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1. Introduction

The idea of quantization has proved its importance to bridge the commutative and
noncommutative versions of certain algebraic structures and promote better understand-
ing various aspects of the latter versions. One popular structure studied for the last three
decades (as an important part of the study of algebraic quantum groups) is the quantized
coordinate ring R = Oy (M, (K)) of m x n matrices over a field K, where ¢ is a nonzero
element of K; it is usually called the algebra of m x n quantum matrices. Here R is the
K-algebra generated by the entries (indeterminates) of an m x n matrix X subject to
the following (quasi)commutation relations due to Manin [12]: for 1 < i < £ < m and
1<j<k<n,

TijTik = qTikT;j, TijTe5 = qTejTiz, (1.1)

—1
TikTej = TeiTik  and  miTer — TepTi; = (@ — g ) TikTe;-

This paper is devoted to quadratic identities for minors of quantum matrices (usu-
ally called quantum minors or quantized minors or g-minors). For representative cases,
aspects and applications of such identities, see, e.g., [6-10,14,15] (where the list is incom-
plete). We present a novel, and rather transparent, combinatorial method which enables
us to completely characterize and efficiently verify homogeneous quadratic identities of
universal character that are valid for quantum minors.

The identities of our interest can be written as

> (siq" L T)g (T T)g: i =1,...,N) =0, (1.2)

where ¢; € Z, s; € {+1,—1}, and [I|J], denotes the quantum minor whose rows and
columns are indexed by I C [m] and J C [n], respectively. (Hereinafter, for a positive
integer n’, we write [n'] for {1,2,...,n'}.) The homogeneity means that each of the sets
LuIl, NI}, J;JUJ!, J;NJ! does not depend 7, and the term “universal” means that (1.2)
should be valid independently of K,¢ and a g-matrix (a matrix whose entries obey
Manin’s relations and, possibly, additional ones). Note that any quadruple (I|J,I'|.J),
referred to as a cortege later on, may be repeated in (1.2) several times.

Our approach is based on two sources. The first one is the flow-matching method
elaborated in [4] to characterize quadratic identities for usual minors (viz. for ¢ = 1). In
that case the identities are viewed simpler than (1.2), namely, as

Z(si[hlJi] [ i=1,...,N) = 0. (1.3)

(In fact, [4] deals with natural analogs of (1.3) over commutative semirings, e.g. the
tropical semiring (R, +,max).) In the method of [4], each cortege S = (I|J,I'|J’) is
associated with a certain set M(S) of feasible matchings on the set (IAI') U (JAJ')
(where AAB denotes the symmetric difference (A — B)U (B — A), and AU B the disjoint
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Fig. 1. An example of Cauchon diagrams (left) and the related graph (right).

union of sets A, B). The main theorem in [4] asserts that (1.3) is valid (universally)
if and only if the families ZT and Z~ of corteges S; with signs s; = + and s; = —,
respectively, are balanced, in the sense that the total families of feasible matchings for
corteges occurring in ZT and in Z~ are equal.

The main result of this paper gives necessary and sufficient conditions for the quantum
version (in Theorems 7.1 and 5.1). It says that (1.2) is valid (universally) if and only if the
families of corteges ZT and Z~ along with the function § are g-balanced, which now means
the existence of a bijection between the feasible matchings for Z+ and Z~ that is agreeable
with 0 in a certain sense. The proof of necessity (Theorem 7.1) considers non-g-balanced
I%,Z7,6 and explicitly constructs a certain graph determining a g-matrix for which (1.2)
is violated when K is a field of characteristic 0 and ¢ is transcendental.

The second source of our approach is the path method due to Casteels [1,2]. He
associated with an m x n Cauchon diagram C' of [3] a directed planar graph G = G¢
with m + n distinguished vertices r1,...,7m,C1, ..., ¢, in which the remaining vertices
correspond to white cells (z,7) in the diagram C and are labeled as ¢;;. An example is
illustrated in Fig. 1.

The labels ¢;;, regarded as indeterminates, are assumed to (quasi)commute as

tijti/j/ = qti/j/tij if either ¢ = ¢/ and ] < j/, ori <1 andj = j/, (14)

= ti/j/tij otherwise

(which is viewed “simpler” than (1.1)). The labels t;; determine weights of edges and,
further, weights of paths of G. The latter give rise to the path matriz Pg of size m x n,
of which (i, j)-th entry is the sum of weights of paths starting at r; and ending at ¢;.

The path matrix Pg = (p;;) has three important properties. (i) It is a g¢-matrix,
and therefore, x;; — p;; gives a homomorphism of R to the corresponding algebra R¢
generated by the p;;. (i) Pe admits an analog of Lindstrém’s Lemma [11]: for any
I C [m] and J C [n] with |I| = |J|, the minor [I|J]; of Pg can be expressed as the
sum of weights of systems of disjoint paths from {ri:i € I} to {¢;: j € J} in G.
(iii) From Cauchon’s Algorithm [3] interpreted in graph terms in [1,2] it follows that: if
the diagram C' is maximal (i.e., has no black cells), then Pg becomes a generic g-matriz,
see Corollary 3.2.5 in [2].

In this paper we consider a more general class of planar graphs G with horizontal and
vertical edges, called SE-graphs, and show that they satisfy the above properties (i)—(ii) as
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well. Our goal is to characterize quadratic identities just for the class of path matrices of
SE-graphs G. Since this class contains a generic g-matrix, the identities are automatically
valid in R.

We take an advantage from the representation of g-minors of path matrices via sys-
tems of disjoint paths, or flows in our terminology, and the desired results are obtained
by applying a combinatorial machinery of handling flows in SE-graphs. Our method of
establishing or verifying one or another identity admits a rather transparent implemen-
tation and we illustrate the method by enlightening graphical diagrams.

The paper is organized as follows. Sect. 2 contains basic definitions and backgrounds.
Sect. 3 defines flows and path matrices for SE-graphs and states Lindstrém’s type the-
orem for them. Sect. 4 is devoted to crucial ingredients of the method. It describes
exchange operations on double flows (pairs of flows related to corteges (I|J,I'|.J')) and
expresses such operations on the language of planar matchings. The main working tool of
the whole proof, stated in this section and proved in Appendix B, is Theorem 4.4 giving
a g-relation between double flows before and after an ordinary exchange operation. Using
this, Sect. 5 proves the sufficiency in the main result: (1.2) is valid if the corresponding
I%,Z7,6 are g-balanced (Theorem 5.1).

Sect. 6 is devoted to illustrations of our method. It explains how to obtain, with
the help of the method, rather transparent proofs for several representative examples of
quadratic identities, in particular:

(a) the pure commutation of [I|.J], and [I'|.J']; when I’ C I and J' C J,;

(b) a quasicommutation of flag g-minors [I], and [J], as in Leclerc-Zelevinsky’s the-
orem [10];

(¢) identities on flag g-minors involving triples i < j < k and quadruples i < j < k < ¢;

(d) Dodgson’s type identity;

(e) two general quadratic identities on flag g-minors from [9,15] occurring in descrip-
tions of quantized Grassmannians and flag varieties.

In Sect. 7 we prove the necessity of the g-balancedness condition for validity of
quadratic identities (Theorem 7.1); here we adapt a corresponding construction from [4]
to obtain, in case of the non-g-balancedness, an SE-graph G such that the identity for
its path matrix is false (in a special case of K and ¢). Sect. 8 poses the problem: when
an identity in the commutative case, such as (1.3), can be turned, by choosing an ap-
propriate §, into the corresponding identity for the quantized case? For example, this is
impossible for the trivial identity [I] [J] = [J] [/] with usual flag minors when I, J are not
weakly separated, as is shown in [10]. Also this section applies our method to obtain a
relatively simple proof of Scott’s result [14] on quasicommuting general (not necessarily
flag) g-minors, and contains additional results.

Finally, Appendix A exhibits several auxiliary lemmas needed to us and proves the
above-mentioned Lindstrom’s type result for SE-graphs, and Appendix B gives the proof
of Theorem 4.4 (which is rather technical).
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2. Preliminaries
2.1. Paths in graphs

Throughout, by a graph we mean a directed graph. A path in a graph G = (V, E)
(with vertex set V' and edge set F) is a sequence P = (vg,e1,v1,..., ek, V) such that
each e; is an edge connecting vertices v;_1,v;. An edge e; is called forward if it is
directed from wv;—; to v;, denoted as e; = (v;—1,v;), and backward otherwise (when
e; = (v;,v;-1)). The path P is called directed if it has no backward edge, and sim-
ple if all vertices v; are different. When £ > 0 and vy = vy, P is called a cycle, and
called a simple cycle if, in addition, vy,...,v; are different. When it is not confus-
ing, we may use for P the abbreviated notation via vertices: P = wvgvy ... v, or edges
P =-ecjey...¢p.

Also, using standard terminology in graph theory, for a directed edge e = (u,v), we
say that e leaves u and enters v, and that v is the tail and v is the head of e.

2.2. Quantum matrices

It will be convenient for us to visualize matrices in the Cartesian form: for an m x n
matrix A = (a;;), the row indices ¢ = 1,...,m are assumed to increase upwards, and the
column indices j = 1,...,n from left to right.

As mentioned above, we deal with the quantized coordinate ring R = Og(My, »(K))
generated by indeterminates x;; satisfying relations (1.1), called the algebra of m x n
quantum matrices. A somewhat “simpler” object is the quantum affine space, the
K-algebra generated by indeterminates t;; (i € [m], j € [n]) subject to rela-
tions (1.4).

2.3. q-Minors

For an m x n matrix A = (a;;), we denote by A(I|J) the submatrix of A whose rows
are indexed by I C [m], and columns by J C [n]. Let |I| = |J| =: k, and let I consist of
i1 < -+ < i and J consist of j; < --+ < ji. Then the g-determinant of A(I|J), or the
g-minor of A for (I|.J), is defined as

k
L] J]a,q = Z (_Q)Z(J) H Aigjoay (2.1)
d=1

gESk

where, in the noncommutative case, the product under [] is ordered (from left to right)
by increasing d, and /(o) is the length (number of inversions) of a permutation o.
The terms A and/or ¢ in [I|J]a,, may be omitted when they are clear from the con-
text.



150 V.I. Danilov, A.V. Karzanov / Journal of Algebra 488 (2017) 145-200

2.4. SE-graphs

A graph G = (V, E) of this sort (also denoted as (V, E; R, C')) satisfies the following
conditions:

(SE1) G is planar (with a fixed layout in the plane);

(SE2) G has edges of two types: horizontal edges, or H-edges, which are directed to
the right, and vertical edges, or V-edges, which are directed downwards (so each edge
points to either south or east, justifying the term “SE-graph”);

(SE3) G has two distinguished subsets of vertices: set R = {r1,...,7m} of sources and
set C = {c1,...,cp} of sinks; moreover, r1,...,r, are disposed on a vertical line, in this
order upwards, and cy, ..., ¢, are disposed on a horizontal line, in this order from left to
right; the sources (sinks) are incident only with H-edges (resp. V-edges);

(SE4) each vertex of G belongs to a directed path from R to C.

We denote by W = W the set V — (RU C) of inner vertices of G. An example of
SE-graphs with m = 3 and n = 4 is drawn in the picture:

;G
VZC
I”]C \
C[as c,0 C31 Cy

Remark 1. A special case of SE-graphs is formed by those corresponding to Cauchon
graphs introduced in [1] (which are associated with Cauchon diagrams [3]). In this case,
R ={(0,i): 7 € [m]}, C = {(4,0): j € [n]}, and W C [m] x [n]. (The correspondence
with the definition in [1] is given by (i,j) — (m+1—i,n+1—j) and ¢ — ¢~'.) When
W = [m] x [n] (equivalently: when the Cauchon diagram has no black cells), we refer to
such a graph as the extended (m,n)-grid and denote it by I'y, .

We assign the weight w(e) to each edge e = (u,v) € E in a way similar to that for
Cauchon graphs in [1], namely:

(2.2) (i) w(e) :=vifue€ R;
(ii) w(e) :=u 1w if e is an H-edge and u,v € W;
(iii) w(e) :=11if e is a V-edge.

This gives rise to defining the weight w(P) of a directed path P = ejes .. .ex (written
in the edge notation) in G, to be the ordered (from left to right) product

w(P) = w(er)w(ez) - w(ex). (2.3)



V.I. Danilov, A.V. Karzanov / Journal of Algebra 488 (2017) 145-200 151

Then w(P) is a Laurent monomial in elements of W. Note that when P begins in R
and ends in C, its weight can also be expressed in the following useful form; cf. [2,
Prop. 3.1.8]. Let uy,v1,us,vs,...,Ud—1,Vi—1,Uq be the sequence of vertices where P
makes turns; namely, P changes the horizontal direction to the vertical one at each u;,
and conversely at each v;. Then (due to the “telescopic effect” caused by (2.2)(ii)),

w(P) = uyvy tugvy - ug vyt ug. (2.4)

We assume that the elements of W obey (quasi)commutation laws somewhat similar
to those in (1.4); namely, for distinct u,v € W,

(G1) if there is a directed horizontal path from u to v in G, then uv = quu;

(G2) if there is a directed vertical path from u to v in G, then vu = quv;

(G3) otherwise uv = vu.

3. Path matrix and flows

As mentioned in the Introduction, it is shown in [1] that the path matrix associated
with a Cauchon graph G has a nice property of Lindstrom’s type, saying that each
g-minor of this matrix corresponds to a certain set of collections of disjoint paths in G.
We will show that this property is extended to the SE-graphs.

Let G = (V,E) be an SE-graph with sources R = (r1,...,7n) and sinks C' =
(c1,...,¢n), and let w = wg denote the edge weights in G defined by (2.2).

Definition. The path matriz Path = Pathg associated with G is the m x n matrix whose
entries are defined by

Path(ilj) == > P),  (i,4) € [m] x [n], (3.1)

Peaq(il)
where ®¢(3|7) is the set of directed paths from 7; to ¢; in G. In particular, Path(i|j) =0
if ®g(il7) = 0.

Thus, the entries of Pathg belong to the K-algebra L& of Laurent polynomials gen-
erated by the inner vertices v € W of G subject to relations (G1)-(G3).

Definition. Let £™" denote the set of pairs (I|J) such that I C [m], J C [n] and |I| = |J|.
Borrowing terminology from [4], for (I|J) € £™", a set ¢ of pairwise disjoint directed
paths from the source set Ry := {r;: i € I} to the sink set Cy := {¢;: j € J} in G is
called an (I]J)-flow.

The set of (I|J)-flows ¢ in G is denoted by ®(I|J) = &g (I|J). We usually assume
that the paths forming a flow ¢ are ordered by increasing the source indices. Namely, if
I consists of i(1) < i(2) < --- < i(k) and J consists of j(1) < j(2) < --- < j(k), then
(-th path P, in ¢ begins at 7, and therefore, P, ends at c;(, (which easily follows
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from the planarity of GG, the orderings of sources and sinks in the boundary of G and
the fact that the paths in ¢ are disjoint). We write ¢ = (Py, Pa,..., P) and (similar to
path systems in [1]) define the weight of ¢ to be the ordered product

Then the desired g-analog of Lindstrom’s Lemma expresses g-minors of path matrices
via flows as follows.

Theorem 3.1. For the path matriz Path = Pathg of an (m,n) SE-graph G and for any
(I|J) € E™™, there holds

[I|J}Path,q = Z¢€<I>(I|J) w(¢) (33)

A proof of this theorem, which is close to that in [1], is given in Appendix A.

An important fact is that the entries of Pathg obey the (quasi)commutation relations
similar to those for the canonical generators z;; of the quantum algebra R given in (1.1).
It is exhibited in the following assertion, which is known for the path matrices of Cau-
chon graphs due to [1] (where it is proved by use of the “Cauchon’s deleting derivation
algorithm in reverse” [3]).

Theorem 3.2. For an SE-graph G, the entries of its path matriz Pathg satisfy Manin’s
relations.

We will show this in Sect. 6.3 as an easy application of our flow-matching method.
This assertion implies that the map x;; — Pathg(i|j) determines a homomorphism of R
to the subalgebra R¢g of Lg generated by the entries of Pathg, i.e., Pathg is a g-matrix
for any SE-graph G. In one especial case of G, a sharper result, attributed to Cauchon
and Casteels, is as follows.

Theorem 3.3 (/3,2]). If G = Ty, ., (the extended m x n-grid defined in Remark 1), then
Pathg is a generic g-matriz, i.e., x;; — Pathg(i|j) gives an injective map of R to Lg.

Due to this important property, the quadratic relations that are valid (universally)
for g-minors of path matrices of SE-graphs turn out to be automatically valid for the
algebra R of quantum matrices, and vice versa.

4. Double flows, matchings, and exchange operations

Quadratic identities of our interest in this paper involve products of quantum minors
of the form [I|J][I'|J'], where (I|J),(I’|J") € £™™. This leads us to a proper study
of ordered pairs of flows ¢ € ®(I|J) and ¢’ € ®(I’|J’) in an SE-graph G (in light of
Theorem 3.1).
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We need some definitions and conventions, borrowing terminology from [4]. Given
LJI',J, ¢,¢" as above, we call the pair (¢,d’) a double flow in G. Let

P=1-1, J°:=J-J, I*=I-1, J*":=J —], (4.1)
Y :=I°UI* and Y°:=J°UJ".

