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1. Introduction

The idea of quantization has proved its importance to bridge the commutative and 
noncommutative versions of certain algebraic structures and promote better understand-
ing various aspects of the latter versions. One popular structure studied for the last three 
decades (as an important part of the study of algebraic quantum groups) is the quantized 
coordinate ring R = Oq(Mm,n(K)) of m ×n matrices over a field K, where q is a nonzero 
element of K; it is usually called the algebra of m × n quantum matrices. Here R is the 
K-algebra generated by the entries (indeterminates) of an m × n matrix X subject to 
the following (quasi)commutation relations due to Manin [12]: for 1 ≤ i < � ≤ m and 
1 ≤ j < k ≤ n,

xijxik = qxikxij , xijx�j = qx�jxij , (1.1)

xikx�j = x�jxik and xijx�k − x�kxij = (q − q−1)xikx�j .

This paper is devoted to quadratic identities for minors of quantum matrices (usu-
ally called quantum minors or quantized minors or q-minors). For representative cases, 
aspects and applications of such identities, see, e.g., [6–10,14,15] (where the list is incom-
plete). We present a novel, and rather transparent, combinatorial method which enables 
us to completely characterize and efficiently verify homogeneous quadratic identities of 
universal character that are valid for quantum minors.

The identities of our interest can be written as
∑

(siqδi [Ii|Ji]q [I ′i|J ′
i ]q : i = 1, . . . , N) = 0, (1.2)

where δi ∈ Z, si ∈ {+1, −1}, and [I|J ]q denotes the quantum minor whose rows and 
columns are indexed by I ⊆ [m] and J ⊆ [n], respectively. (Hereinafter, for a positive 
integer n′, we write [n′] for {1, 2, . . . , n′}.) The homogeneity means that each of the sets 
Ii∪I ′i, Ii∩I ′i, Ji∪J ′

i , Ji∩J ′
i does not depend i, and the term “universal” means that (1.2)

should be valid independently of K, q and a q-matrix (a matrix whose entries obey 
Manin’s relations and, possibly, additional ones). Note that any quadruple (I|J, I ′|J ′), 
referred to as a cortege later on, may be repeated in (1.2) several times.

Our approach is based on two sources. The first one is the flow-matching method
elaborated in [4] to characterize quadratic identities for usual minors (viz. for q = 1). In 
that case the identities are viewed simpler than (1.2), namely, as

∑
(si[Ii|Ji] [I ′i|J ′

i ] : i = 1, . . . , N) = 0. (1.3)

(In fact, [4] deals with natural analogs of (1.3) over commutative semirings, e.g. the 
tropical semiring (R, +, max).) In the method of [4], each cortege S = (I|J, I ′|J ′) is 
associated with a certain set M(S) of feasible matchings on the set (I�I ′) � (J�J ′)
(where A�B denotes the symmetric difference (A −B) ∪ (B−A), and A �B the disjoint 
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Fig. 1. An example of Cauchon diagrams (left) and the related graph (right).

union of sets A, B). The main theorem in [4] asserts that (1.3) is valid (universally) 
if and only if the families I+ and I− of corteges Si with signs si = + and si = −, 
respectively, are balanced, in the sense that the total families of feasible matchings for 
corteges occurring in I+ and in I− are equal.

The main result of this paper gives necessary and sufficient conditions for the quantum 
version (in Theorems 7.1 and 5.1). It says that (1.2) is valid (universally) if and only if the 
families of corteges I+ and I− along with the function δ are q-balanced, which now means 
the existence of a bijection between the feasible matchings for I+ and I− that is agreeable 
with δ in a certain sense. The proof of necessity (Theorem 7.1) considers non-q-balanced 
I+, I−, δ and explicitly constructs a certain graph determining a q-matrix for which (1.2)
is violated when K is a field of characteristic 0 and q is transcendental.

The second source of our approach is the path method due to Casteels [1,2]. He 
associated with an m × n Cauchon diagram C of [3] a directed planar graph G = GC

with m + n distinguished vertices r1, . . . , rm, c1, . . . , cn in which the remaining vertices 
correspond to white cells (i, j) in the diagram C and are labeled as tij. An example is 
illustrated in Fig. 1.

The labels tij , regarded as indeterminates, are assumed to (quasi)commute as

tijti′j′ = qti′j′tij if either i = i′ and j < j′, or i < i′ and j = j′, (1.4)

= ti′j′tij otherwise

(which is viewed “simpler” than (1.1)). The labels tij determine weights of edges and, 
further, weights of paths of G. The latter give rise to the path matrix PG of size m × n, 
of which (i, j)-th entry is the sum of weights of paths starting at ri and ending at ci.

The path matrix PG = (pij) has three important properties. (i) It is a q-matrix, 
and therefore, xij 	→ pij gives a homomorphism of R to the corresponding algebra RG

generated by the pij . (ii) PG admits an analog of Lindström’s Lemma [11]: for any 
I ⊆ [m] and J ⊆ [n] with |I| = |J |, the minor [I|J ]q of PG can be expressed as the 
sum of weights of systems of disjoint paths from {r1 : i ∈ I} to {cj : j ∈ J} in G. 
(iii) From Cauchon’s Algorithm [3] interpreted in graph terms in [1,2] it follows that: if 
the diagram C is maximal (i.e., has no black cells), then PG becomes a generic q-matrix, 
see Corollary 3.2.5 in [2].

In this paper we consider a more general class of planar graphs G with horizontal and 
vertical edges, called SE-graphs, and show that they satisfy the above properties (i)–(ii) as 
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well. Our goal is to characterize quadratic identities just for the class of path matrices of 
SE-graphs G. Since this class contains a generic q-matrix, the identities are automatically 
valid in R.

We take an advantage from the representation of q-minors of path matrices via sys-
tems of disjoint paths, or flows in our terminology, and the desired results are obtained 
by applying a combinatorial machinery of handling flows in SE-graphs. Our method of 
establishing or verifying one or another identity admits a rather transparent implemen-
tation and we illustrate the method by enlightening graphical diagrams.

The paper is organized as follows. Sect. 2 contains basic definitions and backgrounds. 
Sect. 3 defines flows and path matrices for SE-graphs and states Lindström’s type the-
orem for them. Sect. 4 is devoted to crucial ingredients of the method. It describes 
exchange operations on double flows (pairs of flows related to corteges (I|J, I ′|J ′)) and 
expresses such operations on the language of planar matchings. The main working tool of 
the whole proof, stated in this section and proved in Appendix B, is Theorem 4.4 giving 
a q-relation between double flows before and after an ordinary exchange operation. Using 
this, Sect. 5 proves the sufficiency in the main result: (1.2) is valid if the corresponding 
I+, I−, δ are q-balanced (Theorem 5.1).

Sect. 6 is devoted to illustrations of our method. It explains how to obtain, with 
the help of the method, rather transparent proofs for several representative examples of 
quadratic identities, in particular:

(a) the pure commutation of [I|J ]q and [I ′|J ′]q when I ′ ⊂ I and J ′ ⊂ J ;
(b) a quasicommutation of flag q-minors [I]q and [J ]q as in Leclerc–Zelevinsky’s the-

orem [10];
(c) identities on flag q-minors involving triples i < j < k and quadruples i < j < k < �;
(d) Dodgson’s type identity;
(e) two general quadratic identities on flag q-minors from [9,15] occurring in descrip-

tions of quantized Grassmannians and flag varieties.
In Sect. 7 we prove the necessity of the q-balancedness condition for validity of 

quadratic identities (Theorem 7.1); here we adapt a corresponding construction from [4]
to obtain, in case of the non-q-balancedness, an SE-graph G such that the identity for 
its path matrix is false (in a special case of K and q). Sect. 8 poses the problem: when 
an identity in the commutative case, such as (1.3), can be turned, by choosing an ap-
propriate δ, into the corresponding identity for the quantized case? For example, this is 
impossible for the trivial identity [I] [J ] = [J ] [I] with usual flag minors when I, J are not 
weakly separated, as is shown in [10]. Also this section applies our method to obtain a 
relatively simple proof of Scott’s result [14] on quasicommuting general (not necessarily 
flag) q-minors, and contains additional results.

Finally, Appendix A exhibits several auxiliary lemmas needed to us and proves the 
above-mentioned Lindström’s type result for SE-graphs, and Appendix B gives the proof 
of Theorem 4.4 (which is rather technical).
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2. Preliminaries

2.1. Paths in graphs

Throughout, by a graph we mean a directed graph. A path in a graph G = (V, E)
(with vertex set V and edge set E) is a sequence P = (v0, e1, v1, . . . , ek, vk) such that 
each ei is an edge connecting vertices vi−1, vi. An edge ei is called forward if it is 
directed from vi−1 to vi, denoted as ei = (vi−1, vi), and backward otherwise (when 
ei = (vi, vi−1)). The path P is called directed if it has no backward edge, and sim-
ple if all vertices vi are different. When k > 0 and v0 = vk, P is called a cycle, and 
called a simple cycle if, in addition, v1, . . . , vk are different. When it is not confus-
ing, we may use for P the abbreviated notation via vertices: P = v0v1 . . . vk, or edges 
P = e1e2 . . . ek.

Also, using standard terminology in graph theory, for a directed edge e = (u, v), we 
say that e leaves u and enters v, and that u is the tail and v is the head of e.

2.2. Quantum matrices

It will be convenient for us to visualize matrices in the Cartesian form: for an m × n

matrix A = (aij), the row indices i = 1, . . . , m are assumed to increase upwards, and the 
column indices j = 1, . . . , n from left to right.

As mentioned above, we deal with the quantized coordinate ring R = Oq(Mm,n(K))
generated by indeterminates xij satisfying relations (1.1), called the algebra of m× n

quantum matrices. A somewhat “simpler” object is the quantum affine space, the 
K-algebra generated by indeterminates tij (i ∈ [m], j ∈ [n]) subject to rela-
tions (1.4).

