that I S m

n does not admit lowering flips and we call this TP-basis standard for �m
n

(analogously to the basis In for 2[n] where weak lowering flips are absent as well).
The object of our interest is the class Bm

n of TP-bases that can be obtained by making a series
of 4-flips starting from I S m

n . It is analogous to the class Bn of semi-normal bases for the Boolean
cube case (and Bm

n along with the 4-flips on its members represents another interesting instance
of Plücker environments).

A direct calculation shows that |I S m
n | = m(n − m) + 1; so all TP-bases for �m

n have this
cardinality. Besides, one can associate to B ∈ Bm

n the number η(B) := ∑
X∈B

∑
i∈X i. Clearly

any lowering 4-flip decreases η; we shall see later that any B ∈ Bm
n is reachable from I S m

n by a
series of merely raising 4-flips, and therefore, η(B) > η(I S m

n ) unless B = I S m
n .

Our goal is to show that Bm
n coincides with the set Cm

n of largest weakly separated collections
C ⊆ �m

n , i.e., having maximum possible cardinality |C|. We rely on two known facts.
First, Scott [11] showed that if a ws-collection C ⊆ �m

n contains four sets Xij,Xk�,Xi�,Xjk

(with X, i, j, k, � as above), then each of Xik,Xj� is weakly separated from any member of C.
(Note that Xik,Xj� are not weakly separated from each other.)

This implies that any TP-basis in Bm
n is weakly separated, since the standard basis is such

(which is easy to check; cf. [9]).
Second, a simple, but important, fact noticed in [9] is that: for 0 � m � m′ � n and a

ws-collection C ⊆ 2[n] whose members have size at least m and at most m′, if we add to
C all intervals of size > m′ and all co-intervals of size < m, then the resulting collection is
again weakly separated. Let us call the latter collection the straight extension of C and de-
note it by C∗. Note that the numbers of added intervals and co-intervals are

(
n−m′+1

2

)
and(

m+1
2

)
, respectively. When m = m′, the fact that the maximum cardinality of a ws-collection

in 2[n] amounts to
(
n+1

2

) + 1 and the identity
(
n+1

2

) = (
n−m+1

2

) + (
m+1

2

) + m(n − m) + 1 imply

|C| = |C∗| − (
n−m+1

2

) − (
m+1

2

)
� m(n − m) + 1 = |I S m

n |.
Thus, I S m

n is a largest ws-collection in �m
n , implying that all members of Bm

n are such, i.e.,
Bm

n ⊆ Cm
n . We show the following analog of a result from Section 9 to hyper-simplexes.

Theorem A.1. Let C ∈ Cm
n and C 	= I S m

n . Then C admits a lowering 4-flip (defined in the same
way as for TP-bases). In particular, all members of Cm

n belong to one and the same orbit w.r.t.
4-flips.

In light of the above discussion, this gives the desired result:

Corollary A.2. Bm = Cm.
n n
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Proof of Theorem A.1. Note that C contains all intervals and co-intervals of size m (since they
are weakly separated from any member of �m

n ).
We use induction on n, assuming w.l.o.g. that 0 < m < n. The ws-collection C∗ (defined as

above when m = m′) is largest in 2[n] and its projection C′ (defined as in Section 9) is a largest
ws-collection in 2[n−1]. Let T be a g-tiling on Zn−1 whose spectrum BT is C′. Clearly for h > m

(resp. h < m−1), the set C′
h := {X ∈ C′: |X| = h} consists of all intervals (resp. all co-intervals)

of size h in [n − 1].
As to level m, all sets X ∈ C′

m are exactly the members of C not containing the element n

(since there exists only one set Y ∈ C∗ with |Y | > m, namely, the interval [n − m..n], whose
projection occurs in C′

m, but the latter is the interval [n − m..n − 1], which belongs to C ∩ C′
m).

And in level m − 1, all members of C′
m−1 are exactly the projections of those members of C

that contain n (since there exists only one set Y ∈ C∗ with |Y | < m, namely, the “co-interval”
[1..m − 1], that occurs in C′

m−1, but it is the projection of the co-interval [1..m − 1] ∪ {n}, which
belongs to C).