Note that |I| = |J| and |I’| = |J| imply that |Y*| + |Y | is even and
(] = 1% = [J°] = [J°]. (4.2)

We refer to the quadruple (I|.J,I'|J’) as above as a cortege, and to (I°,I°,J°,J*) as
the refinement of (I|J,I'|J"), or as a refined cortege.

It is convenient for us to interpret I° and I°® as the sets of white and black elements
of Y, respectively, and similarly for J°, J®*, Y°, and visualize these objects by use of a
circular diagram D in which the elements of Y (resp. Y¢) are disposed in the increasing
order from left to right in the upper (resp. lower) half of a circumference O. For example
if, say, I° = {3}, I* = {1,4}, J° = {2/,5'} and J* = {3',6/,8'}, then the diagram is
viewed as in the left fragment of the picture below. (Sometimes, to avoid a possible mess
between elements of Y* and Y, and when it leads to no confusion, we denote elements
of Y® with primes.)

o
'3 3 N
P 4%
7/ \\
/ \
V’/ \\
e 4o
\ 1
\ I
\ !
\ 8/
o? .
AN 6 .
‘. 5 e
e

Let M be a partition of Y* LI Y into 2-element sets (recall that A L B denotes the
disjoint union of sets A, B). We refer to M as a perfect matching on Y UY*®, and to
its elements as couples. More specifically, we say that m € M is: an R-couple if 1 C Y™,
a C-couple if 1 CY*°, and an RC-couple if |[xNY ™| = |[7NY°| = 1 (as though 7 “connects”
two sources, two sinks, and one source and one sink, respectively).

Definition. A (perfect) matching M as above is called a feasible matching for (1°,1°,
J°,J*) (and for (I|J,I'|J")) if:

(4.3) (i) for each m = {i,j} € M, the elements 4, j have different colors if 7 is an R- or
C-couple, and have the same color if 7 is an RC-couple;
(ii) M is planar, in the sense that the chords connecting the couples in the cir-
cumference O are pairwise non-crossing.
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The set of feasible matchings for (1°,1°,J°,J®) is denoted by Mo re jo je and may
also be denoted as M(I|J, I'|.J’). This set is nonempty unless Y'Y = {). (A proof: a fea-
sible matching can be constructed recursively as follows. Let for definiteness |I°]| > |I°®|.
If I* # (0, then choose ¢ € I° and j € I*® with |[¢ — j| minimum, form the R-couple
{i,j} and delete 7,j. And so on until I* becomes empty. Act similarly for J° and J°.
Eventually, in view of (4.2), we obtain I®* = J* = () and |I°| = |J°|. Then we form
corresponding white RC-couples.)

The right fragment of the above picture illustrates an instance of feasible matchings.

Return to a double flow (¢,¢’) as above. Our aim is to associate to it a feasible
matching for (I°,1°,J°,J®).

To do this, we write V; and Ey, respectively, for the sets of vertices and edges of G
occurring in ¢, and similarly for ¢’. An important role will be played by the subgraph
(U) of G induced by the set of edges

U .= E¢AE¢,/

(where AAB denotes (A — B) U (B — A)). Note that a vertex v of (U) has degree 1 if
v € Rjo URpe UCj 0 UCye, and degree 2 or 4 otherwise. We slightly modify (U) by
splitting each vertex v of degree 4 in (U) (if any) into two vertices v/, v” disposed in a
small neighborhood of v so that the edges entering (resp. leaving) v become entering v’
(resp. leaving v"'); see the picture.

The resulting graph, denoted as (U)’, is planar and has vertices of degree only 1
and 2. Therefore, (U)’ consists of pairwise disjoint (non-directed) simple paths Py, ..., Pj
(considered up to reversing) and, possibly, simple cycles @, ..., Q%. The corresponding
images of Py,..., P/ (resp. Q},..., Q") give paths Py,..., Py (resp. cycles Q1,...,Qq)
in (U). When (U) has vertices of degree 4, some of the latter paths and cycles may be
self-intersecting and may “touch”, but not “cross”, each other.

Lemma 4.1. (i) k= (|[I°| + |I*| +|J°| + |J*])/2;

(ii) the set of endvertices of Py, ..., Py is Rioure UC jou ge ; moreover, each P; connects
either Ryo and Rye, or Cjo and Cjye, or Rro and Cjo, or Rre and Cje;

(iii) in each path P;, the edges of ¢ and the edges of ¢’ have different directions (say,
the former edges are all forward, and the latter ones are all backward).
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Fig. 2. Flows ¢ and ¢’ (left); (E4AEy ) (middle); M (¢, ¢') (right).

Proof. (i) is trivial, and (ii) follows from (iii) and the fact that the sources r; (resp.
sinks ¢;) have merely leaving (resp. entering) edges. In its turn, (iii) easily follows by
considering a common inner vertex v of a directed path K in ¢ and a directed path L in ¢'.
Let e, e’ (resp. u,u’) be the edges of K (resp. L) incident to v. Then: if {e, e’} = {u,u’},
then v vanishes in (U). If e = u and e’ # «/, then either both €', u" enter v, or both €', v’
leave v; whence €, u’ are consecutive and differently directed edges of some path P; or
cycle Q;. A similar property holds when {e, e’} N {u,u'} = 0, as being a consequence of
splitting v into two vertices as described. O

Thus, each P; is represented as a concatenation Pz-(l) o Pi(2) 0...0 Pi(z) of forwardly
and backwardly directed paths which are alternately contained in ¢ and ¢’, called the
segments of P;. We refer to P; as an exchange path (by a reason that will be clear later).
The endvertices of P; determine, in a natural way, a pair of elements of Y'Y °, denoted
by ;. Then M := {7y, ..., 7} is a perfect matching on Y*UY°. Moreover, it is a feasible
matching, since (4.3)(i) follows from Lemma 4.1(ii), and (4.3)(ii) is provided by the fact
that Py, ..., P/ are pairwise disjoint simple paths in (U)’.

We denote M as M (¢, ¢"), and for m € M, denote the exchange path P; corresponding
to w (i.e., m = m;) by P(m).

COI‘Ollary 4.2. M(¢’ (b/) = M[o7[o,Jo7Jo .

Fig. 2 illustrates an instance of (¢,¢’) for I = {1,2,3}, J = {1',3/,4'}, I' = {2,4},
J' ={2,3'}. Here ¢ and ¢’ are drawn by solid and dotted lines, respectively (in the left
fragment), the subgraph (E,AEy ) consists of three paths and one cycle (in the middle),
and the circular diagram illustrates M (¢, ¢') (in the right fragment).

Flow exchange operation. It rearranges a given double flow (¢, ¢’) for (I|J, I'|J’) into
another double flow (¢, 1’) for some cortege (I|J, I'|J'), as follows. Fix a submatching
IT C M(¢,¢’), and combine the exchange paths concerning IT, forming the set of edges

&= U(Ep(,r): m e Il)

(where Ep denotes the set of edges in a path P).
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Lemma 4.3. Let Vi := U(w € II). Define
I:=IAVg YY), I''=I'A(VgnY"), J:=JAVzNY®), J :=JAVzNY®).

Then the subgraph ¢ induced by E4AE gives a (f|j)-ﬂ0w, and the subgraph ¢’ induced by
EyAE gives a (I'|J')-flow in G. Furthermore, EyUEy = EgUEy, EyAEy = E4AEy
(=U), and M(¢,¢") = M(¢,¢).

Proof. Consider a path P = P(r) for m € II, and let P consist of segments P(1), P(?),

.., PY . Let for definiteness the segments P4 with d odd concern ¢, and denote by
vg the common endvertex of P4 and P+1 . Under the operation Ey — EgAEp the
pieces P, PG in ¢ are replaced by P P™W .. . In its turn, By + EyAFEp
replaces the pieces P, P . in ¢ by P, PG .

By Lemma 4.1(iii), for each d, the edges of P P(@+1) incident to vg either both
enter or both leave vg. Also each intermediate vertex of any segment P9 occurs in
exactly one flow among ¢, ¢'. These facts imply that under the above operations with P
the flow ¢ (resp. ¢') is transformed into a set of pairwise disjoint directed paths (a flow)
going from Rra(znyr) t0 Cya(rnye) (resp. from Rpa(zayry 10 Cparnye))-

Doing so for all P(7) with m € II, we obtain flows 1, %’ from R to C'; and from Ry,
to C'5,, respectively. The equalities in the last sentence of the lemma are easy. O

We call the transformation (¢, ¢') LN (v,%') in this lemma the flow exchange oper-
ation for (¢,¢’) using IT C M(¢p,d’) (or using {P(w): w € II'}). Clearly the exchange
operation applied to (i,’) using the same IT returns (¢, ¢’). The picture below illus-
trates flows 1,7’ obtained from ¢, ¢’ in Fig. 2 by the exchange operations using the
single path P (left) and the single path Ps (right).

4l

So far our description has been close to that given for the commutative case in [4].
From now on we will essentially deal with the quantum version. The next theorem will
serve the main working tool in our arguments; its proof appealing to a combinatorial
techniques on paths and flows is given in Appendix B.

Theorem 4.4. Let ¢ be an (I|J)-flow, and ¢’ an (I'|J")-flow in G. Let (1,%') be the
double flow obtained from (¢,¢') by the flow exchange operation using a single couple

m={f,9} € M(¢p,¢"). Then:
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(i) when m is an R- or C-couple and f < g,

w(@)uw(¢) = qu()w(t!) in case feIU;
w(@)w(¢) = ¢~ wW)w() in case feI'UJ;

(ii) when 7 is an RC-couple, w(d)w(¢') = w(P)w(y').
An immediate consequence from this theorem is the following

Corollary 4.5. For an (I|J)-flow ¢ and an (I'|J")-flow ¢', let (,") be obtained from
(¢, @) by the flow exchange operation using a set IT C M (¢, ¢"). Then

w(@)w(¢') = ¢* " ww)w (), (4.4)

where ¢° = C°(I|J,I'|J';II) (resp. ¢* = C¢*(I|J,I'|J';II)) is the number of R- or
C-couples m = {f,g} € Il such that f <gand f€IUJ (resp. feI"UJ').

Indeed, the flow exchange operation using the whole IT reduces to performing, step by
step, the exchange operations using single couples 7w € II (taking into account that for
any current double flow (n,7") occurring in the process, the sets E, U E,» and E,AE,/,
as well as the matching M (n,n’), do not change; cf. Lemma 4.3). Then (4.4) follows from
Theorem 4.4.

5. Quadratic relations

As before, we consider an SE-graph G = (V, E; R, C) and the weight function w which
is initially defined on the edges of G by (2.2) and then extended to paths and flows ac-
cording to (2.3) and (3.2). This gives rise to the ¢-minor function [I|J], on the set
Emm ={(I|J): I C[m], J € [n], |I| =|J|}. In this section, based on Corollary 4.5 de-
scribing the transformation of the weights of double flows under the exchange operation,
and developing a g-version of the flow-matching method elaborated for the commutative
case in [4], we establish sufficient conditions on quadratic relations for g-minors of the
matrix Pathg, to be valid independently of G (and some other objects, see Remark 2
below). Relations of our interest are of the form

a(I|J,I'J") "oy B(K|L,K'|L") nrt
> L= [K|L][K"|L], (5.1)
where «, 8 are integer-valued, Z is a family of corteges (I|.J,I'|J") € E™™ x £™™ (with
possible multiplicities), and similarly for K. Cf. (1.2). We usually assume that Z and K

are homogeneous, in the sense that for any (I|J,I’|J") € T and (K|L,K'|L") € K,

IVI'=KUK', JuJ =LulL, INI'=KnK', JnJ =LnL. (5.2)
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Moreover, we shall see that only the refinements (I°,I°,J°, J*) and (K°, K*® L° L*®)
are important, whereas the sets I NI’ and J N J’ are, in fact, indifferent. (As before, I°
means [ — I’, I* means I’ — I, and so on.)

To formulate the validity conditions, we need some definitions and notation.

o We say that a tuple (I|J,I'|J'; M), where (I|J,I'|J') € Z and M € Mjo to jo o
(cf. (4.3)), is a configuration for Z. The family of all configurations for Z is denoted by
C(Z). Similarly, we define the family C(K) of configurations for K.

e Define M(Z) to be the family of all matchings M occurring in the members of C(Z),
respecting multiplicities (i.e., M(Z) is a multiset). Define M(K) similarly.

Definition. Families 7 and K are called balanced (borrowing terminology from [4]) if there
exists a bijection (I|J, I'|J’; M) — (K|K', L|L'; M") between C(Z) and C(K) such that
M = M’. In other words, Z and K are balanced if M(Z) = M(K).

Definition. We say that families 7 and I along with functions « : Z — Z and 8: K — Z
are g-balanced if there exists a bijection v as above such that, for each (I|J,I'|J"; M) €
C(Z) and for (K|K',L|L'; M) = ~(I|J,I'|J’; M), there holds

B(K|K',LIL") — a(I|J,I'|J") = ¢° — ¢°. (5.3)

(In particular, Z, K are balanced.) Here ¢°,(® are defined according to Corollary 4.5.
Namely, ¢° = ¢°(I|J,I'|J'; II) and ¢* = ¢*(I|J,I'|J’; IT), where IT is the set of couples
7w € M such that the white/black colors of the elements of 7 in the refined corteges
(I°,1°,J°,J°%) and (K°,K*®,L°, L*) are different. (Then ¢° (¢*) is the number of R- and
C-couples {f,g} € II with f < gand f € I°UJ® (resp. f € I* U J*).) We say that
(K°,K*, L°, L*) is obtained from (I°,I°,J°, J*) by the index exchange operation using
11, and may write ¢°(I°, 1%, J°, J*; IT) for ¢°, and C*(I°, I, J°, J*; IT) for C*.

Theorem 5.1. Let Z and K be homogeneous families on E™™ x E™™ and let o : T — Z
and B : K — 7Z. Suppose that Z,K,«, 8 are q-balanced. Then for any SE-graph G =
(V,E; R,C), relation (5.1) is valid for g-minors of Pathg.

Proof. It is close to the proof for the commutative case in [4, Proposition 3.2].

We fix G and denote by D(I|J,I’|.J’) the set of double flows for (I|J,I'|J)) e ZUK
in G. A summand concerning (I|.J, J'|J") € T in the L.H.S. of (5.1) can be expressed via
double flows as follows, ignoring the factor of ¢®():

U = <Z¢E¢G(1J)w(¢)> ) (Z¢’E@G(I’J/)w(¢/)>

- Z(¢7¢’)€D(I|J,[’|J/) w(¢)w(¢/)

— /
o ZMGM,OJ.JOJ. Z(q&,qs/)ep(l\.f,m]') : M(¢,¢")=M w(@)w(d). (54)
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The summand for (K|L, K’|L’) € K in the R.H.S. of (5.1) is expressed similarly.

Consider a configuration S = (I|J,I'|J'; M) € C(Z) and suppose that (¢,¢') is a
double flow for (I|J,I'|J") with M(¢,¢') = M (if such a double flow in G exists). Since
Z,K,a, B are g-balanced, S is bijective to some configuration S’ = (K|L,K'|L’; M) €
C(K) satisfying (5.3). As explained earlier, the cortege (K|L,K’|L’) is obtained from
(I|J,I'|.J') by the index exchange operation using some IT C M. Then the flow exchange
operation applied to (¢, ¢') using this IT results in a double flow (¢, ¢") for (K|L, K'|L")
which satisfies relation (4.4) in Corollary 4.5. Comparing (4.4) with (5.3), we observe
that

I w(gyu(¢') = ¢ EIHE D w()w(y).

Furthermore, such a map (¢,¢') — (1,v¢’) gives a bijection between all double flows
concerning configurations in C(Z) and those in C(K). Now the desired equality (5.1)
follows by comparing the last term in expression (5.4) and the corresponding term in
the analogous expression concerning K. 0O

As a consequence of Theorems 3.3 and 5.1, the following result is obtained.

Corollary 5.2. If Z,K,«, f as above are g-balanced, then relation (5.1) is valid for the
corresponding minors in the algebra R of quantum m X n matrices.

Remark 2. When speaking of a universal quadratic identity of the form (5.1) with ho-
mogeneous Z and IC, abbreviated as a UQ identity, we mean that it depends neither on
the graph G nor on the field K and element ¢ € K*, and that the index sets can be
modified as follows. Given (I|J,I'|J") € Z,let A := IAI', B:= JAJ', S:=INI" and
T := JNJ" (by the homogeneity, these sets do not depend on (I|J,I’|J) € ZUK). Take
arbitrary m > |A| and n > |B| and replace A, B, S,T by disjoint sets ;1, S cC [m] and
disjoint sets B,T C [f] such that |[A| = |A|, |B| = |B| and |S| — |T| = |S| — |T|. Let
v:A— Aand u: B — B be the order preserving maps. Transform each (I|J,I'|.J') € T
into (I|.J,1'|J"), where

I:=Suv(I-2S8), I''=SuvI'=S), J:=Tuu(J-T), J:=TUupulJ —T),

forming a new family 7 on E™M x ™ Transform K into K in a similar way. One can
see that if Z, K, «, 8 are g-balanced, then so are Z, K, keeping «, 8. Therefore, if (5.1) is
valid for Z, IC, then it is valid for Z, IC as well.