2.3. q-Minors

For an m × n matrix A = (aij), we denote by A(I|J) the submatrix of A whose rows 
are indexed by I ⊆ [m], and columns by J ⊆ [n]. Let |I| = |J | =: k, and let I consist of 
i1 < · · · < ik and J consist of j1 < · · · < jk. Then the q-determinant of A(I|J), or the 
q-minor of A for (I|J), is defined as

[I|J ]A,q :=
∑
σ∈Sk

(−q)�(σ)
k∏

d=1

aidjσ(d) , (2.1)

where, in the noncommutative case, the product under 
∏

is ordered (from left to right) 
by increasing d, and �(σ) is the length (number of inversions) of a permutation σ. 
The terms A and/or q in [I|J ]A,q may be omitted when they are clear from the con-
text.
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2.4. SE-graphs

A graph G = (V, E) of this sort (also denoted as (V, E; R, C)) satisfies the following 
conditions:

(SE1) G is planar (with a fixed layout in the plane);
(SE2) G has edges of two types: horizontal edges, or H-edges, which are directed to 

the right, and vertical edges, or V-edges, which are directed downwards (so each edge 
points to either south or east, justifying the term “SE-graph”);

(SE3) G has two distinguished subsets of vertices: set R = {r1, . . . , rm} of sources and 
set C = {c1, . . . , cn} of sinks; moreover, r1, . . . , rm are disposed on a vertical line, in this 
order upwards, and c1, . . . , cn are disposed on a horizontal line, in this order from left to 
right; the sources (sinks) are incident only with H-edges (resp. V-edges);

(SE4) each vertex of G belongs to a directed path from R to C.
We denote by W = WG the set V − (R ∪ C) of inner vertices of G. An example of 

SE-graphs with m = 3 and n = 4 is drawn in the picture:

Remark 1. A special case of SE-graphs is formed by those corresponding to Cauchon 
graphs introduced in [1] (which are associated with Cauchon diagrams [3]). In this case, 
R = {(0, i) : i ∈ [m]}, C = {(j, 0) : j ∈ [n]}, and W ⊆ [m] × [n]. (The correspondence 
with the definition in [1] is given by (i, j) 	→ (m + 1 − i, n + 1 − j) and q 	→ q−1.) When 
W = [m] × [n] (equivalently: when the Cauchon diagram has no black cells), we refer to 
such a graph as the extended (m, n)-grid and denote it by Γm,n.

We assign the weight w(e) to each edge e = (u, v) ∈ E in a way similar to that for 
Cauchon graphs in [1], namely:

(2.2) (i) w(e) := v if u ∈ R;
(ii) w(e) := u−1v if e is an H-edge and u, v ∈ W ;
(iii) w(e) := 1 if e is a V-edge.

This gives rise to defining the weight w(P ) of a directed path P = e1e2 . . . ek (written 
in the edge notation) in G, to be the ordered (from left to right) product

w(P ) = w(e1)w(e2) · · ·w(ek). (2.3)
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Then w(P ) is a Laurent monomial in elements of W . Note that when P begins in R

and ends in C, its weight can also be expressed in the following useful form; cf. [2, 
Prop. 3.1.8]. Let u1, v1, u2, v2, . . . , ud−1, vd−1, ud be the sequence of vertices where P
makes turns; namely, P changes the horizontal direction to the vertical one at each ui, 
and conversely at each vi. Then (due to the “telescopic effect” caused by (2.2)(ii)),

w(P ) = u1v
−1
1 u2v

−1
2 · · ·ud−1v

−1
d−1ud. (2.4)

We assume that the elements of W obey (quasi)commutation laws somewhat similar 
to those in (1.4); namely, for distinct u, v ∈ W ,

(G1) if there is a directed horizontal path from u to v in G, then uv = qvu;
(G2) if there is a directed vertical path from u to v in G, then vu = quv;
(G3) otherwise uv = vu.

3. Path matrix and flows

As mentioned in the Introduction, it is shown in [1] that the path matrix associated 
with a Cauchon graph G has a nice property of Lindström’s type, saying that each 
q-minor of this matrix corresponds to a certain set of collections of disjoint paths in G. 
We will show that this property is extended to the SE-graphs.

Let G = (V, E) be an SE-graph with sources R = (r1, . . . , rm) and sinks C =
(c1, . . . , cn), and let w = wG denote the edge weights in G defined by (2.2).

Definition. The path matrix Path = PathG associated with G is the m ×n matrix whose 
entries are defined by

Path(i|j) :=
∑

P∈ΦG(i|j)
w(P ), (i, j) ∈ [m] × [n], (3.1)

where ΦG(i|j) is the set of directed paths from ri to cj in G. In particular, Path(i|j) = 0
if ΦG(i|j) = ∅.

Thus, the entries of PathG belong to the K-algebra LG of Laurent polynomials gen-
erated by the inner vertices v ∈ W of G subject to relations (G1)–(G3).

Definition. Let Em,n denote the set of pairs (I|J) such that I ⊆ [m], J ⊆ [n] and |I| = |J |. 
Borrowing terminology from [4], for (I|J) ∈ Em,n, a set φ of pairwise disjoint directed 
paths from the source set RI := {ri : i ∈ I} to the sink set CJ := {cj : j ∈ J} in G is 
called an (I|J)-flow.

The set of (I|J)-flows φ in G is denoted by Φ(I|J) = ΦG(I|J). We usually assume 
that the paths forming a flow φ are ordered by increasing the source indices. Namely, if 
I consists of i(1) < i(2) < · · · < i(k) and J consists of j(1) < j(2) < · · · < j(k), then 
�-th path P� in φ begins at ri(�), and therefore, P� ends at cj(�) (which easily follows 



152 V.I. Danilov, A.V. Karzanov / Journal of Algebra 488 (2017) 145–200
from the planarity of G, the orderings of sources and sinks in the boundary of G and 
the fact that the paths in φ are disjoint). We write φ = (P1, P2, . . . , Pk) and (similar to 
path systems in [1]) define the weight of φ to be the ordered product

w(φ) = w(P1)w(P2) · · ·w(Pk). (3.2)

Then the desired q-analog of Lindström’s Lemma expresses q-minors of path matrices 
via flows as follows.

Theorem 3.1. For the path matrix Path = PathG of an (m, n) SE-graph G and for any 
(I|J) ∈ Em,n, there holds

[I|J ]Path,q =
∑

φ∈Φ(I|J)
w(φ). (3.3)

A proof of this theorem, which is close to that in [1], is given in Appendix A.
An important fact is that the entries of PathG obey the (quasi)commutation relations 

similar to those for the canonical generators xij of the quantum algebra R given in (1.1). 
It is exhibited in the following assertion, which is known for the path matrices of Cau-
chon graphs due to [1] (where it is proved by use of the “Cauchon’s deleting derivation 
algorithm in reverse” [3]).

Theorem 3.2. For an SE-graph G, the entries of its path matrix PathG satisfy Manin’s 
relations.

We will show this in Sect. 6.3 as an easy application of our flow-matching method. 
This assertion implies that the map xij 	→ PathG(i|j) determines a homomorphism of R
to the subalgebra RG of LG generated by the entries of PathG, i.e., PathG is a q-matrix 
for any SE-graph G. In one especial case of G, a sharper result, attributed to Cauchon 
and Casteels, is as follows.

Theorem 3.3 ([3,2]). If G = Γm,n (the extended m × n-grid defined in Remark 1), then 
PathG is a generic q-matrix, i.e., xij 	→ PathG(i|j) gives an injective map of R to LG.

Due to this important property, the quadratic relations that are valid (universally) 
for q-minors of path matrices of SE-graphs turn out to be automatically valid for the 
algebra R of quantum matrices, and vice versa.

4. Double flows, matchings, and exchange operations

Quadratic identities of our interest in this paper involve products of quantum minors 
of the form [I|J ][I ′|J ′], where (I|J), (I ′|J ′) ∈ Em,n. This leads us to a proper study 
of ordered pairs of flows φ ∈ Φ(I|J) and φ′ ∈ Φ(I ′|J ′) in an SE-graph G (in light of 
Theorem 3.1).
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We need some definitions and conventions, borrowing terminology from [4]. Given 
I, J, I ′, J ′, φ, φ′ as above, we call the pair (φ, φ′) a double flow in G. Let

I◦ := I − I ′, J◦ := J − J ′, I• := I ′ − I, J• := J ′ − J, (4.1)

Y r := I◦ ∪ I• and Y c := J◦ ∪ J•.

Note that |I| = |J | and |I ′| = |J ′| imply that |Y r| + |Y c| is even and

|I◦| − |I•| = |J◦| − |J•|. (4.2)

We refer to the quadruple (I|J, I ′|J ′) as above as a cortege, and to (I◦, I•, J◦, J•) as 
the refinement of (I|J, I ′|J ′), or as a refined cortege.

It is convenient for us to interpret I◦ and I• as the sets of white and black elements 
of Y r, respectively, and similarly for J◦, J•, Y c, and visualize these objects by use of a 
circular diagram D in which the elements of Y r (resp. Y c) are disposed in the increasing 
order from left to right in the upper (resp. lower) half of a circumference O. For example 
if, say, I◦ = {3}, I• = {1, 4}, J◦ = {2′, 5′} and J• = {3′, 6′, 8′}, then the diagram is 
viewed as in the left fragment of the picture below. (Sometimes, to avoid a possible mess 
between elements of Y r and Y c, and when it leads to no confusion, we denote elements 
of Y c with primes.)

Let M be a partition of Y r � Y c into 2-element sets (recall that A � B denotes the 
disjoint union of sets A, B). We refer to M as a perfect matching on Y r � Y c, and to 
its elements as couples. More specifically, we say that π ∈ M is: an R-couple if π ⊆ Y r, 
a C-couple if π ⊆ Y c, and an RC-couple if |π∩Y r| = |π∩Y c| = 1 (as though π “connects” 
two sources, two sinks, and one source and one sink, respectively).

Definition. A (perfect) matching M as above is called a feasible matching for (I◦, I•,
J◦, J•) (and for (I|J, I ′|J ′)) if:

(4.3) (i) for each π = {i, j} ∈ M , the elements i, j have different colors if π is an R- or 
C-couple, and have the same color if π is an RC-couple;

(ii) M is planar, in the sense that the chords connecting the couples in the cir-
cumference O are pairwise non-crossing.
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The set of feasible matchings for (I◦, I•, J◦, J•) is denoted by MI◦,I•,J◦,J• and may 
also be denoted as M(I|J, I ′|J ′). This set is nonempty unless Y r�Y c = ∅. (A proof: a fea-
sible matching can be constructed recursively as follows. Let for definiteness |I◦| ≥ |I•|. 
If I• �= ∅, then choose i ∈ I◦ and j ∈ I• with |i − j| minimum, form the R-couple 
{i, j} and delete i, j. And so on until I• becomes empty. Act similarly for J◦ and J•. 
Eventually, in view of (4.2), we obtain I• = J• = ∅ and |I◦| = |J◦|. Then we form 
corresponding white RC-couples.)