Now consider two possible cases.

Case 1. Let T have no feasible M-configuration of height m − 1 (defined as in Section 4.1).
Then, by Proposition 5.3, C′

m−1 contains only co-intervals. It is easy to see that, under the above
projection map, the preimages in C of these co-intervals X (which are exactly the members
of C containing n) are only intervals and sesquialteral intervals. Also the facts that C′ is the
straight extension of C′

m and that C′ is a largest ws-collection in 2[n−1] (by Corollary 9.2) imply
C′

m ∈ Cm
n−1. Since C 	= I S m

n , the subcollection C′
m of C differs from I S m

n−1. By induction C′
m

admits a lowering 4-flip; this is just a required 4-flip for C.

Case 2. Let T have a feasible M-configuration CM(X; i, j, k) of height m − 1, i.e., C′ = BT

contains sets Xi,Xj,Xk,Xij,Xjk with |X| = m − 2 and i < j < k. Since the first three sets
among them belong to level m − 1, C contains the sets Xin,Xjn,Xkn. These together with
the sets Xij,Xjk contained in C (since the latter ones are in level m of T ) give the desired
configuration (involving the quadruple i < j < k < n) for performing a lowering 4-flip in C.

This completes the proof of Theorem A.1. �
Remark 8. We can give an alternative method of proving the equality Bm

n = Cm
n relying on results

of Postnikov [10] on alternating strand diagrams, or, briefly, as-diagrams. One can outline the
idea of this method as follows (omitting details). Given C ∈ Cm

n , let T and W be, respectively,
the g-tiling and proper wiring with BT = BW = C∗. Take the maximum zigzag paths P,P ′ in
the principal components in the forests Hm−1,Hm of the graph GT , respectively (see Section 8),
both going from the vertex [m] to the vertex [n − m + 1..n]. Then P ′ passes (as vertices) all
interval of sizes m and m + 1, and one can see that the sequence of colors of its edges is m +
1,1,m+ 2,2, . . . , n, n−m (in this order on P ′). In its turn, the reverse path P −1 of P passes all
co-intervals of sizes m − 1 and m, and the sequence of colors of its edges is n − m + 1,1, n −
m+ 2,2, . . . , n,m. When considering the planar layout of GT on the disc DT , the concatenation
(circuit) Q of P ′ and P −1 cuts out a smaller disc D̃ in DT ; it is the union of (the squares
representing) the tiles of height m in T .

Take the parts w′
i of wires wi ∈ W going across D̃, and denote the beginning and end points

of w′
i by ui and vi , respectively (both ui, vi are interior points of edges of color i in Q, by

the construction in Section 6). Let S be the sequence of 2m points ui, vj along P −1, and S′
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the sequence of 2(n − m) points ui, vj along P ′. Partition S (resp. S′) into m (resp. n − m)
consecutive pairs; then each pair contains one “source” ui and one “sink” vj of the wiring W ′ =
(w′

1, . . . ,w
′
n). Now extend each wire in W ′ within the boundary Q of D̃ so that, for the pairs

{ui, vj } as above, the beginning of w′
i coincide with the end of w′

j . One shows (a key) that
the resulting wiring forms an as-diagram D of [10]. Moreover, the sequences of edge colors in
P −1,P ′ indicated above provide that the corresponding permutation on [n] associated to the set
of directed chords (ui, vi) (when the above n pairs are numbered clockwise) is the Grassmann
permutation ω for m,n, namely, ω(i) = m + i for i = 1, . . . , n − m, and ω(i) = i − n + m

otherwise. Finally, using properties of nonterminal vertices of T exhibited in Corollary 3.3, one
shows that Postnikov’s operations (M1) (“square moves”) on D correspond to 4-flips on C. Then
Theorem A.1 can be derived from a result (Theorem 13.4) in [10].