Thus, the condition of g-balancedness is sufficient for validity of relation (5.1) for
minors of any g-matrix. In Sect. 7 we shall see that this condition is necessary as well
(Theorem 7.1).

One can say that identity (5.1), where all summands have positive signs, is written
in the canonical form. Sometimes, however, it is more convenient to consider equivalent
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identities having negative summands in one or both sides (e.g. of the form (1.2)). Also
one may simultaneously multiply all summands in (5.1) by the same degree of q.

Remark 3. A useful fact is that once we are given an instance of (5.1), we can form
another identity by changing the white/black coloring in all refined corteges. More pre-
cisely, for a cortege S = (I|J,I'|J'), let us say that the cortege S™ := (I'|J’,I|J) is
reversed to S. Given a family Z of corteges, the reversed family Z*°V is formed by the
corteges reversed to those in Z. Then the following property takes place.

Proposition 5.3. Suppose that Z,K,a, B are q-balanced. Then TV, K™V, —a, —( are g-
balanced as well. Therefore (by Theorem 5.1),

> IO = 30 g PRI LKL (5.5)
(I|J,I'|J")eT (K|L,K'|[L")ek

Proof. Let v : C(Z) — C(K) be a bijection in the definition of g-balancedness. Then
~ induces a bijection of C(Z*¢) to C(K*™) (also denoted as 7). Namely, if v(S; M) =
(T; M) for S = (I|J,I'|J') e ZTand T = (K|L,K'|L") € K, then we define y(S™; M) :=
(T**Y; M). When coming from S to S™V, each R- or C-couple {i,j} in M changes the
colors of both elements 4, j. This leads to swapping ¢° and ¢®, i.e., (°(S™V; IT) = ¢*(S; II)
and ¢*(S™Y; IT) = ¢°(S; II) (where IT is the submatching in M involved in the exchange
operation). Now (5.5) follows from relation (5.3). O

Another useful equivalent transformation is given by swapping row and column in-
dices. Namely, for a cortege S = (I|.J,I'|.J’), the transposed cortege is ST := (J|I, J'|I"),
and the family ZT transposed to I consists of the corteges ST for S € Z, and similarly
for IC. One can see that the corresponding values (° and (*® preserve when coming from
ZtoZ" and from K to KT, and therefore (5.3) implies the identity

Yoo UIOunr = Y PEEEIILKILE). (5.6)
(I|J,1'|J)eT (K|L,K’|L")ek

(Note also that (5.6) immediately follows from the known fact that any g-minor satisfies
the symmetry relation [J|I], = [J|I]4.)

We conclude this section with a rather simple algorithm which has as the input a
corresponding quadruple Z, IC, o, § and recognizes the g-balanced for it. Therefore, in
light of Theorems 5.1 and 7.1, the algorithm decides whether or not the given quadruple
determines a UQ identity of the form (5.1).

Algorithm. Compute the set Mo o jo yo of feasible matchings M for each (I|J,I'|J’)
€ 7, and similarly for K. For each instance M occurring there, we extract the fam-
ily Car(Z) of all configurations concerning M in C(Z), and extract a similar family
Cu(K) in C(K). If |[Cp(Z)] # |Cm(K)| for at least one instance M, then Z and
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IC are not balanced at all. Otherwise for each M, we seek for a required bijection
Y 2 Cup(Z) — Cpr(K) by solving the maximum matching problem in the corresponding
bipartite graph H . More precisely, the vertices of Hy; are the tuples (I|.J,I'|.J'; M) and
(K|L,K'|L'; M) occurring in Cpy(Z) and Cps(K), and such tuples are connected by edge
in Hyy if they obey (5.3). Find a maximum matching N in Hj;. (There are many fast
algorithms to solve this classical problem; for a survey, see, e.g. [13].) If |N| = |Cp(Z)],
then N determines the desired 7j; in a natural way. Taking together, these v); give a
bijection between C(Z) and C(K) as required, implying that Z, K, o, 8 are g-balanced.
And if |[N| < |Cpm(Z)| for at least one instance M, then the algorithm declares the
non-g-balancedness.

6. Examples of universal quadratic identities

The flow-matching method described above is well adjusted to prove, relatively easily,
classical or less known quadratic identities. In this section we give a number of appealing
illustrations.

Instead of circular diagrams as in Sect. 4, we will use more compact, but equiva-
lent, two-level diagrams. Also when dealing with a flag pair (I|.J), i.e., when I consists
of the elements 1,2, ...,|J|, we may use an appropriate one-level diagram, which leads
to no loss of generality. For example, the refined cortege (I° = {3,4}, I®* = (), J° =
{1,3,4',6'}, J* = {2/,5'}) with the feasible matching {1'2’,4'5',33',46'} can be visu-
alized in three possible ways as:

5 6'
[ozmn o—e O~ O O w® O

A couple {i,j} may be denoted as ij. Also for brevity we write Xi¢...j for X U

{i,...,7}, where X and {i,...,j} are disjoint.
As before, we use notation [I|J] for the corresponding ¢-minor of the path matrix
Pathg (defined in Sect. 3). In the flag case [I|.J] is usually abbreviated to [J].

6.1. Commuting minors

We start with a simple illustration of our method by showing that ¢g-minors [I]J] and
[I'|J'] “purely” commute when I’ C I and J’ C J. (This matches the known fact that a
minor of a g-matrix commutes with any of its subminors, or that the g-determinant of a
square g-maftrix is a central element of the corresponding algebra.)
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Let I° = I — I’ consist of i; < ... < iy, and J° = J — J' consist of j; < ... < jp.
Since I* = I' — I = ) and J®* = J' — J = 0, there is only one feasible matching M
for (I°,1°,J°,J*); namely, the one formed by the RC-couples 7y = igje, £ = 1,... k.
The index exchange operation applied to (I|J,I'|J’) using the whole M produces the
cortege (K|L, K'|L') for which K° = I* = @, K* = [°, [° = J* = 0, L* = J°
(and KNK =1INnI', LNL = JnNJ'). Since M consists of RC-couples only, we
have ¢°(I°,I*,J°, J* M) = ¢*(I°,I*%,J°,J% M) = 0. So the (one-element) families
Z={{|J,I'lJ)} and K = {(K|L,K’'|L")} along with « = 8 = 0 are ¢g-balanced, and
Theorem 5.1 gives the desired equality [I|J][I'|J'] = [I'|J'][L]J].

This is illustrated in the picture with two-level diagrams (in case k = 5). Hereinafter
we indicate by crosses the couples that are involved in the applied index exchange oper-
ation (i.e., the couples where the colors of elements are changed).

—_
. . . . . [ ]

Jio J27 I3 Js s

6.2. Quasicommuting minors

Recall that two sets I, J C [n] are called weakly separated if, up to renaming I and J,
there holds: |I| > |J|, and J — I has a partition J; UJy such that J; < I —J < Jy (where
we write X <Y if x <y for any x € X and y € Y. Leclerc and Zelevinsky proved the
following

Theorem 6.1 (/10/). Two flag minors [I] and [J] of a quantum matriz quasicommute,
i.e., satisfy

1] = ¢°[J]] (6.1)

for some c € Z, if and only if the column sets I, J are weakly separated. Moreover, when
[I| > |J| and J1 U Jy is a partition of J — I with J, < I —J < Ja, the number ¢ in (6.1)
is equal to |Jo| — |J1].

(In case INJ = 0, “if” part is due to Krob and Leclerc [8]). We explain how to obtain
“if” part of Theorem 6.1 by use of the flow-matching method.
Let A:={1,...,|I|}, B:={1,...,|J|}, and (assuming |I| > |J|) define

A°=A-B, B*=B-A(=0), I°=I-J, J*:=J-1

One can see that (A°, B®,I°,J°®) has exactly one feasible matching M; namely, J; is
coupled with the first |J1| elements of I°, J; is coupled with the last |J2| elements of I°
(forming all C-couples), and the rest of I° is coupled with A° (forming all RC-couples).
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Observe that the index exchange operation applied to (A|I, B|J) using the whole M
swaps A|I and B|J (since it changes the colors of all elements in A°, I°, J*®). Also
M counsists of |Ji| 4 |J2| C-couples and |A°| RC-couples. Moreover, the C-couples are
partitioned into |J;| couples ij with ¢ < j and ¢ € Jy, and |J2| couples ij with i < j and
J € Ja. This gives ¢° = |Jo| and ¢* = |J1]. Hence the (one-element) families {(A|l, B|J)}
and {(B|J, A|I)} along with a(A|I, B|J) = 0 and S(B|J, A|I) = |J2|—|J1] are g-balanced.
Now Theorem 5.1 implies (6.1) with ¢ = |[Jo| — |J1]-

The picture with two-level diagrams illustrates the case |[I — J| = 5, |[J — I| = 3,
|[Ji| =1 and |J2| = 2.

NS

l 21 l 4' 5' | 7' 8'

“Only if” part of Theorem 6.1 will be discussed in Sect. 8. Also we will discuss there
a generalization of this theorem that characterizes the pairs of quasicommuting general
@-minors.

6.3. Manin’s relations in path matrices

Next we prove Theorem 3.2.

(a) Consider entries [i|j] and [i|j'] with j < j’ in Pathg. The cortege S = (i|4,|j’)
admits a unique feasible matching; it consists of the single C-couple 7= = jj’. The index
exchange operation using 7 transforms S into T' = (4|5, i|7); see the picture with one-level
diagrams:

We observe that {S} and {T'} along with « =0 and g =1 (= (° —(*) are g-balanced,
and Theorem 5.1 yields [i|4][¢]5'] = q[¢5’][é]], as required.
(b) For a 2 x 1 submatrix of Pathg, the argument is similar.

( ) Consider a 2 x 2 submatrix (¢ ) of Pathg, where a = [i|j], b = [i|5], ¢ = [i'|]],
= [i'|j'] (then i < ¢’ and j < j’). Let Z consist of two cortegeb Sy = (4,715,
= (i|§’,7'|j), and K consist of two corteges Ty = (i|j’,i'|j), To = (¢'|j’,4|7) (note that

Sz = T1). Observe that S; admits two feasible matchings, 1[13u[nely7 M = {ii’, 54’} and
N = {ij,7'7'}, while S3 admits only one feasible matching M. In their turn, M(T}) =
{M} and M(T,) = {M,N}. Hence we can form the bijection between C(Z) and C(K)
that sends (S1; M) to (Ty; M), (S1, N) to (Ta; N), and (Sa, M) to (Ta; M). This bijection
is illustrated in the picture (where, as before, we indicate the submathings involved in
the exchange operations with crosses).



164 V.I. Danilov, A.V. Karzanov / Journal of Algebra 488 (2017) 145-200

io—oi' q O———

S, M > T, M
jo—*—*j ——o°
i i’ 1

S, N £ % T I I T, N
J j'
io_x_‘i’ q ————O

S, M ‘ LN T, M
j.—oj' — o

Assign a(S1) =0, a(S2) = -1, (Th) = 1 and §(T:) = 0.
One can observe from the above diagrams that Z, KC, o, § are g-balanced. We obtain

[0 + ¢~ [il3"1[8'13] = alilNl8'15) + (8715711l ),

yielding ad — da = (q — ¢~ 1)bc, as required.

Finally, to see bc = cb, take the l-element families {S' = (i|j’,#|j)} and {T" =
(¢'|7,4]7")}; then {ii’, 54’} is the only feasible matching for each of S’,T'. The above
families along with @ = 8 = 0 are g-balanced, as is seen from the picture:

i’ 1-1

fo—x—ei q ——O
—
je—*—=o] o—
This gives [i|5][¢'|5] = [¢'|7][é]4], or be = ¢b, as required.

6.4. Relations with triples and quadruples

In the commutative case (when dealing with the commutative coordinate ring of m xn
matrices over a field), the simplest examples of quadratic identities on flag minors are
presented by the classical Pliicker relations involving 3- and 4-element sets of columns.
More precisely, for A C [n], let g(A) denote the flag minor with the set A of columns
of a matrix. Then for any three elements i < j < k in [n] and a set X C [n] — {i, 4, k},
there holds

9(Xik)g(Xj) = g(Xij)g(Xk) + g(Xjk)g(Xi), (6.2)
and for any i < j < k <fand X C [n] — {i,],k, (},

9(Xik)g(Xjl) = g(Xij)g(Xke) + g(Xjl)g(Xjk). (6.3)
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There are two quantized counterparts of (6.2) (concerning flag g-minors). One of them
is viewed as

(X[ Xik] = [Xij][Xk] + [XjK][X ], (6.4)
and the other as
[Xik][Xj] = ¢ [Xij][XK] + q[ X jK][Xd]. (6.5)

To see (6.4), associate to Xj the white pair (I°,J°) = (0|{j}), and to Xik the black
pair (I°|J*) = ({p}|{3, k}), where p is the last row index for [Xik] (i.e., p = | X| +2).
Then Mo re jo je consists of two feasible matchings: M = {pi, jk} and N = {ij, pk}.
Now (6.4) is seen from the following picture with two-level diagrams, where we write S
for the cortege ([p — 1]|X7, [p] | Xik), Th for ([p] |Xij, [p — 1] | X&), and T3 for ([p] | X jk,
[p— 1] |Xi):

p 1
S, M / / ‘ T, M
i T Tk o

p 1
S, N '\\ ., \ ‘ T, N
i Pk —o

As to (6.5), it suffices to consider one-level diagrams (as we will not use RC-couples
in the exchange operations). The “white” object is the column set J° = {i,k} and the
“black” object is J* = {j}. Then My} g jo se consists of two feasible matchings, one
using the C-couple m = jk, and the other using the C-couple p = ij. Now (6.5) can be
seen from the picture, where we write S for the flag cortege (Xik, Xj), Ty for (Xij, Xk),
and T; for (Xjk, X1).

q-l
S,TC l_o ]./X\ok > (0] g e ' Tl,TE
S,u ZOA\.] Ok —q——> e——O0 O ‘ T

Next we demonstrate the following quantized counterpart of (6.3):
[Xik][Xj€) = ¢ [ Xif]|[ X kO] + q[Xil][X jkK]. (6.6)

To see this, we use one-level diagrams and consider the column sets J° = {i,k} and
J* = {j,¢}. Then My g jo je consists of two feasible matchings: M = {il, jk} and
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N = {ij, k¢}. Identity (6.6) can be seen from the picture, where S = (Xik, Xj¢), T} =
(Xij, Xke) and T = (Xil, X jk).

-1

S, M '@l _q_> K./:\.\. ' TI,M

S, N O e. ko/éi\.l _q__» o e e O ‘ Tz, N

Remark 4. Note that, if wished, one can produce more identities from (6.4) and (6.5),
using the fact that Xij and Xk (as well as Xjk and X4i) are weakly separated, and
therefore their corresponding flag g-minors quasicommute (see Sect. 6.2). In contrast, X j
and Xik are not weakly separated. Next, subtracting from (6.5) identity (6.4) multiplied
by g results in the identity of the form

[Xik][Xj] = q[X5][Xik] — (¢ — ¢ )[Xig][XE],
which is in spirit of commutation relations for quantum minors studied in [6,7].
6.5. Dodgson’s type identity

As one more simple illustration of our method, let us consider a g-analogue of the
classical Dodgson’s condensation formula for usual minors [5]. It can be stated as follows:
for elements i < k of [m], a set X C [m] — {i,k}, elements i’ < k' of [n], and a set
X' C [n] = {7/, K"} (with | X'] = [X]),

[Xi| X3 [X k| XK = q[ Xi| XK [ X k| X'7] + [Xik| X' K[ X|X']. (6.7)

In this case we deal with the cortege S = (I|J,I'|J") = (Xi| X', X k| X'K') and its refine-
ment (I°,1°,J°,J*) of the form (i,k,4, k). The latter admits two feasible matchings:
M = {ik,i'k'} and N = {i?’, kk’}. Now (6.7) can be concluded by examining the picture
below, where T} stands for (Xi| X'k, Xk|X'i'), and Ty for (Xik| X'k, X|X'):

io— ek q o—
S M » ‘ T, M
’ jlo—x—ef’ — 0o

i k 1
sy h o e 1] ]
i K
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6.6. Two general quadratic identities

Two quadratic identities of a general form were established for quantum flag minors
in [9,15].
The first one considers column subsets I, J C [n] with |I| < |J| and is viewed as

][] = > (—g)mot == Iy P[] — ), (6.8)
nCJ=I, |u|=|J|=|I]

where Inv(A, B) denotes the number of pairs (a,b) € A x B with a > b. Observe
that (6.4) is a special case of (6.8) in which the roles of I and J are played by Xj and
Xik, respectively. Indeed, in this case u ranges over the singletons {i} and {k}, and we
have Inv(Xk,i) — Inv(Xj,4) = 0 and Inv(Xi, k) — Inv(Xj, k) = 0. (For brevity, we
write Inv(-, i) for Inv(-,{i'}).)