The right fragment of the above picture illustrates an instance of feasible matchings.
Return to a double flow (φ, φ′) as above. Our aim is to associate to it a feasible 

matching for (I◦, I•, J◦, J•).
To do this, we write Vφ and Eφ, respectively, for the sets of vertices and edges of G

occurring in φ, and similarly for φ′. An important role will be played by the subgraph 
〈U〉 of G induced by the set of edges

U := Eφ�Eφ′

(where A�B denotes (A − B) ∪ (B − A)). Note that a vertex v of 〈U〉 has degree 1 if 
v ∈ RI◦ ∪ RI• ∪ CJ◦ ∪ CJ• , and degree 2 or 4 otherwise. We slightly modify 〈U〉 by 
splitting each vertex v of degree 4 in 〈U〉 (if any) into two vertices v′, v′′ disposed in a 
small neighborhood of v so that the edges entering (resp. leaving) v become entering v′

(resp. leaving v′′); see the picture.

The resulting graph, denoted as 〈U〉′, is planar and has vertices of degree only 1 
and 2. Therefore, 〈U〉′ consists of pairwise disjoint (non-directed) simple paths P ′

1, . . . , P
′
k

(considered up to reversing) and, possibly, simple cycles Q′
1, . . . , Q

′
d. The corresponding 

images of P ′
1, . . . , P

′
k (resp. Q′

1, . . . , Q
′
d) give paths P1, . . . , Pk (resp. cycles Q1, . . . , Qd) 

in 〈U〉. When 〈U〉 has vertices of degree 4, some of the latter paths and cycles may be 
self-intersecting and may “touch”, but not “cross”, each other.

Lemma 4.1. (i) k = (|I◦| + |I•| + |J◦| + |J•|)/2;
(ii) the set of endvertices of P1, . . . , Pk is RI◦∪I• ∪CJ◦∪J• ; moreover, each Pi connects 

either RI◦ and RI• , or CJ◦ and CJ• , or RI◦ and CJ◦ , or RI• and CJ• ;
(iii) in each path Pi, the edges of φ and the edges of φ′ have different directions (say, 

the former edges are all forward, and the latter ones are all backward).
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Fig. 2. Flows φ and φ′ (left); 〈Eφ�Eφ′ 〉 (middle); M(φ, φ′) (right).

Proof. (i) is trivial, and (ii) follows from (iii) and the fact that the sources ri (resp. 
sinks cj) have merely leaving (resp. entering) edges. In its turn, (iii) easily follows by 
considering a common inner vertex v of a directed path K in φ and a directed path L in φ′. 
Let e, e′ (resp. u, u′) be the edges of K (resp. L) incident to v. Then: if {e, e′} = {u, u′}, 
then v vanishes in 〈U〉. If e = u and e′ �= u′, then either both e′, u′ enter v, or both e′, u′

leave v; whence e′, u′ are consecutive and differently directed edges of some path Pi or 
cycle Qj . A similar property holds when {e, e′} ∩ {u, u′} = ∅, as being a consequence of 
splitting v into two vertices as described. �

Thus, each Pi is represented as a concatenation P (1)
i ◦ P

(2)
i ◦ . . . ◦ P

(�)
i of forwardly 

and backwardly directed paths which are alternately contained in φ and φ′, called the 
segments of Pi. We refer to Pi as an exchange path (by a reason that will be clear later). 
The endvertices of Pi determine, in a natural way, a pair of elements of Y r�Y c, denoted 
by πi. Then M := {π1, . . . , πk} is a perfect matching on Y r�Y c. Moreover, it is a feasible 
matching, since (4.3)(i) follows from Lemma 4.1(ii), and (4.3)(ii) is provided by the fact 
that P ′

1, . . . , P
′
k are pairwise disjoint simple paths in 〈U〉′.

We denote M as M(φ, φ′), and for π ∈ M , denote the exchange path Pi corresponding 
to π (i.e., π = πi) by P (π).

Corollary 4.2. M(φ, φ′) ∈ MI◦,I•,J◦,J• .

Fig. 2 illustrates an instance of (φ, φ′) for I = {1, 2, 3}, J = {1′, 3′, 4′}, I ′ = {2, 4}, 
J ′ = {2′, 3′}. Here φ and φ′ are drawn by solid and dotted lines, respectively (in the left 
fragment), the subgraph 〈Eφ�Eφ′〉 consists of three paths and one cycle (in the middle), 
and the circular diagram illustrates M(φ, φ′) (in the right fragment).

Flow exchange operation. It rearranges a given double flow (φ, φ′) for (I|J, I ′|J ′) into 
another double flow (ψ, ψ′) for some cortege (Ĩ|J̃ , Ĩ ′|J̃ ′), as follows. Fix a submatching 
Π ⊆ M(φ, φ′), and combine the exchange paths concerning Π, forming the set of edges

E := ∪(EP (π) : π ∈ Π)

(where EP denotes the set of edges in a path P ).
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Lemma 4.3. Let VΠ := ∪(π ∈ Π). Define

Ĩ := I�(VΠ ∩ Y r), Ĩ ′ := I ′�(VΠ ∩ Y r), J̃ := J�(VΠ ∩ Y c), J̃ ′ := J ′�(VΠ ∩ Y c).

Then the subgraph ψ induced by Eφ�E gives a (Ĩ|J̃)-flow, and the subgraph ψ′ induced by 
Eφ′�E gives a (Ĩ ′|J̃ ′)-flow in G. Furthermore, Eψ∪Eψ′ = Eφ∪Eφ′ , Eψ�Eψ′ = Eφ�Eφ′

(= U), and M(ψ, ψ′) = M(φ, φ′).

Proof. Consider a path P = P (π) for π ∈ Π, and let P consist of segments P (1), P (2),

. . . , P (�). Let for definiteness the segments P (d) with d odd concern φ, and denote by 
vd the common endvertex of P (d) and P (d+1). Under the operation Eφ 	→ Eφ�EP the 
pieces P (1), P (3), . . . in φ are replaced by P (2), P (4), . . .. In its turn, Eφ′ 	→ Eφ′�EP

replaces the pieces P (2), P (4), . . . in φ′ by P (1), P (3), . . ..
By Lemma 4.1(iii), for each d, the edges of P (d), P (d+1) incident to vd either both 

enter or both leave vd. Also each intermediate vertex of any segment P (d) occurs in 
exactly one flow among φ, φ′. These facts imply that under the above operations with P
the flow φ (resp. φ′) is transformed into a set of pairwise disjoint directed paths (a flow) 
going from RI�(π∩Y r) to CJ�(π∩Y c) (resp. from RI′�(π∩Y r) to CJ ′�(π∩Y c)).

Doing so for all P (π) with π ∈ Π, we obtain flows ψ, ψ′ from RĨ to CJ̃ and from RĨ′

to CJ̃ ′ , respectively. The equalities in the last sentence of the lemma are easy. �
We call the transformation (φ, φ′) Π	−→ (ψ, ψ′) in this lemma the flow exchange oper-

ation for (φ, φ′) using Π ⊆ M(φ, φ′) (or using {P (π) : π ∈ Π}). Clearly the exchange 
operation applied to (ψ, ψ′) using the same Π returns (φ, φ′). The picture below illus-
trates flows ψ, ψ′ obtained from φ, φ′ in Fig. 2 by the exchange operations using the 
single path P2 (left) and the single path P3 (right).

So far our description has been close to that given for the commutative case in [4]. 
From now on we will essentially deal with the quantum version. The next theorem will 
serve the main working tool in our arguments; its proof appealing to a combinatorial 
techniques on paths and flows is given in Appendix B.

Theorem 4.4. Let φ be an (I|J)-flow, and φ′ an (I ′|J ′)-flow in G. Let (ψ, ψ′) be the 
double flow obtained from (φ, φ′) by the flow exchange operation using a single couple 
π = {f, g} ∈ M(φ, φ′). Then:
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(i) when π is an R- or C-couple and f < g,

w(φ)w(φ′) = qw(ψ)w(ψ′) in case f ∈ I ∪ J ;

w(φ)w(φ′) = q−1w(ψ)w(ψ′) in case f ∈ I ′ ∪ J ′;

(ii) when π is an RC-couple, w(φ)w(φ′) = w(ψ)w(ψ′).

An immediate consequence from this theorem is the following

Corollary 4.5. For an (I|J)-flow φ and an (I ′|J ′)-flow φ′, let (ψ, ψ′) be obtained from 
(φ, φ′) by the flow exchange operation using a set Π ⊆ M(φ, φ′). Then

w(φ)w(φ′) = qζ
◦−ζ•

w(ψ)w(ψ′), (4.4)

where ζ◦ = ζ◦(I|J, I ′|J ′; Π) (resp. ζ• = ζ•(I|J, I ′|J ′; Π)) is the number of R- or 
C-couples π = {f, g} ∈ Π such that f < g and f ∈ I ∪ J (resp. f ∈ I ′ ∪ J ′).

Indeed, the flow exchange operation using the whole Π reduces to performing, step by 
step, the exchange operations using single couples π ∈ Π (taking into account that for 
any current double flow (η, η′) occurring in the process, the sets Eη ∪Eη′ and Eη�Eη′ , 
as well as the matching M(η, η′), do not change; cf. Lemma 4.3). Then (4.4) follows from 
Theorem 4.4.

5. Quadratic relations

As before, we consider an SE-graph G = (V, E; R, C) and the weight function w which 
is initially defined on the edges of G by (2.2) and then extended to paths and flows ac-
cording to (2.3) and (3.2). This gives rise to the q-minor function [I|J ]q on the set 
Em,n = {(I|J) : I ⊆ [m], J ∈ [n], |I| = |J |}. In this section, based on Corollary 4.5 de-
scribing the transformation of the weights of double flows under the exchange operation, 
and developing a q-version of the flow-matching method elaborated for the commutative 
case in [4], we establish sufficient conditions on quadratic relations for q-minors of the 
matrix PathG, to be valid independently of G (and some other objects, see Remark 2 
below). Relations of our interest are of the form

∑
I
qα(I|J,I′|J ′)[I|J ][I ′|J ′] =

∑
K
qβ(K|L,K′|L′)[K|L][K ′|L′], (5.1)

where α, β are integer-valued, I is a family of corteges (I|J, I ′|J ′) ∈ Em,n × Em,n (with 
possible multiplicities), and similarly for K. Cf. (1.2). We usually assume that I and K
are homogeneous, in the sense that for any (I|J, I ′|J ′) ∈ I and (K|L, K ′|L′) ∈ K,

I ∪ I ′ = K ∪K ′, J ∪ J ′ = L ∪ L′, I ∩ I ′ = K ∩K ′, J ∩ J ′ = L ∩ L′. (5.2)
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Moreover, we shall see that only the refinements (I◦, I•, J◦, J•) and (K◦, K•, L◦, L•)
are important, whereas the sets I ∩ I ′ and J ∩ J ′ are, in fact, indifferent. (As before, I◦
means I − I ′, I• means I ′ − I, and so on.)