Next, the fact that the poset (Bm
n ,≺) (where B ≺ B ′ if B is obtained from B ′ by lowering

4-flips) has a unique minimal element (namely, I S m
n ) easily implies that this poset has a unique

maximal element. This is I m
n ∪ co-S m

n , where co-S m
n consists of the m-sized sets representable

as the union of two nonempty intervals [p..q] and [r..n] with r > q + 1. Let us call this basis
co-standard for �m

n .
One more useful construction concerns an embedding of the set Bn of semi-normal TP-bases

for the Boolean cube 2[n] into TP-bases for some hyper-simplex. More precisely, consider a
hyper-simplex �n

n+n′ with n′ � n. For X ⊆ [n], define X� to be the union of X and the interval
[q..n + n′] of size n − |X| (which is empty when X = [n]). In addition, let A be the collection
of all n-sized intervals [p..q] with n < q < n + n′ and all n-sized sets [p..q] ∪ [r..n + n′] with
n + 1 < q + 1 < r � n + n′. Then the union of A and the collection {I�: I ∈ In} forms the
co-standard basis for �n

n+n′ . In a similar fashion, we associate to any X ⊆ 2[n] the collection
A ∪ {X�: X ∈ X }, denoted as X �.

Proposition A.3. For any semi-normal TP-basis B ∈ Bn, one holds B� ∈ Bn
n+n′ .

Proof. Let B 	= In. Then B contains sets Xi,Xk,Xij,Xik,Xjk for some i < j < k and X ⊆
[n] − {i, j, k}. Under the transformation Y �→ Y�, these sets turn into the sets (respectively)
Xi ∪[�..n+n′],Xk∪[�..n+n′],Xij ∪[�+1..n+n′],Xik∪[�+1..n+n′],Xjk∪[�+1..n+n′]
in �m

n+n′ , where � := n′ + |X| + 2. Then the lowering flip Xik � Xj in B corresponds to the
raising flip X′ik � X′j� in B�, where X′ := X ∪ [� + 1..n + n′], and the result follows. �

The embedding B �→ B� of the TP-bases for 2[n] into TP-bases for �n
n+n′ can be regarded

as a certain dual analog of the straight extension map B ′ �→ (B ′)∗ of the TP-bases for �m
n to

TP-bases for 2[n].
We conclude this section with a generalization to a truncated Boolean cube �

m,m′
n := {S ⊆

[n]: m � |S| � m′}, where 0 � m � m′ � n. In this case, one considers the class T P m,m′
n of

functions f : �m,m′
n → R obeying relations (1.1) and (A.1) for all corresponding corteges where

the six sets occurring as arguments belong to �
m,m′
n . (In fact, it suffices to require that (1.1)

be imposed everywhere but that (A.1) be explicitly imposed only for the corteges related to the
lowest level, i.e., when |X| = m − 2. Then (A.1) for the other corteges will follow; see [2].)

The class T P m,m′
n has as a basis the set I S m,m′

n := S m
n ∪ I m

n ∪ I m+1
n ∪ · · ·∪ I m′

n [2], called the

standard basis for this case. We define Bm,m′
n to be the set of bases obtained from the standard

one by a series of weak 3-flips (i.e., related to (1.1)) and 4-flips. (From the theorem below it
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follows that the latter ones are important only in level m.) On the other hand, we can consider the
set Cm,m′

n of largest ws-collections in �
m,m′
n (whose cardinality is

(
n+1

2

) − (
n−m′+1

2

) − (
m+1

2

) =
|I S m,m′

n |). By explanations above, Bm,m′
n ⊆ Cm,m′

n .

Theorem A.4. Let C ∈ Cm,m′
n . Then I S m,m′

n can be obtained from C by a series of lowering weak

3-flips followed by a series of lowering 4-flips in level m. Therefore, Bm,m′
n = Cm,m′

n .

Proof. If C admits a lowering 3-flip, then performing such a flip produces a collection in Cm,m′
n

with a smaller total size of its members. If such a flip is impossible, then all sets X ∈ C with
|X| > m are intervals, by Proposition 5.3. Then {X ∈ C: |X| = m} is a largest ws-collection for
the hyper-simplex �m

n , and the result follows from Theorem A.1. �
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