The second one considers I, J C [n] with |I| — |J| > 2 and is viewed as

ZaEIiJ(_q)Inv(a,I—a)—Inv(a,J) [Ja] [I _ a] -0 (6.9)

(where we write Ja for J U {a}, and I — a for I — {a}). A special case is (6.6) (with
I = Xjk¢ and J = Xi).
We explain how (6.8) and (6.9) can be proved using the flow-matching method.

Proof of (6.8). The pair (I,J) corresponds to the cortege S := ([p]|I, [p + k]|J) and
its refinement R := (0, Q :={p+1,...,p+k}, I°:=1—J, J* :=J—1I), where
p:=|I| and k := |J| — |I|. In its turn, each term (I U p)|(J — p) occurring in the R.H.S.
of (6.8) corresponds to the cortege S, := ([p+ k] |({, := T U p), [p]|(J, :=J —p)) and
its refinement R, := (Q, 0, I :==I°Up, J3 = J* — p).

So we deal with the set

Fi= {S}U{Su: p € J°, |l = k),

of corteges and the related set C(F) of configurations (of the form (S; M) or (S,; M)),
and our aim is to construct an involution v : C(F) — C(F) which is agreeable with
matchings, signs and g¢-factors figured in (6.8). (Under reducing (6.8) to the canonical
form, F splits into two families Z and K, and 7 determines the g-balancedness for Z, K
with corresponding «, 38.)

Consider a refined cortege R, = (Q, 0, I;,J3) and a feasible matching M for it. Note
that M consists of k = [Q| RC-couples (connecting @ and I;;) and |J3| = [I°| C-couples
(connecting I; and J}). Two cases are possible.

Case 1: Each C-couple connects Jj and I°. Then all RC-couples in M connect
Q@ and p. Therefore, the exchange operation applied to S, using the set IT of all
RC-couples of M produces the “initial” cortege S (corresponding to the refinement
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R=(0,Q,I° J*)). Clearly M is a feasible matching for S and the exchange operation
applied to S using IT returns S,,. We link (S; M) and (S,; M) by 7.

Note that for each C-couple m = ij € M — II and for each r € pu, either r < 4,7
or r > i,j (otherwise the RC-couple containing r would “cross” m, contrary to the
planarity requirement (4.3)(ii) for ). This implies Inv(J,, u) = Inv(I, 1), whence the
terms [][J] in the L.H.S. and (—¢)°[Z,][J,] in the R.H.S. of (6.8) are g-balanced.

Case 2: There is a C-couple in M connecting J; and p. Among such couples, choose
the couple m = 4§ with ¢ < j such that: (a) j — 4 is minimum, and (b) ¢ is minimum
subject to (a). From (4.3) and (a) it follows that

(6.10) if a couple 7’ € M has an element (strictly) between 7 and j, then 7’ connects I°
and J§, and the other element of 7’ is between i and j as well.

Let S, be obtained by applying to S, the exchange operation using the single cou-
ple . Then ' = uAm, I, = I,Amand Jj, = J5Am. The matching M is feasible for .S,
we are in Case 2 with S,» and M, and one can see that the couple 7' € M chosen for
S, according to the above rules (a), (b) coincides with 7. Based on these facts, we link
(Sp; M) and (Syr; M) by .

Now we compute and compare the numbers a := Inv(J3, = J — i/, ') — Inv(Jj, =
J—p, p) and b := Inv(I, 1) —Inv(I, p). Let d be the number of elements of I° between 4
and j (recall that m = 45 and 7 < j). Property (6.10) ensures that the number of elements
of Jj; (as well as of J;,) between ¢ and j is equal to d too. Consider two possibilities.

Subcase 2a: i € p (and j € J3). Then i € J3, and j € u'. This implies that a =
Inv(J3, §) — Inv(Jg,i) = d+ Land b= Inv(I°,j) — Inv(1°,i) = d.

Subcase 2b: i € J (and j € p). Then i € p' and j € J3,, yielding a = —d — 1 and
b= —d.

Finally, let (—¢)® and (—¢)” be the multipliers to the terms [I,][J,] and [I,/][J,/]
in (6.8), respectively. Then 8 — o = a — b, which is equal to 1 in Subcase 2a and —1 in
Subcase 2b. In both cases this amounts to the value (° — (*® for the exchange operation
applied to S, using 7, and validity of (6.8) follows from Theorem 5.1. O

Remark 5. Sometimes it is useful to consider the identity formed by the corteges reversed
to those in (6.8); by Proposition 5.3, it is viewed as

[J][1] = Z (—q)Tr T m=InolI =) [ ] _ [T U pi).
WCI—1, =11 11|

Proof of (6.9). Let p:= |J|, k:=|I| - |J|,Q:=p+k—1]—[p+1], J°:=J -1 and
I*:=1—J.Forae I the term (Ja|l —a) occurring in (6.9) corresponds to the cortege
Se :=([p+1]|Ja, [p+k—1]|(I —a)) and its refinement R, := (§,Q, J°a, I := I°* —a)
(using the fact that k > 2).
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We deal with the set F := {S,: a € I*} of corteges and the set C(F) of configurations
(Sq; M), and like the previous proof, our aim is to construct an appropriate involution
v: C(F) = C(F).

Consider a refined cortege R, = (§, Q, J°a, I?) and a feasible matching M for it. Take
the couple in M containing a, say, 7 = {a,b}. Note that 7 is a C-couple and b € I?
(since a is white, and @ and I are black). The exchange operation applied to S, using
7 produces the member S, of F, and we link S, and S, by ~.

It remains to estimate the multipliers (—q)® and (—¢)? to the terms [Ja][I — a] and
[Jb][I — b] in (6.9), respectively.

Let d be the number of elements of I® between a and b. It is equal to the number
of elements of J° between a and b (since, in view of (4.3), the elements of I* U J°
between a and b must be partitioned into C-couples in M). This implies that if a < b,
then Inv(b,I —b) — Inv(a,I —a) = d+ 1 and Inv(b,J) — Inv(a,J) = d. Therefore,
B—a=(d+1)—d=1. And if a > b, then Inv(b,I —b) — Inv(a,] —a) = —d — 1 and
Inv(b,J) — Inv(a,J) = —d, whence § —a = —1. In both cases, 8 — « coincides with the
corresponding value of (° — (®, and the result follows. O

7. Necessity of the g-balancedness

In this section we give a converse assertion to Theorem 5.1, thus obtaining a complete
characterization for the UQ identities on quantum minors. This characterization, given in
terms of the g-balancedness, justifies the algorithm of recognizing UQ identities described
in the end of Sect. 5. As before, we deal with homogeneous families of corteges in £™™ x
gmm,

Theorem 7.1. Let K be a field of characteristic zero and let ¢ € K* be transcendental
over Q. Suppose that T,K, «, B8 (as in Sect. 5) are not g-balanced. Then there exists (and
can be explicitly constructed) an SE-graph G for which relation (5.1) is violated.

Proof. We essentially use an idea and construction worked out for the commutative
version in [4, Sect. 5].

Recall that the homogeneity of F := Z U K means the existence of X*,¥Y* C [m] and
X¢,Y¢ C [n] such that any cortege (I|J,I'|J") € F satisfies

INT =X, IAI'=Y", JnJ =X° JAJ =Y°¢ (7.1)

(cf. (5.2)). For a perfect matching M on Y"UY®, let us denote by Zy the set of corteges
S = (I|J,I'|lJ") € T for which M is feasible (see (4.3)), and denote by K a similar
set for K. The g-balancedness of Z, K, o, 8 would mean that, for any M € M(F), there
exists a bijection vy : Zpy — Kas respecting (5.3). That is, for any S = (I|J, I'|J’) € Iy
and for T = (K|L, K'|L") = vp(S), there holds

B(T) = a(S) = ¢*(Hsr) = ¢*(Msr). (7.2)
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Here: I = IIgr is the subset of M such that the refined cortege (K°,K*, L° L*)
is obtained from (I°,1°,J°,J*) by the index exchange operation using I7, and (°(IT)
(resp. ¢*(IT)) is the number of R- and C-couples {i,j} € IT with i < j and i € I° U J°
(resp. ¢ € I* U J*®). The following assertion is crucial.

Proposition 7.2. Let M be a perfect planar matching on Y*UYC. Then there exists (and
can be explicitly constructed) an SE-graph G = (V, E) with the following properties: for
each cortege S = (I|J,I'|J") € E™™ x E™™ satisfying (7.1),

(P1) if M is feasible for S, then G has a unique (I|J)-flow and a unique (I'|J")-flow;
(P2) if M is not feasible for S, then at least one of (I|J) and P (I'|J") is empty.

We will prove this proposition later, and now, assuming that it is valid, we complete
the proof of the theorem.

Let Z, K, a, 8 be not g-balanced. Then there exists a matching M € M(F) that admits
no bijection yy; as mentioned above between Zp; and Ky (and therefore at least one
of Zpr and Kps is nonempty). We fix one M of this sort and consider a graph G as in
Proposition 7.2 for this M.

Our aim is to show that relation (5.1) is violated for g-minors of Path¢g (yielding the
theorem). Suppose, for a contradiction, that (5.1) is valid. By (P2) in the proposition, we
have [I|J][I'|J'] = 0 for each cortege (I|J,I'|J") € F — Fur, denoting Fas := Tas U K.
On the other hand, (P1) implies that if (I|J,I'|J’) € Fas, then

[I|J][I,‘J/] = w(¢[|])w(¢1’u’)7

where ¢7; (resp. ¢p;) denotes the unique (I]J)-flow (resp. (I'|J')-flow) in G.
Thus, (5.1) can be rewritten as

ZIM qam‘]’l/l‘]/)w(¢1u)w(¢1/|f) = Z

For each cortege S = (I|J,I'|J") € Fus, the weight Q(S) := w(¢ss) w(dyr ) of the
double flow (¢7)7, ¢1/s/) is a monomial in weights w(e) of edges e € E (or a Laurent

o qB(K‘L’K/‘L/)w(¢K\L)w(¢K’|L’)~ (7.3)

monomial in inner vertices of G); cf. (2.2), (2.3), (3.2). For any two corteges in Fys, one
can be obtained from the other by the index exchange operation using a submatching
of M, and we know from the description in Sect. 4 that if one double flow is obtained
from another by the flow exchange operation, then the (multi)sets of edges occurring in
these double flows are the same (cf. Lemma 4.3).

Thus, the (multi)set of edges occurring in the weight monomial Q(S) is the same
for all corteges S in Fj;. Fix an arbitrary linear order £ on E. Then the monomial
Qe = Q¢(S) obtained from Q(S) by a permutation of the entries so as to make them
weakly decreasing w.r.t. £ (from left to right) is the same for all S € Fy;. Therefore,
applying relations (G1)—(G3) on vertices of G (see Sect. 2.4), we observe that for S € Fyy,
the weight Q(5) is expressed as
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Q(S) = "9 Q¢ (7.4)

for some p(S) € Z. Using such expressions, we rewrite (7.3) as

a(S)+p(S) ), — B(T)+p(T)
ZSEI}\/I q Q§ ZTE’CM q Qg’

obtaining

a(S)+p(S) _ B(T)+p(T)
ZSGIM q ZTe’CM q ' (7.5)

Since ¢ is transcendental, the polynomials in ¢ in both sides of (7.5) are equal. Then
|Zar| = | K| and there exists a bijection 5 : Zpy — Kps such that

a(S) + p(S) = BG(S)) + p(A(S))  for cach S € Tyy. (7.6)

This together with relations of the form (7.4) gives

¢*9Q(S) = "TQR(S)).

Now, for S = (I|J,I'|J') € In, let T = (K|L, K'|L") :=7(S) and let II := IIg . Using
relation (4.4) from Corollary 4.5, we have

¢ EQT) = Q(S) = w(¢r) w(dr )
=~ D= Do) wlepew) = ¢ D=CIQT),

whence B(T) — «(S) = ¢°(II) — ¢*(II). Thus, the bijection vy := 7 satisfies (7.2).
A contradiction. O

Proof of Proposition 7.2. We utilize the construction of a graph (which need not be
an SE-graph) with properties (P1) and (P2) from [4, Sect. 5]; denote this graph by
H = (Z,U). We first outline essential features of that construction and then explain how
to turn H into an equivalent SE-graph G. Transformations of H that we apply to obtain
G consist of subdividing some edges e = (u,v) (i.e., replacing e by a directed path from
u to v) and parallel shifting some sets of vertices and edges in the plane (preserving the
planar structure of the graph). Such transformations maintain properties (P1) and (P2),
whence the result will follow.

Let YYUX" ={1,2,...,k} and YU X° = {1',2/,...,k’'}. Denote the sets of R-, C-,
and RC-couples in M by M*, M€, and M*¢, respectively. An R-couple m = {i,j} with
i < j is denoted by 77, and we denote by < the natural partial order on R-couples where
7' <7 if 7’ = pr is an R-couple with i < p < r < j. And similarly for C-couples. When
7' < 7 and there is no 7" between m and 7’ (i.e., 7’ < 7" < 7), we say that 7’ is an
immediate successor of m and denote the set of these by ISuc(w). Also for 7 =ij € M*
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and d € X*, we say that d is open for 7 if ¢ < d < j and there is no 7’ = pr < 7 with
p < d < r; we denote the set of these by Open(7). And similarly for couples in M€ and
elements of X¢.

A current graph and its ingredients are identified with their images in the plane, and
any edge in it is represented by a (directed) straight-line segment. We write (x,,y,) for
the coordinates of a point v, and say that an edge e = (u,v) points down if y,, > ys.

The initial graph H has the following features (seen from the construction in [4]).

(i) The “sources” 1,...,k (“sinks” 1/,... k') are disposed in this order from left to
right in the upper (resp. lower) half of a circumference O, and the graph H is drawn
within the disk O* surrounded by O. (Strictly speaking, the construction of H in [4]
is a mirror reflection of what we describe; the latter is more convenient for us, without
affecting the result.)

(ii) Each couple m = ij € M*U M?¢ is extended to a chord between the points ¢ and 7,
which is subdivided into a path L, whose edges are alternately forward and backward
ones. Let R, denote the region in O* between L, and the paths L for all 7’ € ISuc(r).
Then each edge e of H (regarded as a line-segment) having a point in the interior of R,
connects a vertex in L, with either a vertex in L, for some 7’ € ISuc(w) or some vertex
d € Open(r). Moreover, e is directed to L, if 7 € M*, and from L, if # € M.

(iii) Let R* be the region in O* between the paths L, for all maximal R- and
C-couples 7. Then any edge e of H having a point in the interior of R* points down.
Also if such an e has an incident vertex v lying on L, for a maximal R-couple (resp.
C-couple) , then e leaves (resp. enters) v.

Using these properties, we transform H, step by step, keeping notation H = (Z,U)
for a current graph, and O* for a current disk (which becomes a deformed circle) con-
taining H. Iteratively applied steps (S1) and (S2), described below, aim to make a graph
whose all edges point down.

(S1) Choose m = ij € M* and let R, be the part of O* above L,. (Then R, contains
the paths L, for all 7/ < m, and the elements d € X" with i < d < j.) We shift R,
upward by a sufficiently large distance A > 0. More precisely, each vertex v € Z lying
in R, is replaced by vertex v with z,, = x, and y,» = y, + A. Each edge (u,w) € U
of the old graph induces the corresponding edge of the new one, namely: edge (v, w’) if
both u,w lie in R.; edge (u,w) if u,w ¢ R,; and edge (v, w) if w € R, and w € L.
(Case u € O* — R; and w € R, is impossible.) As a result, the region O* is enlarged
by shifting the part R, by (0, A) and filling the gap between L, and L, + (0, A) by the
corresponding parallelogram.

One can realize that upon application of (S1) to all R-couples, the following property
is ensured: for each m € M*, all initial edges incident to exactly one vertex on L, turn
into edges pointing down. Moreover, since L, is alternating and there is enough space
(from below and from above) in a neighborhood of the current L., we can deform L,
into a zigzag path with all edges pointing down (by shifting each inner vertex v of L,
by a vector (0, €) with an appropriate (positive or negative) € € R).
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(S2) We choose m € M€ and act similarly to (S1) with the differences that now R,
denotes the part of O* below L, and that R is shifted downward (by a sufficiently large
A>0).

Upon termination of the process for all R- and C-couples, all edges of the current
graph H (which is homeomorphic to the initial one) point down, as required. Moreover,
H has one more useful property: the sources 1, ..., k are “seen from above” and the sinks
1’,..., k" are “seen from below”. Hence we can add to H “long” vertical edges h1, ..., hg
entering the vertices 1, ..., k, respectively, and “long” vertical edges hy/,..., hy leaving
the vertices 1’,..., k', respectively, maintaining the planarity of the graph. In the new
graph one should transfer each source 4 into the tail of h;, and each sink 4’ into the head
of h;. One may assume that the new sources (sinks) lie within one horizontal line L
(resp. L'), and that the rest of the graph lies between L and L'.