To formulate the validity conditions, we need some definitions and notation.
• We say that a tuple (I|J, I ′|J ′; M), where (I|J, I ′|J ′) ∈ I and M ∈ MI◦,I•,J◦,J•

(cf. (4.3)), is a configuration for I. The family of all configurations for I is denoted by 
C(I). Similarly, we define the family C(K) of configurations for K.

• Define M(I) to be the family of all matchings M occurring in the members of C(I), 
respecting multiplicities (i.e., M(I) is a multiset). Define M(K) similarly.

Definition. Families I and K are called balanced (borrowing terminology from [4]) if there 
exists a bijection (I|J, I ′|J ′; M) γ	−→ (K|K ′, L|L′; M ′) between C(I) and C(K) such that 
M = M ′. In other words, I and K are balanced if M(I) = M(K).

Definition. We say that families I and K along with functions α : I → Z and β : K → Z

are q-balanced if there exists a bijection γ as above such that, for each (I|J, I ′|J ′; M) ∈
C(I) and for (K|K ′, L|L′; M) = γ(I|J, I ′|J ′; M), there holds

β(K|K ′, L|L′) − α(I|J, I ′|J ′) = ζ◦ − ζ•. (5.3)

(In particular, I, K are balanced.) Here ζ◦, ζ• are defined according to Corollary 4.5. 
Namely, ζ◦ = ζ◦(I|J, I ′|J ′; Π) and ζ• = ζ•(I|J, I ′|J ′; Π), where Π is the set of couples 
π ∈ M such that the white/black colors of the elements of π in the refined corteges 
(I◦, I•, J◦, J•) and (K◦, K•, L◦, L•) are different. (Then ζ◦ (ζ•) is the number of R- and 
C-couples {f, g} ∈ Π with f < g and f ∈ I◦ ∪ J◦ (resp. f ∈ I• ∪ J•).) We say that 
(K◦, K•, L◦, L•) is obtained from (I◦, I•, J◦, J•) by the index exchange operation using 
Π, and may write ζ◦(I◦, I•, J◦, J•; Π) for ζ◦, and ζ•(I◦, I•, J◦, J•; Π) for ζ•.

Theorem 5.1. Let I and K be homogeneous families on Em,n × Em,n, and let α : I → Z

and β : K → Z. Suppose that I, K, α, β are q-balanced. Then for any SE-graph G =
(V, E; R, C), relation (5.1) is valid for q-minors of PathG.

Proof. It is close to the proof for the commutative case in [4, Proposition 3.2].
We fix G and denote by D(I|J, I ′|J ′) the set of double flows for (I|J, I ′|J ′) ∈ I ∪ K

in G. A summand concerning (I|J, J ′|J ′) ∈ I in the L.H.S. of (5.1) can be expressed via 
double flows as follows, ignoring the factor of qα(·):

[I|J ][I ′|J ′] =
(∑

φ∈ΦG(I|J)
w(φ)

)
×
(∑

φ′∈ΦG(I′|J ′)
w(φ′)

)

=
∑

(φ,φ′)∈D(I|J,I′|J ′)
w(φ)w(φ′)

=
∑ ∑

′ ′ ′ ′
w(φ)w(φ′). (5.4)
M∈MI◦,I•,J◦,J• (φ,φ )∈D(I|J,I |J ) : M(φ,φ )=M
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The summand for (K|L, K ′|L′) ∈ K in the R.H.S. of (5.1) is expressed similarly.
Consider a configuration S = (I|J, I ′|J ′; M) ∈ C(I) and suppose that (φ, φ′) is a 

double flow for (I|J, I ′|J ′) with M(φ, φ′) = M (if such a double flow in G exists). Since 
I, K, α, β are q-balanced, S is bijective to some configuration S′ = (K|L, K ′|L′; M) ∈
C(K) satisfying (5.3). As explained earlier, the cortege (K|L, K ′|L′) is obtained from 
(I|J, I ′|J ′) by the index exchange operation using some Π ⊆ M . Then the flow exchange 
operation applied to (φ, φ′) using this Π results in a double flow (ψ, ψ′) for (K|L, K ′|L′)
which satisfies relation (4.4) in Corollary 4.5. Comparing (4.4) with (5.3), we observe 
that

qα(I|J,I′|J ′)w(φ)w(φ′) = qβ(K|K′,L|L′)w(ψ)w(ψ′).

Furthermore, such a map (φ, φ′) 	→ (ψ, ψ′) gives a bijection between all double flows 
concerning configurations in C(I) and those in C(K). Now the desired equality (5.1)
follows by comparing the last term in expression (5.4) and the corresponding term in 
the analogous expression concerning K. �

As a consequence of Theorems 3.3 and 5.1, the following result is obtained.

Corollary 5.2. If I, K, α, β as above are q-balanced, then relation (5.1) is valid for the 
corresponding minors in the algebra R of quantum m × n matrices.

Remark 2. When speaking of a universal quadratic identity of the form (5.1) with ho-
mogeneous I and K, abbreviated as a UQ identity, we mean that it depends neither on 
the graph G nor on the field K and element q ∈ K∗, and that the index sets can be 
modified as follows. Given (I|J, I ′|J ′) ∈ I, let A := I�I ′, B := J�J ′, S := I ∩ I ′ and 
T := J ∩ J ′ (by the homogeneity, these sets do not depend on (I|J, I ′|J) ∈ I ∪K). Take 
arbitrary m̃ ≥ |A| and ñ ≥ |B| and replace A, B, S, T by disjoint sets Ã, S̃ ⊆ [m̃] and 
disjoint sets B̃, T̃ ⊆ [ñ] such that |Ã| = |A|, |B̃| = |B| and |S̃| − |T̃ | = |S| − |T |. Let 
ν : A → Ã and μ : B → B̃ be the order preserving maps. Transform each (I|J, I ′|J ′) ∈ I
into (Ĩ|J̃ , Ĩ ′|J̃ ′), where

Ĩ := S̃ ∪ ν(I − S), Ĩ ′ := S̃ ∪ ν(I ′ − S), J̃ := T̃ ∪ μ(J − T ), J̃ ′ := T̃ ∪ μ(J ′ − T ),

forming a new family Ĩ on Em̃,ñ × Em̃,ñ. Transform K into K̃ in a similar way. One can 
see that if I, K, α, β are q-balanced, then so are Ĩ, K̃, keeping α, β. Therefore, if (5.1) is 
valid for I, K, then it is valid for Ĩ, K̃ as well.

Thus, the condition of q-balancedness is sufficient for validity of relation (5.1) for 
minors of any q-matrix. In Sect. 7 we shall see that this condition is necessary as well 
(Theorem 7.1).

One can say that identity (5.1), where all summands have positive signs, is written 
in the canonical form. Sometimes, however, it is more convenient to consider equivalent 
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identities having negative summands in one or both sides (e.g. of the form (1.2)). Also 
one may simultaneously multiply all summands in (5.1) by the same degree of q.

Remark 3. A useful fact is that once we are given an instance of (5.1), we can form 
another identity by changing the white/black coloring in all refined corteges. More pre-
cisely, for a cortege S = (I|J, I ′|J ′), let us say that the cortege Srev := (I ′|J ′, I|J) is 
reversed to S. Given a family I of corteges, the reversed family Irev is formed by the 
corteges reversed to those in I. Then the following property takes place.

Proposition 5.3. Suppose that I, K, α, β are q-balanced. Then Irev, Krev, −α, −β are q-
balanced as well. Therefore (by Theorem 5.1),

∑
(I|J,I′|J ′)∈I

q−α(I|J,I′|J ′)[I ′|J ′][I|J ] =
∑

(K|L,K′|L′)∈K
q−β(K|L,K′|L′)[K ′|L′][K|L]. (5.5)

Proof. Let γ : C(I) → C(K) be a bijection in the definition of q-balancedness. Then 
γ induces a bijection of C(Irev) to C(Krev) (also denoted as γ). Namely, if γ(S; M) =
(T ; M) for S = (I|J, I ′|J ′) ∈ I and T = (K|L, K ′|L′) ∈ K, then we define γ(Srev; M) :=
(T rev; M). When coming from S to Srev, each R- or C-couple {i, j} in M changes the 
colors of both elements i, j. This leads to swapping ζ◦ and ζ•, i.e., ζ◦(Srev; Π) = ζ•(S; Π)
and ζ•(Srev; Π) = ζ◦(S; Π) (where Π is the submatching in M involved in the exchange 
operation). Now (5.5) follows from relation (5.3). �

Another useful equivalent transformation is given by swapping row and column in-
dices. Namely, for a cortege S = (I|J, I ′|J ′), the transposed cortege is S� := (J |I, J ′|I ′), 
and the family I� transposed to I consists of the corteges S� for S ∈ I, and similarly 
for K. One can see that the corresponding values ζ◦ and ζ• preserve when coming from 
I to I� and from K to K�, and therefore (5.3) implies the identity

∑
(I|J,I′|J ′)∈I

qα(I|J,I′|J ′)[J |I][J ′|I ′] =
∑

(K|L,K′|L′)∈K
qβ(K|L,K′|L′)[L|K][L′|K ′]. (5.6)

(Note also that (5.6) immediately follows from the known fact that any q-minor satisfies 
the symmetry relation [J |I]q = [J |I]q.)

We conclude this section with a rather simple algorithm which has as the input a 
corresponding quadruple I, K, α, β and recognizes the q-balanced for it. Therefore, in 
light of Theorems 5.1 and 7.1, the algorithm decides whether or not the given quadruple 
determines a UQ identity of the form (5.1).

Algorithm. Compute the set MI◦,I•,J◦,J• of feasible matchings M for each (I|J, I ′|J ′)
∈ I, and similarly for K. For each instance M occurring there, we extract the fam-
ily CM (I) of all configurations concerning M in C(I), and extract a similar family 
CM (K) in C(K). If |CM (I)| �= |CM (K)| for at least one instance M , then I and 
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K are not balanced at all. Otherwise for each M , we seek for a required bijection 
γM : CM (I) → CM (K) by solving the maximum matching problem in the corresponding 
bipartite graph HM . More precisely, the vertices of HM are the tuples (I|J, I ′|J ′; M) and 
(K|L, K ′|L′; M) occurring in CM (I) and CM (K), and such tuples are connected by edge 
in HM if they obey (5.3). Find a maximum matching N in HM . (There are many fast 
algorithms to solve this classical problem; for a survey, see, e.g. [13].) If |N | = |CM (I)|, 
then N determines the desired γM in a natural way. Taking together, these γM give a 
bijection between C(I) and C(K) as required, implying that I, K, α, β are q-balanced. 
And if |N | < |CM (I)| for at least one instance M , then the algorithm declares the 
non-q-balancedness.

6. Examples of universal quadratic identities

The flow-matching method described above is well adjusted to prove, relatively easily, 
classical or less known quadratic identities. In this section we give a number of appealing 
illustrations.

Instead of circular diagrams as in Sect. 4, we will use more compact, but equiva-
lent, two-level diagrams. Also when dealing with a flag pair (I|J), i.e., when I consists 
of the elements 1, 2, . . . , |J |, we may use an appropriate one-level diagram, which leads 
to no loss of generality. For example, the refined cortege (I◦ = {3, 4}, I• = ∅, J◦ =
{1′, 3′, 4′, 6′}, J• = {2′, 5′}) with the feasible matching {1′2′, 4′5′, 33′, 46′} can be visu-
alized in three possible ways as:

A couple {i, j} may be denoted as ij. Also for brevity we write Xi . . . j for X ∪
{i, . . . , j}, where X and {i, . . . , j} are disjoint.

As before, we use notation [I|J ] for the corresponding q-minor of the path matrix 
PathG (defined in Sect. 3). In the flag case [I|J | is usually abbreviated to [J ].

6.1. Commuting minors

We start with a simple illustration of our method by showing that q-minors [I|J ] and 
[I ′|J ′] “purely” commute when I ′ ⊂ I and J ′ ⊂ J . (This matches the known fact that a 
minor of a q-matrix commutes with any of its subminors, or that the q-determinant of a 
square q-matrix is a central element of the corresponding algebra.)
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Let I◦ = I − I ′ consist of i1 < . . . < ik, and J◦ = J − J ′ consist of j1 < . . . < jk. 
Since I• = I ′ − I = ∅ and J• = J ′ − J = ∅, there is only one feasible matching M
for (I◦, I•, J◦, J•); namely, the one formed by the RC-couples π� = i�j�, � = 1, . . . , k. 
The index exchange operation applied to (I|J, I ′|J ′) using the whole M produces the 
cortege (K|L, K ′|L′) for which K◦ = I• = ∅, K• = I◦, L◦ = J• = ∅, L• = J◦

(and K ∩ K ′ = I ∩ I ′, L ∩ L′ = J ∩ J ′). Since M consists of RC-couples only, we 
have ζ◦(I◦, I•, J◦, J•; M) = ζ•(I◦, I•, J◦, J•; M) = 0. So the (one-element) families 
I = {(I|J, I ′|J ′)} and K = {(K|L, K ′|L′)} along with α = β = 0 are q-balanced, and 
Theorem 5.1 gives the desired equality [I|J ][I ′|J ′] = [I ′|J ′][I|J ].

This is illustrated in the picture with two-level diagrams (in case k = 5). Hereinafter 
we indicate by crosses the couples that are involved in the applied index exchange oper-
ation (i.e., the couples where the colors of elements are changed).

6.2. Quasicommuting minors

Recall that two sets I, J ⊆ [n] are called weakly separated if, up to renaming I and J , 
there holds: |I| ≥ |J |, and J−I has a partition J1∪J2 such that J1 < I−J < J2 (where 
we write X < Y if x < y for any x ∈ X and y ∈ Y ). Leclerc and Zelevinsky proved the 
following

Theorem 6.1 ([10]). Two flag minors [I] and [J ] of a quantum matrix quasicommute, 
i.e., satisfy

[I][J ] = qc[J ][I] (6.1)

for some c ∈ Z, if and only if the column sets I, J are weakly separated. Moreover, when 
|I| ≥ |J | and J1 ∪ J2 is a partition of J − I with J1 < I − J < J2, the number c in (6.1)
is equal to |J2| − |J1|.

(In case I ∩J = ∅, “if” part is due to Krob and Leclerc [8]). We explain how to obtain 
“if” part of Theorem 6.1 by use of the flow-matching method.

Let A := {1, . . . , |I|}, B := {1, . . . , |J |}, and (assuming |I| ≥ |J |) define

A◦ := A−B, B• := B −A (= ∅), I◦ := I − J, J• := J − I.

One can see that (A◦, B•, I◦, J•) has exactly one feasible matching M ; namely, J1 is 
coupled with the first |J1| elements of I◦, J2 is coupled with the last |J2| elements of I◦
(forming all C-couples), and the rest of I◦ is coupled with A◦ (forming all RC-couples).
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Observe that the index exchange operation applied to (A|I, B|J) using the whole M
swaps A|I and B|J (since it changes the colors of all elements in A◦, I◦, J•). Also 
M consists of |J1| + |J2| C-couples and |A◦| RC-couples. Moreover, the C-couples are 
partitioned into |J1| couples ij with i < j and i ∈ J1, and |J2| couples ij with i < j and 
j ∈ J2. This gives ζ◦ = |J2| and ζ• = |J1|. Hence the (one-element) families {(A|I, B|J)}
and {(B|J, A|I)} along with α(A|I, B|J) = 0 and β(B|J, A|I) = |J2| −|J1| are q-balanced. 
Now Theorem 5.1 implies (6.1) with c = |J2| − |J1|.

The picture with two-level diagrams illustrates the case |I − J | = 5, |J − I| = 3, 
|J1| = 1 and |J2| = 2.

“Only if” part of Theorem 6.1 will be discussed in Sect. 8. Also we will discuss there 
a generalization of this theorem that characterizes the pairs of quasicommuting general 
q-minors.

6.3. Manin’s relations in path matrices

Next we prove Theorem 3.2.
(a) Consider entries [i|j] and [i|j′] with j < j′ in PathG. The cortege S = (i|j, i|j′)

admits a unique feasible matching; it consists of the single C-couple π = jj′. The index 
exchange operation using π transforms S into T = (i|j′, i|j); see the picture with one-level 
diagrams:

We observe that {S} and {T} along with α = 0 and β = 1 (= ζ◦−ζ•) are q-balanced, 
and Theorem 5.1 yields [i|j][i|j′] = q[i|j′][i|j], as required.

(b) For a 2 × 1 submatrix of PathG, the argument is similar.
(c) Consider a 2 × 2 submatrix 

(
c d
a b

)
of PathG, where a = [i|j], b = [i|j′], c = [i′|j], 

d = [i′|j′] (then i < i′ and j < j′). Let I consist of two corteges S1 = (i|j, i′|j′), 
S2 = (i|j′, i′|j), and K consist of two corteges T1 = (i|j′, i′|j), T2 = (i′|j′, i|j) (note that 
S2 = T1). Observe that S1 admits two feasible matchings, namely, M = {ii′, jj′} and 
N = {ij, i′j′}, while S2 admits only one feasible matching M . In their turn, M(T1) =
{M} and M(T2) = {M, N}. Hence we can form the bijection between C(I) and C(K)
that sends (S1; M) to (T1; M), (S1, N) to (T2; N), and (S2, M) to (T2; M). This bijection 
is illustrated in the picture (where, as before, we indicate the submathings involved in 
the exchange operations with crosses).
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Assign α(S1) = 0, α(S2) = −1, β(T1) = 1 and β(T2) = 0.
One can observe from the above diagrams that I, K, α, β are q-balanced. We obtain

[i|j][i′|j′] + q−1[i|j′][i′|j] = q[i|j′][i′|j] + [i′|j′][i|j],

yielding ad − da = (q − q−1)bc, as required.
Finally, to see bc = cb, take the 1-element families {S′ = (i|j′, i′|j)} and {T ′ =

(i′|j, i|j′)}; then {ii′, jj′} is the only feasible matching for each of S′, T ′. The above 
families along with α = β = 0 are q-balanced, as is seen from the picture:

This gives [i|j′][i′|j] = [i′|j][i|j′], or bc = cb, as required.

6.4. Relations with triples and quadruples

In the commutative case (when dealing with the commutative coordinate ring of m ×n

matrices over a field), the simplest examples of quadratic identities on flag minors are 
presented by the classical Plücker relations involving 3- and 4-element sets of columns. 
More precisely, for A ⊆ [n], let g(A) denote the flag minor with the set A of columns 
of a matrix. Then for any three elements i < j < k in [n] and a set X ⊆ [n] − {i, j, k}, 
there holds

g(Xik)g(Xj) = g(Xij)g(Xk) + g(Xjk)g(Xi), (6.2)

and for any i < j < k < � and X ⊆ [n] − {i, j, k, �},

g(Xik)g(Xj�) = g(Xij)g(Xk�) + g(Xj�)g(Xjk). (6.3)
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There are two quantized counterparts of (6.2) (concerning flag q-minors). One of them 
is viewed as

[Xj][Xik] = [Xij][Xk] + [Xjk][Xi], (6.4)

and the other as

[Xik][Xj] = q−1[Xij][Xk] + q[Xjk][Xi]. (6.5)

To see (6.4), associate to Xj the white pair (I◦, J◦) = (∅|{j}), and to Xik the black 
pair (I•|J•) = ({p}|{i, k}), where p is the last row index for [Xik] (i.e., p = |X| + 2). 
Then MI◦,I•,J◦,J• consists of two feasible matchings: M = {pi, jk} and N = {ij, pk}. 
Now (6.4) is seen from the following picture with two-level diagrams, where we write S
for the cortege ([p − 1] |Xj, [p] |Xik), T1 for ([p] |Xij, [p − 1] |Xk), and T2 for ([p] |Xjk,

[p − 1] |Xi):

As to (6.5), it suffices to consider one-level diagrams (as we will not use RC-couples 
in the exchange operations). The “white” object is the column set J◦ = {i, k} and the 
“black” object is J• = {j}. Then M{p},∅,J◦,J• consists of two feasible matchings, one 
using the C-couple π = jk, and the other using the C-couple μ = ij. Now (6.5) can be 
seen from the picture, where we write S for the flag cortege (Xik, Xj), T1 for (Xij, Xk), 
and T2 for (Xjk, Xi).

Next we demonstrate the following quantized counterpart of (6.3):

[Xik][Xj�] = q−1[Xij][Xk�] + q[Xi�][Xjk]. (6.6)

To see this, we use one-level diagrams and consider the column sets J◦ = {i, k} and 
J• = {j, �}. Then M∅,∅,J◦,J• consists of two feasible matchings: M = {i�, jk} and 
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N = {ij, k�}. Identity (6.6) can be seen from the picture, where S = (Xik, Xj�), T1 =
(Xij, Xk�) and T2 = (Xi�, Xjk).