Now we get rid of the edges (u,v) such that z, > z, (i.e. “pointing to the left”), by
making the linear transformation v — v’ for the points v in H, defined by z,, = =, — Ay,
and y,» = y, with a sufficiently large A > 0.

Thus, we eventually obtain a graph H (homeomorphic to the initial one) without
edges pointing up or to the left. Also the sources and sinks are properly ordered from
left to right in the horizontal lines L and L', respectively. Now it is routine to turn H
into an SE-graph G as required in the proposition. 0O

The transformation of H into G as in the proof is illustrated in the picture; here
X ={4},Y"={1,2,3}, X =0, Y ={1,...,5}, and M = {12,1'4/,2'3',35'}.

4 7
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8. Concluding remarks and additional results
8.1. An open question

It looks reasonable to ask: how narrow is the class of UQ identities for g-minors
compared with the class of those in the commutative version. We know that the latter
class is formed by balanced families 7, X, whereas the former one is characterized via
a stronger property of g-balancedness. So we can address the problem of characterizing
the set of homogeneous balanced families Z, K of corteges (I|J,I'|J") € E™™ x £™n
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that admit functions @ : Z — Z and g : K — Z such that the quadruple Z, K, «, 5 is
g-balanced.

In an algorithmic setting, we deal with the following problem (x): given Z,K (as
above), decide whether or not there exist corresponding «, 8 (as above). Concerning
algorithmic complexity aspects, note that the number |C(Z)| + |C(K)| of configurations
for Z, K may be exponentially large compared with |Z| + |K| (since a cortege of size N
may have 20(Y) feasible matchings). In light of this, it is logically reasonable to regard
as the input of problem (x) just the set C(Z) U C(K) rather than Z U K (and measure
the input size of (%) accordingly). We conjecture that problem (x) specified in this way
is NP-hard and, moreover, it remains NP-hard even in the flag case.

8.2. Non-quasicommuting flag minors

The simplest example of balanced Z, K for which problem (x) has answer “not” arises
in the flag case with Z, IC consisting of single corteges. That is, we deal with quantized
flag minors [I] = [A]I] and [J] = [B|J], where A := {1,...,|I|} and B := {1,...,|J|},
and consider the (trivially balanced) one-element families Z = {S := (A|I, B|J)} and
K = {T := (B|J,A|I)}. By Leclerc—Zelevinsky’s theorem (Theorem 6.1), [I] and [J]
quasicommute if and only if the sets I, J are weakly separated. We have explained how
to obtain “if” part of this theorem by use of the flow-matching method, and now we
explain how to use this method to show, relatively easily, “only if” part (which has a
more sophisticated proof in [10]).

So, assuming that I, J are not weakly separated, let us show that there do not exist
a(S), B(T) € Z such that the equality

B(T) — a(S) = ¢°(S; M) — ¢*(S; M) (8.1)
holds for all feasible matching M for S. The crucial observation is that
(8.2) I,J C [n] are weakly separated if and only if S has exactly one feasible matching
(where “only if” part, mentioned in Sect. 6.2, is trivial). In fact, we need a sharper version
of “if” part of (8.2): when I, J C [n] are not weakly separated, there exist M, M’ € M(S)
such that
C°(S5 M) — G (S; M) # ¢°(S; M') = ¢*(S; M). (8.3)
Then the fact that the exchange operation applied to S using M results in 7', and
similarly for M’, implies that (8.1) cannot hold simultaneously for both M and M’.
To construct the desired M and M’, we argue as follows. Let for definiteness |I| > |J]|

and let I° := T — J and J® := J — I. Since I, J are not weakly separated, one can see
that there are a,b € [n] with a < b such that the sets I° := {i € I°: a < i < b} and
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J* = {j e J*: a < j < b} satisfy [I°| —1 = |J®| =: k, and I° has a partition into
nonempty sets I, I satisfying I < J® < Is. Let

L= (iy <iyg<...<ip), To=(ipg1<...<ipi1), J*=(h<-...<5jr)

(then i, < j1 and ji < ip41). Choose an arbitrary matching M € M(S), and consider
the set IT of couples in M containing elements of j’; let IT = {my,..., 7}, where jy € .
Each 7, is a C-couple (since it cannot be an RC- couple, in view of B — A = (), and
condition (4.3) for M implies that only two cases are possible: (a) p couples in IT meet
I; and the remaining k — p couples meet I, and (b) p — 1 couples in IT meet I; and the
remaining k — p + 1 couples meet I.

In case (a), we have my = {jo,ip—s41} for £ = 1,...,p, and 7, = {j¢,i¢} for £ =
p+1,...,k. An especial role is played by the couple in M containing the last element
ig+1 of Iz, say, m = {ig41,d} (note that d belongs to either A — B or J® — J*). We
modify M by replacing the couple = by 7’ := {i1,d}, and replacing 7, = {j,,91} by
7, := {jp,ix+1}, forming matching M’. The picture illustrates the case k = 3, p = 2 and
de A—-B.

. d : ’
nM O\D M

L 1, J1 )2 )3 i3 14

One can see that M’ is feasible for S. Moreover, M and M’ satisfy (8.3). Indeed,
7, contributes one unit to (°(S; M) while 7, contributes one unit to ¢*(S; M’), the
contributions from 7 and from 7’ are the same, and the rests of M and M’ coincide.

Thus, in case (a), the one-element families {S} and {T'} along with any numbers
a(S), B(T) are not g-balanced. Then relation (6.1) (with any c) is impossible by Theo-
rem 7.1. In case (b), the argument is similar. This yields the necessity (“only if” part)
in Theorem 6.1. O

8.8. Quasicommuting general minors

Extending Leclerc—Zelevinsky’s result (Theorem 6.1), Scott gave a characterization
for the set of quasicommuting quantum minors in a general case.

Theorem 8.1 (/14]). Let (I|J),(I'|J") € E&™™. The quantum minors [I|J] and [I'|J’]
quasicommute, i.e., [I|J|[I'|J'] = ¢°[I'|J'|[I|J] for some ¢, if and only if S(I,J) and
S(I',J") are weakly separated subsets of [m+n], where for I C [m] and J C [n], we write
S(I,J) for the set {m+j: j € JYU[m]—{m—i+1:i € I}. Furthermore, if A := S(I,.J)
and B := S(I',J’) are weakly separated, |A| > |B|, and By U By is a partition of B— A
with B1 < (A — B) < By, then c as above is equal to |Ba| — |B1| + |[I| — |I'|.
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Let us explain how to obtain a characterization of quasicommuting general g-minors
by use of the flow-matching method. We state it in a slightly different form (leaving to
the reader to check that the statement of Theorem 8.1 is equivalent to (i), (iii) in the
next proposition).

Proposition 8.2. Let (I|J), (I'|J") € E™™ and let |I| > |I'|. The following statements are
equivalent:
() L] = ¢¢[I'|J'|[I|J] for some c € Z;
(ii) the cortege S = (I|J,I'|J") admits exactly one feasible matching;
(iii) the sets I, I' are weakly separated, the sets J,J' are weakly separated, and for the
refinement (I°,1°,J°,J®) of S, one of the following takes place:
(a) |I*]|J®] =0; or
(b) both sets I*,J* are nonempty, and either I° < I* and J®* < J°, or I®* < I°
and J° < J°.

Also in case (iii) the number c is computed as follows: if I* = 0, J* = Jy U Jo and
J1 < J° < Jo, then ¢ = |Jo| — |J1|; (symmetrically) if J* = 0, I* = I, U Iy and
I < I° < Iy, then ¢ = |Ix] — |I1]; if I° < I® and J* < J°, then ¢ = |I*| — |J*|; and
(symmetrically) if I* < I° and J° < J®, then ¢ = |J®*| —|I*|.

Proof. Implication (ii)—(i) is proved as in Sect. 6.2, and (iii)—(ii) is easy.

To show (i)—(iii), note that |I°| — [I®| = |J°| — |J*| > 0 (cf. (4.2)) and observe that
a feasible matchings for S can be constructed by the following procedure (P) consisting
of three steps. First, choose an arbitrary maximal feasible set M" of R-couples in Y :=
I° U I®. Here the feasibility means that the elements of each couple have different colors
and there are neither couples {i, j} and {p,r} with i < p < j < r, nor a couple {7, j} and
an element d € Y — U(r € M") with ¢ < d < j; cf. (4.3). Second, choose an arbitrary
maximal feasible set M€ of C-couples in Y¢ := J° U J*. Third, when |I| > |I’|, the
remaining elements of Y* 1Y (which are all white) are coupled by a unique set M*© of
RC-couples. Then M := M" U M°U M™ is a feasible matching for S.

Suppose that (iii) is false and consider possible cases.

1) Let J, J' be not weakly separated. Then we construct M*, M, M by procedure (P)
and work with the matching M := M¢U M*™ in a similar way as in the above proof for
the flag case (with non-weakly-separated column sets). This transforms M into M’ , and
we obtain two different feasible matchings M = M U M* and M’ := M’ U M* for S
satisfying (8.3). This leads to a contradiction with (i) (as well as (ii)) in the theorem.
When I, I’ are not weakly separated, the argument is similar.

2) Assume that I, I’ are weakly separated, and similarly for J, J'. Suppose that both
I°®,J* are nonempty. Then I°, J° are nonempty as well, and for the matching M formed
by procedure (P), M" covers I*® and M€ covers J°.

Denote by a,a’ (resp. b,b’) the minimal and maximal elements in Y* (resp. Y°¢),
respectively. Suppose that both a,b are black. Then we can transform M into M’ by
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replacing the R-couple containing a, say, ad, and the C-couple containing b, say, bf, by
the two RC-couples ab and df. It is easy to see that M’ is feasible and M, M’ satisfy (8.3)
(since under the transformation M — M’ the value (° —¢® increases by two), whence (i)
is false. When both o', b’ are black, we act similarly. So we may assume that each pair
{a,b} and {a’,b'} contains a white element. The case a € I° and b € J° is possible only
if |I°| = |I*| (taking into account that |I°| > |I®| # 0, |J°| > |J*| # 0, and that I°, I®,
as well as J°, J®, are weakly separated), implying |J°| = |J*|. But then M" covers I°
and M€ covers .J°; so we can construct a feasible matching M’ # M as in the previous
case (after changing the colors everywhere). And similarly when both o/, are white.

Thus, we may assume that a,b have different colors, and so are a’,b’. Suppose that
a,a’ € I° and b,b’ € J® (the case a,a’ € I* and b,b’ € J° is similar). This is possible
only if [I°] = |I°®| (since |I| > |I’|, and I,I’ are weakly separated). Then the feasible
matching M constructed by (P) consists of only R- and C-couples. Take the R-couple
in M containing a and the C-couple containing b’, say, @ = {a,i} and ' = {j,b'}; then
both a, j are white and both ¢,b" are black. Replace 7, 7" by the RC-couples {a,j} and
{i,b'}. This gives a feasible matching M’ # M satisfying (8.3).

The remaining cases are just as in (a) or (b) of (iii), yielding (i)—(iii). O

Remark 6. Note that the situation when (I°,I°,.J°,J*) has only one feasible matching
can also be interpreted as follows. Let us change the colors of all elements in the upper
half of the circumference O (i.e., I° becomes black and I* becomes white). Then the
quantities of white and black elements in O are equal and the elements of each color go
in succession cyclically.

Remark 7. When minors [I|J] and [I'|J'] quasicommute with ¢ = 0, we obtain the
situation of “purely commuting” quantum minors, such as those discussed in Sect. 6.1.
The last assertion in Proposition 8.2 enables us to completely characterize the set of
corteges (I|J,I’|J') determining commuting g-minors, as follows.

Proposition 8.3. The equality [I|J][I'|J'] = [I'|J'|[I|J] holds if and only if the refinement
(I°,1°,J°,J°®) satisfies at least one of the following:

(C1) |I°| = |J°| (as well as |I*| = |J*|) and either I° < I*® and J* < J°, or,
symmetrically, I®* < I° and J° < J*;

(C2) assuming for definiteness that |I| > |I'|, either I®* = 0 and J* has a partition
J1 U Jy such that |J1| = |J2| and J; < J° < Ja, or, symmetrically, J* =0 and I® has a
partition Iy U Iy such that |I1| = |I2] and I} < I° < Is.

Cases (C1) and (C2) are illustrated in the picture by two level diagrams.
O O O e (] O O

° o O O O o O O O O o
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8.4. Rotations

Return to a general UQ identity (5.1). In Sect. 5 we demonstrated two transformations
of g-balanced (Z, K, o, B) that preserve the g-balancedness (namely, the ones of reversing
and transposing, which result in (Z"V, K™V, —a, —f3) and (ZT,KT,a, ), respectively).
Now we demonstrate one more interesting (and less trivial) transformation of (Z, I, «, 8)
(in Theorem 8.4). We proceed in four steps.

First, for corresponding X", Y" C [m] and X, Y C [n] (cf. (7.1)), let Y* = (i1 <
- <) and Y = (j3 < -+ < jgr). Choose g, h € Z such that

g+h<kifgh>0; |g|+[0| <k ifg,h<0; (8.4)
g<kand|h| <K ifg>02>h; lgl <k and h <k if g <0 <h.

Assuming that the numbers i1, m — i, j1, n — ji are large enough, we take sets
A,B C [m]and A’, B’ C [n] such that |A| = |A'| = |g], |B| = |B’| = |I'|, (AUB)NX"* = 0,
(AAUB)YNX®=0, and

(8.5) (a) A={i1,...,ig}and A’ <Y°if g > 0;
(@) A<Y*and A" = {j1,...,5j)4} if g <O;
(b) B ={ik—ht1,---,ix} and B’ > Y°if h > 0;
(b’) B >Y" and B = {jkl7|h|+17.. '7jk:’} if A < 0.

Let £ be the order-reversing bijection between A and A’, i.e., ¢-th element of A is
bijective to (]g| + 1 — £)-th element of A’ and 7 the order-reversing bijection between B
and B'.

Second, we transform each cortege S = (I|J,I'|.J’) € Z UK into cortege Sq; =
(I|J,T'|J") such that INT' = X*, JNJ = X, and the refinement (I°,I*,J°, J*) of
Sg.n is expressed via the refinement (1°,1°,J°, J*®) of S as follows:

(i) IPUI* = (Y' £ A) £ B =Y}, and J°UJ* = (Y° £ A') £ B' = Y, (where we
write P+ @ for PUQ in case PNQ = (), and write P —Q for P\ Q in case P 2 Q);
(i) If i € I° (i € I*) is not in AU B, then i € I° (resp. i € I*), and symmetrically, if
jeJe (jeJ®) isnot in AU B’ then j € Je (resp. j € j:),
(iif) If ¢ € I° (i € I*) is in AU B, then the element bijective to i (by £ or n) belongs to
Je (resp. jg), and symmetrically, if j € J° (j € J*) is in A’ U B’, then the element
bijective to j belongs to Ie (resp. f")

(In other words, £ and n change the colors of elements occurring in A, B, A", B’.) We
callY),, Y7, Sg.n the (g, h)-rotations of YT, Y, S, respectively. Accordingly, we say that
{Sqg,n: S €L} is the (g, h)-rotation of Z, denoted as I;?h, and similarly for K.

(This terminology is justified by the observation that if ¢ = —h, then each cortege S
is transformed as though being rotated (by |g| positions clockwise or counterclockwise)
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Fig. 3. An example of rotation with k =5, k¥’ =3, g =2 and h = —1.

on the circular diagram on Y" U Y®; thereby each element moving across the middle
horizontal line of the diagram changes its color.)

Third, extend § and 7 to the bijection p : Y*UY*® — Y, UY7, so that p be identical
onY"— (AUB) and on Y° — (A’UB’). Then a perfect matching M on Y* LY induces
the perfect matching {p(m): m € M} on Y, UY7,, denoted as Myp. An important
property (which is easy to check) is that

(8.6) if M is a feasible matching for S € Z U K, then My, is a feasible matching for
Sg.n, and vice versa.

An example of rotation of S with M € M(S) is illustrated in Fig. 3.
Fourth, for S = (I|J,I'|J'), define w(S) := 0s(A) 4+ ds(A") + ds(B) + ds(B’), where

5s(A):==|ANTI°|,  8s(B):=—|BNI (8.7)
5s(A) = |A'nJ°|,  6s(B)=—|B'nJ°

Theorem 8.4. Let Z,K,a, 3 be g-balanced and let g and h be as in (8./). Define
agn(Sen) = a(S) +w(S) for S € I, and Byn(Tyn) = B(T) + w(T) for T € K.
Then I;j,}w th, 0g.ny Bg,n are q-balanced.