Remark 4. Note that, if wished, one can produce more identities from (6.4) and (6.5), 
using the fact that Xij and Xk (as well as Xjk and Xi) are weakly separated, and 
therefore their corresponding flag q-minors quasicommute (see Sect. 6.2). In contrast, Xj

and Xik are not weakly separated. Next, subtracting from (6.5) identity (6.4) multiplied 
by q results in the identity of the form

[Xik][Xj] = q[Xj][Xik] − (q − q−1)[Xij][Xk],

which is in spirit of commutation relations for quantum minors studied in [6,7].

6.5. Dodgson’s type identity

As one more simple illustration of our method, let us consider a q-analogue of the 
classical Dodgson’s condensation formula for usual minors [5]. It can be stated as follows: 
for elements i < k of [m], a set X ⊆ [m] − {i, k}, elements i′ < k′ of [n], and a set 
X ′ ⊆ [n] − {i′, k′} (with |X ′| = |X|),

[Xi|X ′i′][Xk|X ′k′] = q[Xi|X ′k′][Xk|X ′i′] + [Xik|X ′i′k′][X|X ′]. (6.7)

In this case we deal with the cortege S = (I|J, I ′|J ′) = (Xi|X ′i′, Xk|X ′k′) and its refine-
ment (I◦, I•, J◦, J•) of the form (i, k, i′, k′). The latter admits two feasible matchings: 
M = {ik, i′k′} and N = {ii′, kk′}. Now (6.7) can be concluded by examining the picture 
below, where T1 stands for (Xi|X ′k′, Xk|X ′i′), and T2 for (Xik|X ′i′k′, X|X ′):
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6.6. Two general quadratic identities

Two quadratic identities of a general form were established for quantum flag minors 
in [9,15].

The first one considers column subsets I, J ⊂ [n] with |I| ≤ |J | and is viewed as

[I][J ] =
∑

μ⊆J−I, |μ|=|J|−|I|
(−q)Inv(J−μ, μ)−Inv(I, μ)[I ∪ μ][J − μ], (6.8)

where Inv(A, B) denotes the number of pairs (a, b) ∈ A × B with a > b. Observe 
that (6.4) is a special case of (6.8) in which the roles of I and J are played by Xj and 
Xik, respectively. Indeed, in this case μ ranges over the singletons {i} and {k}, and we 
have Inv(Xk, i) − Inv(Xj, i) = 0 and Inv(Xi, k) − Inv(Xj, k) = 0. (For brevity, we 
write Inv(·, i′) for Inv(·, {i′}).)

The second one considers I, J ⊂ [n] with |I| − |J | ≥ 2 and is viewed as

∑
a∈I−J

(−q)Inv(a,I−a)−Inv(a,J)[Ja][I − a] = 0 (6.9)

(where we write Ja for J ∪ {a}, and I − a for I − {a}). A special case is (6.6) (with 
I = Xjk� and J = Xi).

We explain how (6.8) and (6.9) can be proved using the flow-matching method.

Proof of (6.8). The pair (I, J) corresponds to the cortege S := ([p] |I, [p + k] |J) and 
its refinement R := (∅, Q := {p + 1, . . . , p + k}, I◦ := I − J, J• := J − I), where 
p := |I| and k := |J | − |I|. In its turn, each term (I ∪ μ)|(J − μ) occurring in the R.H.S. 
of (6.8) corresponds to the cortege Sμ := ([p + k] |(Iμ := I ∪ μ), [p] |(Jμ := J − μ)) and 
its refinement Rμ := (Q, ∅, I◦μ := I◦ ∪ μ, J•

μ := J• − μ).
So we deal with the set

F := {S} ∪ {Sμ : μ ⊂ J•, |μ| = k},

of corteges and the related set C(F) of configurations (of the form (S; M) or (Sμ; M)), 
and our aim is to construct an involution γ : C(F) → C(F) which is agreeable with 
matchings, signs and q-factors figured in (6.8). (Under reducing (6.8) to the canonical 
form, F splits into two families I and K, and γ determines the q-balancedness for I, K
with corresponding α, β.)

Consider a refined cortege Rμ = (Q, ∅, I◦μ, J•
μ) and a feasible matching M for it. Note 

that M consists of k = |Q| RC-couples (connecting Q and I◦μ) and |J•
μ| = |I◦| C-couples 

(connecting I◦μ and J•
μ). Two cases are possible.

Case 1 : Each C-couple connects J•
μ and I◦. Then all RC-couples in M connect 

Q and μ. Therefore, the exchange operation applied to Sμ using the set Π of all 
RC-couples of M produces the “initial” cortege S (corresponding to the refinement 
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R = (∅, Q, I◦, J•)). Clearly M is a feasible matching for S and the exchange operation 
applied to S using Π returns Sμ. We link (S; M) and (Sμ; M) by γ.

Note that for each C-couple π = ij ∈ M − Π and for each r ∈ μ, either r < i, j
or r > i, j (otherwise the RC-couple containing r would “cross” π, contrary to the 
planarity requirement (4.3)(ii) for M). This implies Inv(Jμ, μ) = Inv(I, μ), whence the 
terms [I][J ] in the L.H.S. and (−q)0[Iμ][Jμ] in the R.H.S. of (6.8) are q-balanced.

Case 2 : There is a C-couple in M connecting J•
μ and μ. Among such couples, choose 

the couple π = ij with i < j such that: (a) j − i is minimum, and (b) i is minimum 
subject to (a). From (4.3) and (a) it follows that

(6.10) if a couple π′ ∈ M has an element (strictly) between i and j, then π′ connects I◦

and J•
μ, and the other element of π′ is between i and j as well.

Let Sμ′ be obtained by applying to Sμ the exchange operation using the single cou-
ple π. Then μ′ = μ�π, I◦μ′ = I◦μ�π and J•

μ′ = J•
μ�π. The matching M is feasible for Sμ′ , 

we are in Case 2 with Sμ′ and M , and one can see that the couple π′ ∈ M chosen for 
Sμ′ according to the above rules (a), (b) coincides with π. Based on these facts, we link 
(Sμ; M) and (Sμ′ ; M) by γ.

Now we compute and compare the numbers a := Inv(J•
μ′ = J − μ′, μ′) − Inv(J•

μ =
J−μ, μ) and b := Inv(I, μ′) −Inv(I, μ). Let d be the number of elements of I◦ between i
and j (recall that π = ij and i < j). Property (6.10) ensures that the number of elements 
of J•

μ (as well as of J•
μ′) between i and j is equal to d too. Consider two possibilities.

Subcase 2a: i ∈ μ (and j ∈ J•
μ). Then i ∈ J•

μ′ and j ∈ μ′. This implies that a =
Inv(J•

μ′ , j) − Inv(J•
μ, i) = d + 1 and b = Inv(I◦, j) − Inv(I◦, i) = d.

Subcase 2b: i ∈ J•
μ (and j ∈ μ). Then i ∈ μ′ and j ∈ J•

μ′ , yielding a = −d − 1 and 
b = −d.

Finally, let (−q)α and (−q)β be the multipliers to the terms [Iμ][Jμ] and [Iμ′ ][Jμ′ ]
in (6.8), respectively. Then β − α = a − b, which is equal to 1 in Subcase 2a and −1 in 
Subcase 2b. In both cases this amounts to the value ζ◦ − ζ• for the exchange operation 
applied to Sμ using π, and validity of (6.8) follows from Theorem 5.1. �
Remark 5. Sometimes it is useful to consider the identity formed by the corteges reversed 
to those in (6.8); by Proposition 5.3, it is viewed as

[J ][I] =
∑

μ⊆J−I, |μ|=|J|−|I|
(−q)Inv(I, μ)−Inv(J−μ, μ)[J − μ][I ∪ μ].

Proof of (6.9). Let p := |J |, k := |I| − |J |, Q := [p + k − 1] − [p + 1], J◦ := J − I and 
I• := I−J . For a ∈ I•, the term (Ja|I−a) occurring in (6.9) corresponds to the cortege 
Sa := ([p + 1] |Ja, [p + k− 1] |(I − a)) and its refinement Ra := (∅, Q, J◦a, I•a := I• − a)
(using the fact that k ≥ 2).



V.I. Danilov, A.V. Karzanov / Journal of Algebra 488 (2017) 145–200 169
We deal with the set F := {Sa : a ∈ I•} of corteges and the set C(F) of configurations 
(Sa; M), and like the previous proof, our aim is to construct an appropriate involution 
γ : C(F) → C(F).

Consider a refined cortege Ra = (∅, Q, J◦a, I•a) and a feasible matching M for it. Take 
the couple in M containing a, say, π = {a, b}. Note that π is a C-couple and b ∈ I•a
(since a is white, and Q and I•a are black). The exchange operation applied to Sa using 
π produces the member Sb of F , and we link Sa and Sb by γ.

It remains to estimate the multipliers (−q)α and (−q)β to the terms [Ja][I − a] and 
[Jb][I − b] in (6.9), respectively.

Let d be the number of elements of I• between a and b. It is equal to the number 
of elements of J◦ between a and b (since, in view of (4.3), the elements of I• ∪ J◦

between a and b must be partitioned into C-couples in M). This implies that if a < b, 
then Inv(b, I − b) − Inv(a, I − a) = d + 1 and Inv(b, J) − Inv(a, J) = d. Therefore, 
β − α = (d + 1) − d = 1. And if a > b, then Inv(b, I − b) − Inv(a, I − a) = −d − 1 and 
Inv(b, J) − Inv(a, J) = −d, whence β−α = −1. In both cases, β−α coincides with the 
corresponding value of ζ◦ − ζ•, and the result follows. �
7. Necessity of the q-balancedness

In this section we give a converse assertion to Theorem 5.1, thus obtaining a complete 
characterization for the UQ identities on quantum minors. This characterization, given in 
terms of the q-balancedness, justifies the algorithm of recognizing UQ identities described 
in the end of Sect. 5. As before, we deal with homogeneous families of corteges in Em,n×
Em,n.

Theorem 7.1. Let K be a field of characteristic zero and let q ∈ K∗ be transcendental 
over Q. Suppose that I, K, α, β (as in Sect. 5) are not q-balanced. Then there exists (and 
can be explicitly constructed) an SE-graph G for which relation (5.1) is violated.

Proof. We essentially use an idea and construction worked out for the commutative 
version in [4, Sect. 5].

Recall that the homogeneity of F := I � K means the existence of Xr, Y r ⊆ [m] and 
Xc, Y c ⊆ [n] such that any cortege (I|J, I ′|J ′) ∈ F satisfies

I ∩ I ′ = Xr, I�I ′ = Y r, J ∩ J ′ = Xc, J�J ′ = Y c (7.1)

(cf. (5.2)). For a perfect matching M on Y r �Y c, let us denote by IM the set of corteges 
S = (I|J, I ′|J ′) ∈ I for which M is feasible (see (4.3)), and denote by KM a similar 
set for K. The q-balancedness of I, K, α, β would mean that, for any M ∈ M(F), there 
exists a bijection γM : IM → KM respecting (5.3). That is, for any S = (I|J, I ′|J ′) ∈ IM
and for T = (K|L, K ′|L′) = γM (S), there holds

β(T ) − α(S) = ζ◦(ΠS,T ) − ζ•(ΠS,T ). (7.2)
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Here: Π = ΠS,T is the subset of M such that the refined cortege (K◦, K•, L◦, L•)
is obtained from (I◦, I•, J◦, J•) by the index exchange operation using Π, and ζ◦(Π)
(resp. ζ•(Π)) is the number of R- and C-couples {i, j} ∈ Π with i < j and i ∈ I◦ ∪ J◦

(resp. i ∈ I• ∪ J•). The following assertion is crucial.

Proposition 7.2. Let M be a perfect planar matching on Y r �Y c. Then there exists (and 
can be explicitly constructed) an SE-graph G = (V, E) with the following properties: for 
each cortege S = (I|J, I ′|J ′) ∈ Em,n × Em,n satisfying (7.1),

(P1) if M is feasible for S, then G has a unique (I|J)-flow and a unique (I ′|J ′)-flow;
(P2) if M is not feasible for S, then at least one of ΦG(I|J) and ΦG(I ′|J ′) is empty.

We will prove this proposition later, and now, assuming that it is valid, we complete 
the proof of the theorem.

Let I, K, α, β be not q-balanced. Then there exists a matching M ∈ M(F) that admits 
no bijection γM as mentioned above between IM and KM (and therefore at least one 
of IM and KM is nonempty). We fix one M of this sort and consider a graph G as in 
Proposition 7.2 for this M .

Our aim is to show that relation (5.1) is violated for q-minors of PathG (yielding the 
theorem). Suppose, for a contradiction, that (5.1) is valid. By (P2) in the proposition, we 
have [I|J ][I ′|J ′] = 0 for each cortege (I|J, I ′|J ′) ∈ F − FM , denoting FM := IM � KM . 
On the other hand, (P1) implies that if (I|J, I ′|J ′) ∈ FM , then

[I|J ][I ′|J ′] = w(φI|J)w(φI′|J ′),

where φI|J (resp. φI′|J ′) denotes the unique (I|J)-flow (resp. (I ′|J ′)-flow) in G. 
Thus, (5.1) can be rewritten as

∑
IM

qα(I|J,I′|J ′)w(φI|J)w(φI′|J ′) =
∑

KM

qβ(K|L,K′|L′)w(φK|L)w(φK′|L′). (7.3)

For each cortege S = (I|J, I ′|J ′) ∈ FM , the weight Q(S) := w(φI|J) w(φI′|J ′) of the 
double flow (φI|J , φI′|J ′) is a monomial in weights w(e) of edges e ∈ E (or a Laurent 
monomial in inner vertices of G); cf. (2.2), (2.3), (3.2). For any two corteges in FM , one 
can be obtained from the other by the index exchange operation using a submatching 
of M , and we know from the description in Sect. 4 that if one double flow is obtained 
from another by the flow exchange operation, then the (multi)sets of edges occurring in 
these double flows are the same (cf. Lemma 4.3).

Thus, the (multi)set of edges occurring in the weight monomial Q(S) is the same 
for all corteges S in FM . Fix an arbitrary linear order ξ on E. Then the monomial 
Qξ = Qξ(S) obtained from Q(S) by a permutation of the entries so as to make them 
weakly decreasing w.r.t. ξ (from left to right) is the same for all S ∈ FM . Therefore, 
applying relations (G1)–(G3) on vertices of G (see Sect. 2.4), we observe that for S ∈ FM , 
the weight Q(S) is expressed as
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Q(S) = qρ(S)Qξ (7.4)

for some ρ(S) ∈ Z. Using such expressions, we rewrite (7.3) as

∑
S∈IM

qα(S)+ρ(S)Qξ =
∑

T∈KM

qβ(T )+ρ(T )Qξ,

obtaining

∑
S∈IM

qα(S)+ρ(S) =
∑

T∈KM

qβ(T )+ρ(T ). (7.5)

Since q is transcendental, the polynomials in q in both sides of (7.5) are equal. Then 
|IM | = |KM | and there exists a bijection γ̃ : IM → KM such that

α(S) + ρ(S) = β(γ̃(S)) + ρ(γ̃(S)) for each S ∈ IM . (7.6)

This together with relations of the form (7.4) gives

qα(S)Q(S) = qβ(γ̃(S))Q(γ̃(S)).

Now, for S = (I|J, I ′|J ′) ∈ IM , let T = (K|L, K ′|L′) := γ̃(S) and let Π := ΠS,T . Using 
relation (4.4) from Corollary 4.5, we have

qβ(T )−α(S)Q(T ) = Q(S) = w(φI|J)w(φI′|J ′)

= qζ
◦(Π)−ζ•(Π)w(φK|L)w(φK′|L′) = qζ

◦(Π)−ζ•(Π)Q(T ),

whence β(T ) − α(S) = ζ◦(Π) − ζ•(Π). Thus, the bijection γM := γ̃ satisfies (7.2). 
A contradiction. �
Proof of Proposition 7.2. We utilize the construction of a graph (which need not be 
an SE-graph) with properties (P1) and (P2) from [4, Sect. 5]; denote this graph by 
H = (Z, U). We first outline essential features of that construction and then explain how 
to turn H into an equivalent SE-graph G. Transformations of H that we apply to obtain 
G consist of subdividing some edges e = (u, v) (i.e., replacing e by a directed path from 
u to v) and parallel shifting some sets of vertices and edges in the plane (preserving the 
planar structure of the graph). Such transformations maintain properties (P1) and (P2), 
whence the result will follow.

Let Y r ∪Xr = {1, 2, . . . , k} and Y c ∪Xc = {1′, 2′, . . . , k′}. Denote the sets of R-, C-, 
and RC-couples in M by M r, M c, and M rc, respectively. An R-couple π = {i, j} with 
i < j is denoted by ij, and we denote by ≺ the natural partial order on R-couples where 
π′ ≺ π if π′ = pr is an R-couple with i < p < r < j. And similarly for C-couples. When 
π′ ≺ π and there is no π′′ between π and π′ (i.e., π′ ≺ π′′ ≺ π), we say that π′ is an 
immediate successor of π and denote the set of these by ISuc(π). Also for π = ij ∈ M r
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and d ∈ Xr, we say that d is open for π if i < d < j and there is no π′ = pr ≺ π with 
p < d < r; we denote the set of these by Open(π). And similarly for couples in M c and 
elements of Xc.

A current graph and its ingredients are identified with their images in the plane, and 
any edge in it is represented by a (directed) straight-line segment. We write (xv, yv) for 
the coordinates of a point v, and say that an edge e = (u, v) points down if yu > yv.

The initial graph H has the following features (seen from the construction in [4]).
(i) The “sources” 1, . . . , k (“sinks” 1′, . . . , k′) are disposed in this order from left to 

right in the upper (resp. lower) half of a circumference O, and the graph H is drawn 
within the disk O∗ surrounded by O. (Strictly speaking, the construction of H in [4]
is a mirror reflection of what we describe; the latter is more convenient for us, without 
affecting the result.)

(ii) Each couple π = ij ∈ M r ∪M c is extended to a chord between the points i and j, 
which is subdivided into a path Lπ whose edges are alternately forward and backward 
ones. Let Rπ denote the region in O∗ between Lπ and the paths Lπ′ for all π′ ∈ ISuc(π). 
Then each edge e of H (regarded as a line-segment) having a point in the interior of Rπ

connects a vertex in Lπ with either a vertex in Lπ′ for some π′ ∈ ISuc(π) or some vertex 
d ∈ Open(π). Moreover, e is directed to Lπ if π ∈ M r, and from Lπ if π ∈ M c.

(iii) Let R∗ be the region in O∗ between the paths Lπ for all maximal R- and 
C-couples π. Then any edge e of H having a point in the interior of R∗ points down. 
Also if such an e has an incident vertex v lying on Lπ for a maximal R-couple (resp. 
C-couple) π, then e leaves (resp. enters) v.

Using these properties, we transform H, step by step, keeping notation H = (Z, U)
for a current graph, and O∗ for a current disk (which becomes a deformed circle) con-
taining H. Iteratively applied steps (S1) and (S2), described below, aim to make a graph 
whose all edges point down.

(S1) Choose π = ij ∈ M r and let Rπ be the part of O∗ above Lπ. (Then Rπ contains 
the paths Lπ′ for all π′ ≺ π, and the elements d ∈ Xr with i < d < j.) We shift Rπ

upward by a sufficiently large distance λ > 0. More precisely, each vertex v ∈ Z lying 
in Rπ is replaced by vertex v′ with xv′ = xv and yv′ = yv + λ. Each edge (u, w) ∈ U

of the old graph induces the corresponding edge of the new one, namely: edge (u′, w′) if 
both u, w lie in Rπ; edge (u, w) if u, w /∈ Rπ; and edge (u′, w) if u ∈ Rπ and w ∈ Lπ. 
(Case u ∈ O∗ − Rπ and w ∈ Rπ is impossible.) As a result, the region O∗ is enlarged 
by shifting the part Rπ by (0, λ) and filling the gap between Lπ and Lπ + (0, λ) by the 
corresponding parallelogram.

One can realize that upon application of (S1) to all R-couples, the following property 
is ensured: for each π ∈ M r, all initial edges incident to exactly one vertex on Lπ turn 
into edges pointing down. Moreover, since Lπ is alternating and there is enough space 
(from below and from above) in a neighborhood of the current Lπ, we can deform Lπ

into a zigzag path with all edges pointing down (by shifting each inner vertex v of Lπ

by a vector (0, ε) with an appropriate (positive or negative) ε ∈ R).
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(S2) We choose π ∈ M c and act similarly to (S1) with the differences that now Rπ

denotes the part of O∗ below Lπ and that Rπ is shifted downward (by a sufficiently large 
λ > 0).