Proof. Let v : C(Z) — C(K) be a bijection providing the g-balancedness of Z, K, «, 3.
By (8.6), v induces a bijection 4 p C(I;?h) — C(Kﬁh). More precisely, for configura-
tions (S; M) € C(Z) and (T; M) = v(S; M), 74,5, maps the configuration (S 5; My ) to
(Ty,n; Mg p). We assert that v, 5, satisfies the corresponding equality of the form

Bg.n(Tyn) — g n(Sgn) = C°(Sg,n; p(I)) — C*(Sg,n; p(I1)) (8.8)

(cf. (5.3)), yielding the result; here, as before, IT is the set of couples in M colored
differently in the refinements of S and 7.

For additivity reasons, it suffices to show (8.8) when |g| + |h| = 1. We will abbreviate
corresponding Sy, Ty n, Mg p as S, T, M'. (So T" is obtained from S’ by the exchange
operation using p(II) C M’.) Let d denote the only element of Y LI Y° that is not
in Yy, UY;,, and 7 = {d, f} the couple in M containing d. Also we define A :=
Co(S: 1) — C*(8: 1) and A = ¢3(S's p(IT)) — C*('s (1),
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Our aim is to show that w(T) — w(S) = A’ — A; then (8.8) would immediately follow
from (5.3). One can see that if 7 ¢ II, then A’ = A, and d5(D) = d7(D) holds for
D = A A, B,B (cf. (8.7)), implying w(S) = w(T). So we may assume that = € II.
Consider possible cases (where S = (I|J,I'|J') and T = (K|L, K'|L")).

Case 1. Let g =1. Then d = 4;. First suppose that d € I°. Then w(S) = ds(A) =1
and w(T') = dr(A) = 0 (since the exchange operation changes the color of d, i.e., d € K*®).
If 7 is an R-couple for S, then 7 contributes 1 to A (since d is white and d < f), and
p(m) contributes 0 to A’ (since p() is an RC-couple for S”). Hence w(T) —w(S) = —1 =
A’ — A as required. And if 7 is an RC-couple for S, then 7 contributes 0 to A and p(m)
contributes —1 to A’ (since p(w) is a C-couple for S’ p(d) is black, p(f) = f is white,
and p(d) < f), giving again A’ — A = —1.

When d € I*, we argue “symmetrically” (as though the roles of S and T', as well as
¢° and (*, are exchanged). Briefly, one can check that: w(S) = 0 and w(7T) = 1; if 7 is
an R-couple, then 7 contributes —1 to A, and p(7) contributes 0 to A’; and if 7 is an
RC-couple then 7 contributes 0 to A and p(7) contributes 1 to A’. Thus, every time we
obtain w(T) —w(S) =1 = A" — A, as required.

Case 2. Let h = 1. Then d = ij. Suppose that d € I°. Then w(S) = 0s(B) = —1
and w(T) = op(B) = 0. If 7 is an R-couple for S, then 7 contributes —1 to A (since
d is white and d > f) and p(7) contributes 0 to A’ (since p(7) is an RC-couple). And
if 7 is an RC-couple for S, then 7 contributes 0 to A and p(w) contributes 1 to A’
(since p(m) is a C-couple for S’, p(d) is black, and p(d) > f). In both cases, we obtain
w(T) —w(S) =1=A"— A, as required. When d € I°®, we argue “symmetrically”.

Finally, the cases g = —1 and h = —1 are “transposed” to Cases 1 and 2, respectively,
and (8.8) follows by using relation (5.6). O
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Appendix A. Commutation properties of paths and a proof of Theorem 3.1

This section contains auxiliary lemmas that are used in the proof of Theorem 3.1
given in this section as well, and in the proof of Theorem 4.4 given in Appendix B.
These lemmas deal with special pairs P, @ of paths in an SE-graph G = (V, E; R, C)
and compare the weights w(P)w(Q) and w(Q)w(P). Similar or close statements for
Cauchon graphs are given in [1,2], and our method of proof is somewhat similar and
rather straightforward as well.

We first specify some terminology, notation and conventions.

When it is not confusing, vertices, edges, paths and other objects in G are identified
with their corresponding images in the plane. We assume that the set R = {ry,...,mn}
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of sources and the set C' = {c1,...,¢,} of sinks lie on the coordinate rays (0,R>p)
and (R>o,0), respectively (then G is disposed within the nonnegative quadrant R ).
The coordinates of a point v in R? (in particular, a vertex v of G) are denoted as
(a(v), B(v)). It is convenient to assume that two vertices u,v € V have the same first
(second) coordinate if and only if they belong to a vertical (resp. horizontal) path in G,
in which case u, v are called V-dependent (resp. H-dependent); for we always can slightly
perturb G to ensure such a property, without affecting the graph structure in essence.
When u,v are V-dependent, i.e., a(u) = a(v), we say that u is lower than v (and v is
higher than u) if S(u) < B(v). (In this case the commutation relation uv = quu takes
place.)

Let P be a path in G. We denote: the first and last vertices of P by sp and tp,
respectively; the interior of P (the set of points of P — {sp,tp} in R?) by Int(P); the
set of horizontal edges of P by EX; and the projection {a(z) : & € P} by a(P). Thus,
if P is directed, then «(P) is the interval between a(sp) and a(tp).

For a directed path P, the following properties are equivalent: P is non-vertical;
EH #£0; and a(sp) # a(tp). We will refer to such a P as a standard path.

For a standard path P, we will take advantage from a compact expression for the
weight w(P). We call a vertex v of P essential if either P makes a turn at v (changing
the direction from horizontal to vertical or conversely), or v = sp ¢ R and the first edge
of P is horizontal, or v = tp and the last edge of P is horizontal. If ug,u1,...,ux is
the sequence of essential vertices of P in the natural order, then the weight of P can be
expressed as

w(P) = ug®ui" ... u7*, (A1)

where o; = 1 if P makes a |-turn at u; or if i = k, while o; = —1 if P makes a L -turn
at u; or if ¢ = 0 and wg is the beginning of P. (Compare with (2.4) where a path from
R to C is considered.) Note that if P does not begin in R, then its essential vertices are
partitioned into H-dependent pairs.

Throughout the rest of the paper, for brevity, we denote ¢~! by g, and for an inner
vertex v € W regarded as a generator, we may denote v—! by .

A.1. Auziliary lemmas

These lemmas deal with weakly intersecting directed paths P and @, which means
that

PﬂQZ{Sp,tp}ﬂ{SQ,tQ}; (A2)

then Int(P) N Int(Q) = (. For such P,Q, we say that P is lower than @ if there are
points * € P and y € @ such that a(z) = a(y) and S(z) < B(y) (then there are no
2’ € P and 3y € Q with a(2’) = a(y’) and B(2’) > B(y')).
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For paths P, @, we define the value ¢ = p(P, Q) by the relation

w(P)w(Q) = pw(Q)w(P).

Obviously, p(P, Q) = 1 when P or @ is a V-path. In the lemmas below we default assume
that both P, @ are standard.

Lemma A.1. Let {a(sp),a(tp)} N{a(sq),a(tq)} NRso = 0. Then ¢(P,Q) = 1.

Proof. Consider an essential vertex u of P and an essential vertex v of (). Then for any
o,0’ € {1,—1}, we have uv® = 07 u® unless u, v are dependent.

Suppose that u, v are V-dependent. From hypotheses of the lemma it follows that at
least one of the following is true: a(sp) < a(u) < a(tp), or a(sq) < a(v) < a(tg). For
definiteness assume the former. Then there is another essential vertex z of P such that
a(z) = a(u) = a(v). Moreover, P makes a |-turn an one of u, z, and a L -turn at the
other. Since PNQ = () (in view of (A.2)), the vertices u, z are either both higher or both
lower than v. Let for definiteness u, z occur in this order in P; then w(P) contains the
terms u and z. Let w(Q) contain the term v and let uwv® = pv7u, where o € {1,—1}
and p € {q,q}. Then zv? = pv°z, implying uzv® = v°uz. Hence the contributions
to w(P)w(Q) and w(Q)w(P) from the pairs on generators u, z,v (namely, {u,v?} and
{z,v7}) are equal.

Next suppose that u, v are H-dependent. One may assume that a(u) < a(v). Then @
contains one more essential vertex y # v with 8(y) = B(v) = B(u). Also a(u) < a(v)
and PNQ = 0 imply a(u) < a(y). Let for definiteness a(y) < a(v). Then w(Q) contains
the terms 7, v, and we can conclude that the contributions to w(P)w(Q) and w(Q)w(P)
from the pairs on generators u, y, v are equal (using the fact that a(u) < a(y), a(v)).

These reasonings imply ¢(P,Q) =1. O

Lemma A.2. Let a(sp) = a(sg) > 0 and a(tp) # a(tg). Let P be lower than Q. Then
¢(P,Q) =q.

Proof. Let u and v be the first essential vertices in P and Q, respectively. Then a(sp) =
a(sg) > 0 implies a(u) = a(sp) = a(sg) = a(v). Since P is lower than @, we have
B(u) < B(v). Moreover, this inequality is strong (since 8(u) = (v) is impossible in view
of (A.2) and the obvious fact that u, v are the tails of first H-edges in P, @), respectively).

Now arguing as in the above proof, we can conclude that the discrepancy between
w(P)w(Q) and w(Q)w(P) can arise only due to swapping the vertices u, v. Since u gives
the term @ in w(P), and v the term T in w(Q), the contribution from these vertices to
w(P)w(Q) and w(Q)w(P) are expressed as uv and Tu, respectively. Since S(u) < B(v),
we have uv = quu, and the result follows. O

Lemma A.3. Let atp) = a(tg) and let either a(sp) # a(sq) or a(sp) = a(sg) = 0.
Let P be lower than Q. Then ¢(P,Q) = q.
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Proof. We argue in spirit of the proof of Lemma A.2. Let w and v be the last essential
vertices in P and @, respectively. Then a(u) = a(tp) = a(tg) = a(v). Also B(u) < B(v)
(since P is lower than @, and taking into account (A.2) and the fact that u,v are
the heads of H-edges in P, @, respectively). The condition on a(sp) and a(sg) imply
that the discrepancy between w(P)w(Q) and w(Q)w(P) can arise only due to swapping
the vertices u,v (using reasonings as in the proof of Lemma A.1). Observe that w(P)
contains the term w, and w(@) the term v. So the generators u,v contribute uv to
w(P)w(Q), and vu to w(Q)w(P). Now B(u) < f(v) implies uv = quu, and the result
follows. O

Lemma A.4. Let a(tp) = a(sq) and B(tp) > B(sq). Then ¢(P,Q) = q.

Proof. Let u be the last essential vertex in P and let v, z be the first and second essential
vertices of @), respectively (note that z exists because of 0 < a(tp) = a(sg) < a(tq))-
Then a(u) = a(tp) = a(sq) = a(v) < a(2). Ako Au) > fltp) > Alsq) > Av) = A().
Let @ and Q" be the parts of @ from sg to z and from z to tg, respectively. Then
a(P)Na(Q”) = 0, implying ¢(P,Q"”) = 1 (using Lemma A.1 when Q" is standard).
Hence (P, Q) = o(P, Q).

To compute ¢(P,Q’), consider three possible cases.

(a) Let B(u) > B(v). Then u,v form the unique pair of dependent essential vertices
for P,Q'. Note that w(P) contains the term u, and w(Q') contains the term . Since
B(u) > B(v), we have uv = quu, implying ¢(P, Q') = q.

(b) Let u = v and let u be the unique essential vertex of P (in other words, P is an
H-path with sp € R). Note that v = v and S(tp) > S(sg) imply tp = u=v = sg. Also
a(u) < a(z) and B(u) = B(2); so u,z are H-dependent essential vertices for P,Q’ and
uz = qzu. We have w(P) = v and w(Q') = uz (in view of u = v). Then wuz = uuz =
quzu implies (P, Q") = q.

(¢) Now let u = v and let y be the essential vertex of P preceding u. Then tp = u =
v = sq, Bly) = B(u) = B(2), and a(y) < a(u) < a(z). Hence y,u, z are H-dependent,
w(P) contains Fu, and w(Q’) = uz. We have

gutiz = Juuz = (quy)(gzu) = ¢*U(72P)u = quzgu,
again obtaining p(P,Q') =¢. O
Lemma A.5. Let a(tp) = a(sq) and B(tp) < B(sq). Then o(P,Q) =7.
Proof. Let u be the last essential vertex of P, and v the first essential vertex of Q.
Then a(u) = a(tp) = a(sq) = «(v), and S(tp) < B(sq) together with (A.2) im-

plies B(u) < B(v). Also w(P) contains v and w(Q) contains T. Now uv = guu implies
p(PQ)=7q O
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A.2. Proof of Theorem 3.1

It can be conducted as a direct extension of the proof of a similar Lindstrom’s type
result given by Casteels [1, Sect. 4] for Cauchon graphs. To make our description more
self-contained, we outline the main ingredients of the proof, leaving the details where
needed to the reader.

Let (I|J) € &™™, I = {i(1) < --- < i(k)} and J = {j(1) < --- < j(k)}. Recall
that an (I]J)-flow in an SE-graph G (with m sources and n sinks) consists of pairwise
disjoint paths P, ..., P from the source set Ry = {r;x1),..., k) } to the sink set Cy =
{¢j1ys -5 iy }» and (because of the planarity of G) we may assume that each P; begins
at rjq) and ends at c;(q). Besides, we are forced to deal with an arbitrary path system
P = (P1,...,P) in which fori = 1,...,k, P;is a directed path in G beginning at r;(g
and ending at c;(,(q)), where o(1),...,0(k) are different, i.e., ¢ = op is a permutation
on [k]. (In particular, op is identical if P is a flow.)

We naturally partition the set of all path systems for G and (I].J) into the set ®(I|.J) of
(I]J)-flows and the rest W(I].J) (consisting of those path systems that contain intersecting
paths). The following property easily follows from the planarity of G (cf. [1, Lemma 4.2]):

(A.3) For any P = (P1,...,P;) € U(I|J), there exist two consecutive intersecting paths
Py, Py

The ¢-sign of a permutation o is defined by
Sgnq(o) = (_q)e(a)u

where ¢(c) is the length of o (see Sect. 2).
Now we start computing the g-minor [I]J] of the matrix Pathg with the following
chain of equalities:

111= 3, 5,0 (T, Pathatitalitota))

k

=5 @) (TT,, (X« P e actit@lito(@) )
= (sgn,(op)w(P) : P € ©(I]J) U(I]]))
=Y (W(P) : Pe@U])+ > (sgny(op)w(P) : P € U(I]])).

Thus, we have to show that the second sum in the last line is zero. It will follow from
the existence of an involution n : U(I|J) — ¥(I|J) without fixed points such that for
each P € U(I]J),

sgn, (op)w(P) = —sgn,(oyp))w(n(P)). (A4)
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To construct the desired 7, consider P = (P, ..., P;) € U(I|J), take the minimal ¢
such that P; and P;y; meet, take the last common vertex v of these paths, represent P;
as the concatenation K o L, and P;;q as K’ o I, so that tx =t = s = s = v, and
exchange the portions L, L’ of these paths, forming Q; := K o L' and Q;11 := K’ o L.
Then we assign 7(P) to be obtained from P by replacing P;, Piy1 by @i, Qit1. It is
routine to check that 7 is indeed an involution (with n(P) # P) and that

Uoypy) = lop) + 1, (A5)

assuming w.l.o.g. that o(i) < o(i + 1). On the other hand, applying to the paths
K,L,K', L' Lemmas A.2 and A.4, one can obtain

w(Py)w(Piy1) = w(K)w(L)w(K" )w(L') = qu(K)w(L)w(L )w(K")
= ¢w(K)w(L )w(L)w(K') = qu(K)w(L)w(K )w(L) = quw(Q:i)w(Qi+1),

whence w(P) = qw(n(P)). This together with (A.5) gives

sgn, (op)w(P) + sgny (o)) wn(P)) = (=0)" " qu(n(P)) + (—¢)"“»w(n(P)) =0,

yielding (A.4), and the result follows. O
Appendix B. Proof of Theorem 4.4
Using notation as in the hypotheses of this theorem, we first consider the case when
(C): w={f,g} is a C-couple in M(¢,¢’) with f < g and f € J.
(Then f € J° and g € J*.) We have to prove that
w(@)w(d') = qu()w(¥') (B.1)

The proof is given throughout Sects. B.1-B.5. The other possible cases in Theorem 4.4
will be discussed in Sect. B.6.

B.1. Snakes and links

Let Z be the exchange path determined by 7 (i.e., Z = P(n) in notation of Sect. 4).
It connects the sinks ¢y and ¢4, which may be regarded as the first and last vertices of Z,
respectively. Then Z is representable as a concatenation Z = Z10250Z30...0Z,_107Zy,
where k is even, each Z; with ¢ odd (even) is a directed path contained in ¢ (resp. ¢'),
and Z; stands for the path reversed to Z;. More precisely, let zg := cf, 2 = cg, and for
i=1,...,k—1, let z; denote the common endvertex of Z; and Z;11. Then each Z; with
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Fig. 4. Here: the bends z1, ..., z9 are marked by squares; the white and black snakes are drawn by thin and
thick solid zigzag lines, respectively; the white links Ly,..., Ly are drawn by short-dotted lines, and the
black links My, ..., Mg by long-dotted lines.

i odd is a directed path from z; to z;—1 in (Ey — E¢/>, while each Z; with ¢ even is a
directed path from z;_; to z; in (Ey — Ey).

We refer to Z; with ¢ odd (even) as a white (resp. black) snake.

Also we refer to the vertices z1,...,25_1 as the bends of Z. A bend z; is called a peak
(a pit) if both path Z;, Z;11 leave (resp. enter) z;; then zj,z23,...,2p_1 are the peaks,
and 22,24, ..., zL—2 are the pits. Note that some peak z; may coincide with some pit z;;
in this case we say that z;, z; are twins.

The rests of flows ¢ and ¢’ consist of directed paths that we call white and black links,
respectively. More precisely, the white (black) links correspond to the connected compo-
nents of the subgraph ¢ (resp. ¢') from which the interiors of all snakes are removed. So
a link connects either (a) a source and a sink (being a component of ¢ or ¢'), or (b) a
source and a pit, or (c¢) a peak and a sink, or (d) a peak and a pit. We say that a link is
unbounded in case (a), semi-bounded in cases (b), (c), and bounded in case (d). Note that

(B.2) a bend z; occurs as an endvertex in exactly four paths among snakes and links,
namely: either in two snakes and two links (of different colors), or in four snakes
Zi,Zit1,Z;, Zj1 (when z;, z; are twins).

We denote the sets of snakes and links (for ¢, ¢/, 7) by S and L, respectively; the corre-
sponding subsets of white and black elements of these sets are denoted as §°, §°®, L°, L®.
An example with k = 10 is drawn in Fig. 4.

The weight w(¢)w(¢’) of the double flow (¢, ¢') can be written as the corresponding
ordered product of the weights of snakes and links; let A/ be the string (sequence) of
snakes and links in this product. The weight of the double flow (¢,1’) uses a string
consisting of the same snakes and links but occurring in another order; we denote this
string by N*.
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We say that two elements among snakes and links are invariant if they occur in the
same order in A" and N*, and permuting otherwise. In particular, two links of different
colors are invariant, whereas two snakes of different colors are always permitting.

For example, observe that the string A for the example in Fig. 4 is viewed as

L LoZ 1 L3Z3ZgLyLsZsLgZ7 Ly My Zo Zg Mo Zy Mz Zg My Ms Zs M,
whereas N'* is viewed as
LiLyZyZ 0 L3ZyLeZgLyLsZg Ly My Zy Mo Zs Zo My Ms Zs M3 Z7 M.

For A, B € SUL, we write A < B (resp. A <* B) if A occurs in A/ (resp. in N'*) earlier
than B. We define o4 g = ¢p 4 :=1if A, B are invariant, and define o4 g = ¢p 4 by
the relation

w(A)w(B) = ¢a,pw(B)w(A) (B.3)

if A, B are permuting and A < B. Note that ¢4 p is defined somewhat differently than
©(P, Q) in Sect. A.1.
For A, B € SU L, we may use notation (A4, B) when A, B are permuting and A < B
(and usually write {4, B} when their orders by < and <* are not important for us).
Our goal is to prove that in case (C),

H(QOA,B :A,BeSUL)=gq, (B.4)

whence (B.1) will immediately follow.
We first consider the non-degenerate case. This means the following restriction:

(B.5) all coordinates c(z1),...,a(zk—1),a(c;), j € JUJ', are different.

The proof of (B.4) subject to (B.5) will consist of three stages I, II, IIT where we
compute the total contribution from the pairs of links, the pairs of snakes, and the pairs
consisting of one snake and one link, respectively. As a consequence, the following three
results will be obtained (implying (B.4)).

Proposition B.1. In case (B.5), the product ¢! of the values p p over all links A, B € L
s equal to 1.

Proposition B.2. In case (B.5), the product o'l of the values pap over all snakes
A, B €S is equal to q.

Proposition B.3. In case (B.5), the product ' of the values pa 5 where one of A, B
is a snake and the other is a link is equal to 1.
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These propositions are proved in Sects. B.2—B.4. Sometimes it will be convenient for
us to refer to a white (black) snake/link concerning ¢, ¢', ™ as a ¢-snake/link (resp. a
¢’-snake/link), and similarly for ¢, ¢’ .

B.2. Proof of Proposition B.1

Under the exchange operation for (¢, ¢’) using Z, any ¢-link becomes a 1-link and any
¢'-link becomes a ’-link. The white links occur in N earlier than the black links, and
similarly for N*. Therefore, if A, B are permuting links, then they are of the same color.
This implies that AN B = (). Also each endvertex of any link either is a bend or belongs
to RUC. Then (B.5) implies that the sets {a(s4), a(ta) }NR>o and {a(sg), a(tp) }NR=g
are disjoint. Now Lemma A.1 gives p4 5 = 1, and the proposition follows. O

B.3. Proof of Proposition B.2

Consider two snakes A = Z; and B = Z;, and let A < B. If [i —j| > 1 then ANB =0
and, moreover, {a(sa),a(ta)} N{a(sp),a(tp)} = 0 (in view of (B.5) and since Z is
simple). This gives 4,5 = 1, by Lemma A.1.

Now let |¢ — j| = 1. Then A, B have different colors; hence A is white and B is black
(in view of A < B). So i is odd, and two cases are possible:

Case 1: j=1i+1 and z; is a peak: z; = sy = sp;
Case 2: j=1i—1and z;_; is a pit: 2,1 =ta =tp.

Each of these cases falls into two subcases (using the term “lower” from Appendix A).

Subcase 1a: j =i+ 1 and A is lower than B.
Subcase 1b:  j =1+ 1 and B is lower than A.
Subcase 2a: j=1i—1 and A is lower than B.
Subcase 2b:  j =14 — 1 and B is lower than A.

These subcases are illustrated in the picture:

zZ; B Z;
— L !
A B 4 B
la: 1b:

2a: Zil 2b: Zig

Under the exchange operation using Z, any snake changes its color; so A, B are per-
muting. Applying to A, B Lemmas A.2 and A.3, we obtain ¢4 g = ¢ in Subcases 1a, 2a,
and @4 g = ¢ in Subcases 1b, 2b.

It is convenient to associate with a bend z the number 7(z) which is equal to +1
if, for the corresponding pair A € §° and B € S°® sharing z, A is lower than B (as in
Subcases la, 2a), and equal to —1 otherwise (as in Subcases 1b, 2b). Define
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vz = Z('y(z) : z a bend of Z). (B.6)
Then p!! = ¢7#. Thus, ¢!/ = ¢ is equivalent to
Yz = 1. (B7)

To show (B.7), we are forced to deal with a more general setting. More precisely, let
us turn Z into simple cycle D by combining the directed path Z; (from z to zp = ¢y)
with the horizontal path from ¢f to ¢4 (to create the latter, we formally add to G the
horizontal edges (cj,c¢j4+1) for j = f,...,g —1). The resulting directed path 71 from z
to ¢g = 2, is regarded as the new white snake replacing Z;. Then Zl shares the end z
with the black path Zi; so z; is a pit of D, and Z is lower than Zy.. Thus, compared
with Z, the cycle D acquires an additional bend, namely, z;. We have y(z;) = 1, implying
vp = vz + 1. Then (B.7) is equivalent to yp = 2.

On this way, we come to a new (more general) setting by considering an arbitrary
simple (non-directed) cycle D rather than a special path Z. Moreover, instead of an
SE-graph as before, we can work with a more general directed planar graph G in which
any edge e = (u,v) points arbitrarily within the south-east angle, i.e., satisfies a(u) <
a(v) and B(u) > B(v). We call G of this sort a weak SE-graph.

So now we are given a colored simple cycle D in G, i.e., D is representable as a
concatenation D1 o Dy o ... 0 Dy_1 o Dy, where each D; is a directed path in G; a
path (“snake”) D; with i odd (even) is colored white (resp. black). Let dy,...,d; be
the sequence of bends in D, i.e., d; is a common endvertex of D; and D;;; (letting
Dy.y1 := Dq). We assume that D is oriented according to the direction of D; with i even.
When this orientation is clockwise (counterclockwise) around the bounded region Op of
the plane surrounded by D, we say that D is clockwise (resp. counterclockwise). Then
the cycle arising from the above path Z is clockwise.

Our goal is to prove the following

Lemma B.4. Let D be a colored simple cycle in a weak SE-graph G. If D is clockwise
then yp = 2. If D is counterclockwise then vp = —2.

(Note that this need not hold for a self-intersecting colored closed curve D.)

Proof. We use induction on the number n(D) of bends in D. It suffices to consider the
case when D is clockwise (since for a counterclockwise cycle D’ = Ell oDho.. .03271 oDy,
the reversed cycle D' = Dy o D), _,o...0Dyo D} is clockwise, and it is easy to see that
D = —Dr)-

W.l.o.g., one may assume that the coordinates 3(d;) of all bends d; are different (as
we can make, if needed, a due small perturbation of D, which does not affect ).

If n(D) = 2, then D = D; o Dy, and the clockwise orientation of D implies that the
path D; is lower than Ds. So y(d1) = v(dz) = 1, implying vp = 2.
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Now assume that (D) > 2. Then at least one of the following is true:

(a) there exists a peak d; such that the horizontal line through d; meets D on the left
of d;, i.e., there is a point  in D with a(z) < a(d;) and B(x) = B(d;);

(b) there exists a pit d; such that the horizontal line through d; meets D on the right
of d;.

(This can be seen as follows. Let d; be a peak with 8(d;) maximum. Then the clockwise
orientation of D implies that D;; lies on the right from D;. If 5(d;_1) < 5(d;j+1), then,
by easy topological reasonings, either the pit d;11 is as required in (b) (when d;42 is on
the right from D;yq), or the peak dj;2 is as required in (a) (when d;12 is on the left
from Dji1), or both. And if 5(d;j—1) > S(dj4+1), then d;_; is as in (b).)

We may assume that case (a) takes place (as case (b) is symmetric to (a), in a sense).
Choose the point x as in (a) with a(z) maximum and draw the horizontal line-segment
L connecting the points x and d;. Then the interior of L does not meet D. Two cases
are possible:

(I) Int(L) is contained in the region Op; or

(O) Int(L) is outside Op.

Since x cannot be a bend of D (in view of 8(z) = 8(d;) and B(d;) # B(d;) for any
i' # i), x is an interior point of some snake Dj; let D and D} be the parts of D; from
sp, to x and from x to tp,, respectively. Using the facts that D is oriented clockwise and
this orientation is agreeable with the forward (backward) direction of each black (resp.
white) snake, one can realize that

(B.8) (a) in case (I), D; is white and y(d;) = —1 (i.e., for the white snake D; and black
snake D;11 that share the peak d;, D;1 is lower than D;); and (b) in case (O),
D; is black and v(d;) =1 (i.e., D; is lower than D;1).

See the picture (where the orientation of D in each case is indicated):

The points  and d; split the cycle (closed curve) D into two parts ¢’, (", where the
former contains D’ and the latter does D7.

We first examine case (I). The line L divides the region Op into two parts O’ and O”
lying above and below L, respectively. Orienting the curve ¢’ from z to d; and adding to
it the segment L oriented from d; to x, we obtain closed curve D’ surrounding O’. Note
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that D’ is oriented clockwise around O’. We combine the paths D, L (from x to d;)
and D; into one directed path A (going from Sp; = Sp, = d; to tp, = d;—1). Then D’
turns into a correctly colored simple cycle in which A is regarded as a white snake and
the white/black snakes structure of the rest preserves (cf. (B.8)(a)).

In its turn, the curve ¢” oriented from d; to = plus the segment L (oriented from x
to d;) form closed curve D" that surrounds O” and is oriented clockwise as well. We
combine L and D,y into one black snake B (going from z to d;+1). Then D" becomes
a correctly colored cycle, and « is a peak in it. (The point z becomes a vertex of G.) We
have y(z) = 1 (since the white D7 is lower than the black B).

The creation of D', D” from D in case (I) is illustrated in the picture:

We observe that, compared with D, the pair {D’, D"} misses the bend d; (with vy(d;) =
—1) but acquires the bend z (with (x) = 1). Then

(D) =n(D') +n(D"), (B.9)

implying n(D’),n(D"”) < n(D). Therefore, we can apply induction. This gives ypr =
vp» = 2. Now, by reasonings above,

Yo =7vp +vpr +y(d;) —y(x) =2+2-1-1=2,

as required.

Next we examine case (O). The curve ¢’ (containing D) passes through the black
snake D;y1, and the curve (" (containing DY) through the white snake D;. Adding to
each of ', (" a copy of L, we obtain closed curves D’, D", respectively, each inheriting
the orientation of D. They become correctly colored simple cycles when we combine
the paths D;-, L, D; 4 into one black snake (from d;_q to d;y1) in D’, and combine the
paths L, D; into one white snake (from the new bend z to d;) in D”. Let O’, 0" be the
bounded regions in the plane surrounded by D’, D”, respectively. Two cases are possible
(as illustrated in the picture below):

(01) O’ includes O” (and Op);

(02) O" includes O’ (and Op).
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Observe that in case (O1), D' is clockwise and D" is counterclockwise, whereas in
case (02) the behavior is converse. Also v(d;) = 1 and «(z) = —1. Like case (I), rela-
tion (B.9) is true and we can apply induction. Then in case (O1), we have vp, = 2 and
vp» = —2, whence

o =7p +vpr +y(d;) —v(x) =2—-24+1— (1) =2.
And in case (02), we have vypr = —2 and yp» = 2, whence
o =70+ +(di) —y(x) = 242+ 1—(-1)=2.
Thus, in all cases we obtain y7p = 2, yielding the lemma. 0O

This completes the proof of Proposition B.2. O
B.4. Proof of Proposition B.3

Consider a link L. By Lemma A.1, for any snake P, ¢r p # 1 is possible only if L
and P have a common endvertex v. Note that v ¢ RU C.

First assume that s;, ¢ R. Then there are exactly two snakes containing sy, namely,
a white snake A and a black snake B such that s;, = t4 = tg. If L is white, then A and
L belong to the same path in ¢; therefore, A < L < B. Under the exchange operation
A becomes black, B becomes white, and L continues to be white. Then B, L belong to
the same path in v; this implies B <* L <* A. So both pairs (A, L) and (L, B) are
permuting. Lemma A.4 gives 41 = ¢q and ¢ p =G, whence 4 ¢ = 1.

Now let L be black. Then A < B < L and B <* A <* L. So both pairs {4, L} and
{B, L} are invariant, whence ¢4 1, = ¢ = 1.

Next we assume that t;, ¢ C. Then there are exactly two snakes, a white snake A’
and a black snake B’, that contain t;, namely: t; = sa = sp/. If L is white, then
L < A" < B and L <* B’ <* A'. Therefore, {L, A} and {L, B’} are invariant, yielding
¢vr. 4 = ¢, = 1. And if L is black, then A’ < L < B’ and B’ <* L <* A’. So both
(A’,L) and (L, B’) are permuting, and we obtain from Lemma A.4 that ¢4/, = g and
oL, = ¢, yielding par por g = 1.

These reasonings prove the proposition. 0O
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B.5. Degenerate case

We have proved relation (B.4) in a non-degenerate case, i.e., subject to (B.5), and
now our goal is to prove (B.4) when the set

Z:={z1,..., -1} U{c;: j€JUJ'}

contains distinct elements u, v with a(u) = a(v). We say that such u, v form a defect pair.
A special defect pair is formed by twins z;, z; (i.e., bends satisfying i # j, a(z;) = a(z;)
and B(z;) = B(z;)). Another special defect pair is of the form {sp,tp} when P is a
vertical snake or link, i.e., a(sp) = a(tp).

We will show (B.4) by induction on the number of defect pairs.

Let a be the minimum number such that the set X := {u € Z : a(u) = a} contains a
defect pair. We denote the elements of X as vg, vy, ..., v, where for each i, v;_; is higher
than v;, which means that either S(v;—1) > S(v;), or v;_1,v; are twins and v;_1 is a pit
(while v; is a peak) in the exchange path Z. The highest element v is also denoted by w.

In order to conduct induction, we deform the graph G within a sufficiently narrow
vertical strip S = [a —¢€,a+ €] X R (where 0 < € < min{|a(z) —a|: z € Z—X}) to get rid
of the defect pairs involving « in such a way that the configuration of snakes/links in the
arising graph G remains “equivalent” to the initial one. More precisely, we shift the bend
u at a small distance (< €) to the left, keeping the remaining elements of Z; then the
bend v’ arising in place of u satisfies a(u') < a(u) and B(v') = B(u). The snakes/links
with an endvertex at u are transformed accordingly; see the picture for an example.

————— >4
inG: 1

Let IT and IT denote the L.H.S. value in (B.4) for the initial and deformed configura-
tions, respectively. Under the deformation, the number of defect pairs becomes smaller,
so we may assume by induction that IT = q. Thus, we have to prove that

I =1I. (B.10)

We need some notation and conventions. For v € X, the set of (initial) snakes and
links with an endvertex at v is denoted by P,. For U C X, Py denotes U(P, : v € U).
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Corresponding objects for the deformed graph G are usually denoted with tildes as well;
e.g.: for a path P in G, its image in G is denoted by P the i image of P, is denoted by
P (or Py ), and so on. The set of standard paths in Py (resp. PU) is denoted by Pf¥
(resp. Pgt). Define

Iy x = H(W,Q: PeP,, Qe Px_u). (B.11)

A similar product for G (i.e., with 73“ instead of P,) is denoted by JNYU’X,U.
Note that (B.10) is equivalent to the equality

Hu,Xfu = ~u,X7u' (B12)

This follows from the fact that for any paths P,Q € S U L different from those involved
n (B.11), the values pp g and ¢p 5 are equal. (The only nontrivial case arises when
P,Q € P, and Q is vertical (so Q becomeb btandard) Then tg = v1. Hence Q € Px_y,
the pair P, @ is involved in II,, x _,, and the pair P Q in Hu X—u-)

To simplify our description technically, one trick will be of use. Suppose that for
each standard path P € P, we choose a point (not necessarily a vertex) vp € Int(P)
in such a way that a(sp) < a(vp) < a(tp), and the coordinates a(vp) for all such
paths P are different. Then vp splits P into two subpaths P’, P”, where we denote
by P’ the subpath connecting sp and vp when a(sp) = a, and connecting vp and tp
when a(tp) = a, while P” is the rest. This provides the following property: for any
P.Q e PY, op.or =g pr =1 (in view of Lemma A.1). Hence pp g = ¢p .o pr.qr-
Also P" = P”. It follows that (B.12) would be equivalent to the equality

H(cpp/’Q/: Pe ’Pu, Q c PX_u) = H(g&lg,@,: Pe Pu, Q S Px_u).

In light of these observations, it suffices to prove (B.12) in the special case when
(B.13) any P € P, and Q € Px_,, satisfy {a(sp),a(tp)} N{a(sq), a(tg)} = {a}.

Fori=0,...,r, we denote by A;, B;, K;, L;, respectively, the white snake, black snake,
white link, and black link that have an endvertex at v;. Note that if v;_1,v; are twins,
then the fact that v;_; is a pit implies that A;_1, B;_1 are the snakes entering v;_1, and
A;, B; are the snakes leaving v;; for convenience, we formally define K;_1, K;, L;_1, L;
to be the same trivial path consisting of the single vertex v;. Note that if v, € C, then
some paths among A,., B,, K., L, vanish (e.g., both snakes and one link).

When vertices v; and v; 4 are connected by a (vertical) path in SU L, we denote such
a path by P; and say that the vertex v; is open; otherwise v; is said to be closed. Note
that v;,v;11 can be connected by either one snake, or one link, or two links (namely,
K;, L;); in the latter case, P; is chosen arbitrarily among them. In particular, if v;, v; 41
are twins, then v; is open and the role of P; is played by any of the trivial links K, L;.
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Obviously, in a sequence of vertical paths P;, Pi11,. .., Pj, the snakes and links alternate.
One can see that if P; is a white snake, i.e., P, = A; = A;41 =: A, then both black snakes
B;, Biy1 are standard, and we have v; = sp, and v;41 = tp,,,. See the left fragment of
the picture:

Vit1 Vitl

Symmetrically, if P; is a black snake: B; = B; 1 =: B, then the white snakes A;, A;11
are standard, v; = s4, and v;41 = t4,,,; see the right fragment of the above picture.

In its turn, if P; is a nontrivial white link, i.e., P, = K; = K;;+1, then two cases

are possible: either the black links L;, L; 1, are standard, v; = sr, and v;41 = {1, or

i1
L; = L;y1 = P;. And if P; is a black link, the behavior is symmetric. See the picture:
v

i

K(|L

Vi1 Vi1 Vi1

Now we are ready to start proving equality (B.12). Note that the deformation of G
preserves both orders < and <*.

We say that paths P, P’ € P% are separated (from each other) if they are not contained
in the same path of any of the flows ¢, ¢',1),1’. The following observation will be of use:

(B.14) if P, P’ € P5 have the same color (concerning ¢, ¢’), are separated, and P’ is
lower than P, then P’ < P; and similarly w.r.t. ©,’, <*.

Indeed, suppose that P, P’ are white, and let Q and Q' be the components of the flow ¢
containing P and P’, respectively. Since P, P’ are separated, the paths @, Q' are different.
Moreover, the fact that P’ is lower than P implies that Q' is lower than @ (since @, Q’
are disjoint). Then Q' precedes @ in ¢, yielding P’ < P, as required. When P, P’ concern
one of ¢',1),1’, the argument is similar.

In what follows we will use the abbreviated notation A, B,K,L for the paths
Ao, Bo, Ko, Lo (respectively) having an endvertex at u = vg. Also for R € Px_,, we
uct for the paths A, B, K, L, R (in G). One can see that IT, x_, (resp. IT, x_,,) is equal
to the product of the values IT(R) (resp. II(R)) over R € Px_,,.

To show (B.12), we examine several cases. First we consider

Case (R1): the vertex u is closed; in other words, all paths A, B, K, L are standard.
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Proposition B.5. In case (R1), II(R) = II(R) = 1 holds for any R € Px_,. As a
consequence, (B.12) is valid.

Proof. Let R € P,, for p > 1. Observe that (B.13) together with the fact that the
vertex u moves to the left under the deformation G — G implies {a(sp),a(ts)} N
{a(sp),a(ts)} =0 for any P € P,. This gives II(R) =1, by Lemma A.1.

To show II(R) = 1, assume that R is standard (otherwise this equality is trivial).
Since u is closed, A, B, K, L are separated from R.

Note that A, B, K, L, R are as follows: either (a) t4 = tg = sx = sp or (b) s4 =
sp = tg = tr, and either (c) a(sg) = a or (d) a(tg) = a. Let us examine the possible
cases when the combination of (a) and (d) takes place.

1) Let R be a white link, i.e., R = K. Since R is white and lower than A, B, K, L, we
have R < A, B, K, L (cf. (B.14)). The exchange operation preserves the color of R. Then
R <* A, B, K, L. Therefore, all pairs {P, R} with P € P, are invariant, and II(R) =1
is trivial.

2) Let R = L,. Since R is black, we have A, K < R < B, L. The exchange operation
changes the colors of A, B and preserves the ones of K, L, R. Hence B, K <* R <* A, L,
giving the permuting pairs (A4, R) and (R, B). Lemma A.3 applied to these pairs implies
var=qand ppp = q. Then II(R) = A rpr B =qq = 1.

3) Let R = A,. Then R < A,B,K,L and B,K <* R <* A, L (since the exchange
operation changes the colors of A, B, R). This gives the permuting pairs (R, B) and
(R,K). Then ¢r p = g, by Lemma A.3, and g x = ¢ by Lemma A.5, and we obtain
II(R) = ¢rBYRK = 1.

4) Let R = B,. We have A, K < R < B,L and R <* A, B, K, L, giving the permuting
pairs (A4, R) and (K, R). Then ¢4 r =G, by Lemma A.3, and ¢x r = ¢, by Lemma A.5,
whence IT(R) = 1.

The other combinations, namely, (a) and (c¢), (b) and (c), (b) and (d), are examined
in a similar way (by appealing to appropriate lemmas from Appendix A), and we leave
this to the reader as an exercise. 0O

Next we consider

Case (R2): w is open; in other words, at least one path among A, B, K, L is vertical
(going from u = vy to v1).

It falls into several subcases examined in propositions below.

Proposition B.6. In case (R2), let R € P3¢ _,, be separated from A, B, K, L. Then II(R) =
II(R).

Proof. We first assume that u and v; are connected by exactly one path Py (which is
one of A, B, K, L) and give a reduction to the previous proposition, as follows.

Suppose that we replace Py by a standard path P’ of the same color and type (snake or
link) such that spr = u (and «(tp/) > a). Then the set P!, := ({A, B, K, L} —{Py})U{P'}
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becomes as in case (R1), and by Proposition B.5, the corresponding product IT'(R) of
values g g over @ € P, is equal to 1. (This relies on the fact that R is separated from
A B,K,L.)

Compare the effects from P’ and from }50. These paths have the same color and type,
and both are separated from, and higher than R. Also a(sp/) = a(tp ) = a. Then using
appropriate lemmas from Appendix A, one can conclude that {¢g p/, ¢ R, 130} = {q,7}.
Therefore,

I(R) = ¢, p = I'(R)pg'p = I(R).

Now let u and v be connected by two paths, namely, by K, L. We again can appeal to
Proposition B.5. Consider P,/ := {A, B, K" ,L"}, where K", L" are standard links (white
and black, respectively) with sg» = sp» = u. Then II"(R) := [[(prp: P € P)) =1
and {¢r k", o 5t = {rL7, 05 1} = {4,T}. We obtain

H(R) PR KPR,L H”(R)SDJE}KHSD;?}LH = YR,AYR,B = H(R)a
as required. O

Proposition B.7. In case (R2), let R be a standard path in P, with p > 1. Let R be not
separated from at least one of A, B, K, L. Then II(R) = II(R).

Proof. We first assume that Py is the unique vertical path connecting w and v; (in
particular, v and vy are not twins). Then R is not separated from Py.

Suppose that Py and R are contained in the same path of the flow ¢; equivalently,
both Py, R are white and Py < R. Then neither 9 nor ' has a path containing both
Py, R (this is easy to conclude from the fact that one of R and P,_; is a snake and the
other is a link). Consider four possible cases for Py, R.

(a) Let both Py, R be links, i.e., Py = K and R = K,. Then A, K < K, < B,L and
K, <* B,K,A,L (since K <* K, is impossible by the above observation). This gives
the permuting pairs (4, K,) and (K K,), yielding 04 r, = YR K,

(b) Let Py = K and R = A,. Then A, K < A, < B, L and B, K< A, <* A, L. This
gives the permuting pairs (A, A,) and (A, B), yielding ¢4 4, PiB= 1= PR A,

(c) Let Py = Aand R = K,,. Then K,A < K, < L,B and K, <* K, B, L, A. This
gives the permuting pairs (K, K,) and (A K,), yielding ¢r k, =%ik,

(d) Let Py =Aand R=A,. Then K,A< A, < L,B and K,B <* A <* L, A. This
gives the permuting pairs (A, Ap) and (Ap, B), yielding Pia, = PA,.B:

In all cases, we obtain II(R) = II(R).

When Py, R are contained in the same path in ¢’ (i.e., Py, R are black and Py < R),
we argue in a similar way. The cases with Py, R contained in the same path of v or v’
are symmetric.

A similar analysis is applicable (yielding II(R) = II(R)) when u and v; are connected
by two vertical paths (namely, K, L) and exactly one relation among K < R, L < R,
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K <* R and L <* R takes place (equivalently: either K, R are separated or L, R are
separated, not both).

Finally, let v and vy be connected by both K, L, and assume that K, R are not
separated, and L, R are not separated as well. An important special case is when p =1
and u,v; are twins. From the assumption it easily follows that R is a snake. If R is the
white snake A, then we have A, K < A, < B,L and B,K,A,L <* A,. This gives the
permuting pairs (Ap, B) and (A, L), yielding PA,B=Pa F (since a(tp) = a(t;)). The
case with R = B, is symmetric. In both cases, IT(R) = II(R). O

Proposition B.8. Let R = Py be the unique vertical path connecting u and vy. Then
II(R)=II(R) =1.

Proof. The equality II(R) = 1 is trivial. To see I (R) = 1, consider possible cases for R.
If R=K,then A< K < B,L and B <* K <* A, L, giving the permuting pairs (A K)
and (K, B)(notethattAft sg=u).lfR= L,then A,K,B < Land B, K, A <* L;
so all pairs involving L are invariant. If R = A, then K~<A< L B and K B L<* A
giving the permuting pairs (A, L) and (A, B) (note that s3 =5 =t; = u). And the
case R = B is symmetric to the previous one.

In all cases, using appropriate lemmas from Appendix A (and relying on the fact that
all paths A, B, K, L are standard), one can conclude that ﬁ(R) =1. O

Proposition B.9. Let both K, L be vertical. Then II(K)II(L) = II(K)II(L) = 1.

Proof. The equality II(K)II(L) = 1 is trivial. To see II(K)II(L) = 1, observe that
A< K <B<Land B<*K <* A <* L. This gives the permuting pairs (A K) and
(K, B). By Lemma A4, ¢ 7 = = q and ¢ 5 =7, and the result follows. O

Taken together, Propositions B.6-B.9 embrace all possibilities in case (R2). Adding
to them Proposition B.5 concerning case (R1), we obtain the desired relation (B.12) in
a degenerate case.

This completes the proof of Theorem 4.4 in case (C), namely, relation (B.1). O

B.6. Other cases

Let (I|J), (I'|J"), ¢, ¢',¢,¢" and m = {f, g} be as in the hypotheses of Theorem 4.4.
We have proved this theorem in case (C), i.e., when 7 is a C-couple with f < gand f € J
(see the beginning of Appendix B). In other words, the exchange path Z = P(w), used
to transform the initial double flow (¢, ¢’) into the new double flow (¢, 1)’), connects the
sinks ¢y and ¢, covered by the “white flow” ¢ and the “black flow” ¢’, respectively.

The other possible cases in the theorem are as follows:

(C1) mis a C-couple with f < g and f € J';
(C2) 7 is an R-couple with f < g and f € I;
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(C3) mis an R-couple with f < g and f € I';
(C4) 7 is an RC-couple with f € I and g € J;
(C5) m is an RC-couple with f € I’ and g € J'.

Case (C1) is symmetric to (C). This means that if double flows (¢, ¢’) and (¥, 1)) are
obtained from each other by applying the exchange operation using 7 (which changes
the “colors” of both f and g), and if one double flow is subject to (C), then the other is
subject to (C1). Rewriting w(@)w(¢') = quw()w(y') as w(v)w (') = ¢~ w(d)w(d), we
just obtain the required equality in case (C1) (where (¢, ') and (¢, ¢') play the roles of
the initial and updated double flows, respectively).

For similar reasons, case (C3) is symmetric to (C2), and (C5) is symmetric to (C4).
So it suffices to establish the desired equalities merely in cases (C2) and (C4).

To do this, we appeal to reasonings similar to those in Sects. B.2-B.5. More precisely,
one can check that the descriptions in Sects. B.2 and B.4 (concerning link-link and
snake-link pairs in A/) remain applicable and Propositions B.1 and B.3 are directly
extended to cases (C2) and (C4). The method of getting rid of degeneracies developed
in Sect. B.5 does work, without any troubles, for (C2) and (C4) as well.

As to the method in Sect. B.3 (concerning snake-snake pairs in case (C)), it should
be modified as follows. We use terminology and notation from Sects. B.1 and B.3 and
appeal to Lemma B.4.

When dealing with case (C2), we represent the exchange path Z = P(w) as a con-
catenation Z; o Zy 0 Zz o ---0 Zy, where each Z; with i odd (even) is a snake contained
in the black flow ¢’ (resp. the white flow ¢). Then Z; begins at the source ry, and Zj
begins at the source 7y. An example with k& = 6 is illustrated in the left fragment of the
picture:

The common vertex (bend) of Z; and Z;; is denoted by z;. As before, we associate
with a bend z the number v(z) (equal to 1 if, in the pair of snakes sharing z, the white
snake is lower that the black one, and —1 otherwise), and define vz as in (B.6). We turn
Z into simple cycle D by combining the directed path Zj (from 7; to zp_1) with the
vertical path from ry to r¢, which is formally added to G. (In the above picture, this
path is drawn by a dotted line.) Then, compared with Z, the cycle D has an additional
bend, namely, 4. Since the extended white path Z,, is lower than the black path 7, we
have v(ry) = 1, and therefore yp = vz + 1.
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One can see that the cycle D is oriented clockwise (where, as before, the orientation of
D is agreeable with that of black snakes). So vp = 2, by Lemma B.4, implying vz = 1.
This is equivalent to the “snake-snake relation” ¢!/ = ¢, and as a consequence, we obtain
the desired equality

Finally, in case (C4), we represent the exchange path Z as the corresponding con-
catenation Z1 0 Zy 0 Zg0 -+ 0 Z_1 0 Zg (with k& odd), where the first white snake Z;
ends at the sink ¢, and the last white snake Z begins at the source ry. See the right
fragment of the above picture where k = 5. We turn Z into simple cycle D by adding a
new “black snake” Zj,1 beginning at ry and ending at ¢, (it is formed by the vertical
path from r; to (0,0), followed by the horizontal path from (0,0) to ¢4; see the above
picture). Compared with Z, the cycle D has two additional bends, namely, ry and c,.
Since the black snake Zj41 is lower than each of Zy, Zj, we have v(ry) = v(¢y) = —1,
whence yp = vz — 2. Note that the cycle D is oriented counterclockwise. Therefore,
vp = —2, by Lemma B.4, implying vz = 0. As a result, we obtain the desired equality

w(@)w(¢') = w(y)w(¥').
This completes the proof of Theorem 4.4. 0O
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