Upon termination of the process for all R- and C-couples, all edges of the current 
graph H (which is homeomorphic to the initial one) point down, as required. Moreover, 
H has one more useful property: the sources 1, . . . , k are “seen from above” and the sinks 
1′, . . . , k′ are “seen from below”. Hence we can add to H “long” vertical edges h1, . . . , hk

entering the vertices 1, . . . , k, respectively, and “long” vertical edges h1′ , . . . , hk′ leaving 
the vertices 1′, . . . , k′, respectively, maintaining the planarity of the graph. In the new 
graph one should transfer each source i into the tail of hi, and each sink i′ into the head 
of hi′ . One may assume that the new sources (sinks) lie within one horizontal line L
(resp. L′), and that the rest of the graph lies between L and L′.

Now we get rid of the edges (u, v) such that xu > xv (i.e. “pointing to the left”), by 
making the linear transformation v 	→ v′ for the points v in H, defined by xv′ = xv−λyv
and yv′ = yv with a sufficiently large λ > 0.

Thus, we eventually obtain a graph H (homeomorphic to the initial one) without 
edges pointing up or to the left. Also the sources and sinks are properly ordered from 
left to right in the horizontal lines L and L′, respectively. Now it is routine to turn H
into an SE-graph G as required in the proposition. �

The transformation of H into G as in the proof is illustrated in the picture; here 
Xr = {4}, Y r = {1, 2, 3}, Xc = ∅, Y c = {1′, . . . , 5′}, and M = {12, 1′4′, 2′3′, 35′}.

8. Concluding remarks and additional results

8.1. An open question

It looks reasonable to ask: how narrow is the class of UQ identities for q-minors 
compared with the class of those in the commutative version. We know that the latter 
class is formed by balanced families I, K, whereas the former one is characterized via 
a stronger property of q-balancedness. So we can address the problem of characterizing 
the set of homogeneous balanced families I, K of corteges (I|J, I ′|J ′) ∈ Em,n × Em,n
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that admit functions α : I → Z and β : K → Z such that the quadruple I, K, α, β is 
q-balanced.

In an algorithmic setting, we deal with the following problem (∗): given I, K (as 
above), decide whether or not there exist corresponding α, β (as above). Concerning 
algorithmic complexity aspects, note that the number |C(I)| + |C(K)| of configurations 
for I, K may be exponentially large compared with |I| + |K| (since a cortege of size N
may have 2O(N) feasible matchings). In light of this, it is logically reasonable to regard 
as the input of problem (∗) just the set C(I) � C(K) rather than I � K (and measure 
the input size of (∗) accordingly). We conjecture that problem (∗) specified in this way 
is NP-hard and, moreover, it remains NP-hard even in the flag case.

8.2. Non-quasicommuting flag minors

The simplest example of balanced I, K for which problem (∗) has answer “not” arises 
in the flag case with I, K consisting of single corteges. That is, we deal with quantized 
flag minors [I] = [A|I] and [J ] = [B|J ], where A := {1, . . . , |I|} and B := {1, . . . , |J |}, 
and consider the (trivially balanced) one-element families I = {S := (A|I, B|J)} and 
K = {T := (B|J, A|I)}. By Leclerc–Zelevinsky’s theorem (Theorem 6.1), [I] and [J ]
quasicommute if and only if the sets I, J are weakly separated. We have explained how 
to obtain “if” part of this theorem by use of the flow-matching method, and now we 
explain how to use this method to show, relatively easily, “only if” part (which has a 
more sophisticated proof in [10]).

So, assuming that I, J are not weakly separated, let us show that there do not exist 
α(S), β(T ) ∈ Z such that the equality

β(T ) − α(S) = ζ◦(S;M) − ζ•(S;M) (8.1)

holds for all feasible matching M for S. The crucial observation is that

(8.2) I, J ⊂ [n] are weakly separated if and only if S has exactly one feasible matching

(where “only if” part, mentioned in Sect. 6.2, is trivial). In fact, we need a sharper version 
of “if” part of (8.2): when I, J ⊂ [n] are not weakly separated, there exist M, M ′ ∈ M(S)
such that

ζ◦(S;M) − ζ•(S;M) �= ζ◦(S;M ′) − ζ•(S;M ′). (8.3)

Then the fact that the exchange operation applied to S using M results in T , and 
similarly for M ′, implies that (8.1) cannot hold simultaneously for both M and M ′.

To construct the desired M and M ′, we argue as follows. Let for definiteness |I| ≥ |J |
and let I◦ := I − J and J• := J − I. Since I, J are not weakly separated, one can see 
that there are a, b ∈ [n] with a < b such that the sets Ĩ◦ := {i ∈ I◦ : a ≤ i ≤ b} and 
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J̃• := {j ∈ J• : a ≤ j ≤ b} satisfy |Ĩ◦| − 1 = |J̃•| =: k, and Ĩ◦ has a partition into 
nonempty sets I1, I2 satisfying I1 < J̃• < I2. Let

I1 = (i1 < i2 < . . . < ip), I2 = (ip+1 < . . . < ik+1), J̃• = (j1 < . . . < jk)

(then ip < j1 and jk < ip+1). Choose an arbitrary matching M ∈ M(S), and consider 
the set Π of couples in M containing elements of J̃•; let Π = {π1, . . . , πk}, where j� ∈ π�. 
Each π� is a C-couple (since it cannot be an RC- couple, in view of B − A = ∅), and 
condition (4.3) for M implies that only two cases are possible: (a) p couples in Π meet 
I1 and the remaining k− p couples meet I2, and (b) p − 1 couples in Π meet I1 and the 
remaining k − p + 1 couples meet I2.

In case (a), we have π� = {j�, ip−�+1} for � = 1, . . . , p, and π� = {j�, i�} for � =
p + 1, . . . , k. An especial role is played by the couple in M containing the last element 
ik+1 of I2, say, π = {ik+1, d} (note that d belongs to either A − B or J• − J̃•). We 
modify M by replacing the couple π by π′ := {i1, d}, and replacing πp = {jp, i1} by 
π′
p := {jp, ik+1}, forming matching M ′. The picture illustrates the case k = 3, p = 2 and 

d ∈ A −B.

One can see that M ′ is feasible for S. Moreover, M and M ′ satisfy (8.3). Indeed, 
πp contributes one unit to ζ◦(S; M) while π′

p contributes one unit to ζ•(S; M ′), the 
contributions from π and from π′ are the same, and the rests of M and M ′ coincide.

Thus, in case (a), the one-element families {S} and {T} along with any numbers 
α(S), β(T ) are not q-balanced. Then relation (6.1) (with any c) is impossible by Theo-
rem 7.1. In case (b), the argument is similar. This yields the necessity (“only if” part) 
in Theorem 6.1. �
8.3. Quasicommuting general minors

Extending Leclerc–Zelevinsky’s result (Theorem 6.1), Scott gave a characterization 
for the set of quasicommuting quantum minors in a general case.

Theorem 8.1 ([14]). Let (I|J), (I ′|J ′) ∈ Em,n. The quantum minors [I|J ] and [I ′|J ′]
quasicommute, i.e., [I|J ][I ′|J ′] = qc[I ′|J ′][I|J ] for some c, if and only if S(I, J) and 
S(I ′, J ′) are weakly separated subsets of [m +n], where for Ĩ ⊆ [m] and J̃ ⊆ [n], we write 
S(Ĩ , J̃) for the set {m +j : j ∈ J̃} ∪ [m] −{m − i +1: i ∈ Ĩ}. Furthermore, if A := S(I, J)
and B := S(I ′, J ′) are weakly separated, |A| ≥ |B|, and B1 ∪B2 is a partition of B −A

with B1 < (A −B) < B2, then c as above is equal to |B2| − |B1| + |I| − |I ′|.
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Let us explain how to obtain a characterization of quasicommuting general q-minors 
by use of the flow-matching method. We state it in a slightly different form (leaving to 
the reader to check that the statement of Theorem 8.1 is equivalent to (i), (iii) in the 
next proposition).

Proposition 8.2. Let (I|J), (I ′|J ′) ∈ Em,n and let |I| ≥ |I ′|. The following statements are 
equivalent:

(i) [I|J ][I ′|J ′] = qc[I ′|J ′][I|J ] for some c ∈ Z;
(ii) the cortege S = (I|J, I ′|J ′) admits exactly one feasible matching;
(iii) the sets I, I ′ are weakly separated, the sets J, J ′ are weakly separated, and for the 

refinement (I◦, I•, J◦, J•) of S, one of the following takes place:
(a) |I•||J•| = 0; or
(b) both sets I•, J• are nonempty, and either I◦ < I• and J• < J◦, or I• < I◦

and J◦ < J•.

Also in case (iii) the number c is computed as follows: if I• = ∅, J• = J1 ∪ J2 and 
J1 < J◦ < J2, then c = |J2| − |J1|; (symmetrically) if J• = ∅, I• = I1 ∪ I2 and 
I1 < I◦ < I2, then c = |I2| − |I1|; if I◦ < I• and J• < J◦, then c = |I•| − |J•|; and 
(symmetrically) if I• < I◦ and J◦ < J•, then c = |J•| − |I•|.

Proof. Implication (ii)→(i) is proved as in Sect. 6.2, and (iii)→(ii) is easy.
To show (i)→(iii), note that |I◦| − |I•| = |J◦| − |J•| ≥ 0 (cf. (4.2)) and observe that 

a feasible matchings for S can be constructed by the following procedure (P) consisting 
of three steps. First, choose an arbitrary maximal feasible set M r of R-couples in Y r :=
I◦ ∪ I•. Here the feasibility means that the elements of each couple have different colors 
and there are neither couples {i, j} and {p, r} with i < p < j < r, nor a couple {i, j} and 
an element d ∈ Y r − ∪(π ∈ M r) with i < d < j; cf. (4.3). Second, choose an arbitrary 
maximal feasible set M c of C-couples in Y c := J◦ ∪ J•. Third, when |I| > |I ′|, the 
remaining elements of Y r � Y c (which are all white) are coupled by a unique set M rc of 
RC-couples. Then M := M r ∪M c ∪M rc is a feasible matching for S.

Suppose that (iii) is false and consider possible cases.
1) Let J, J ′ be not weakly separated. Then we construct M r, M c, M rc by procedure (P) 

and work with the matching M̃ := M c ∪M rc in a similar way as in the above proof for 
the flag case (with non-weakly-separated column sets). This transforms M̃ into M̃ ′, and 
we obtain two different feasible matchings M := M̃ ∪ M r and M ′ := M̃ ′ ∪ M r for S

satisfying (8.3). This leads to a contradiction with (i) (as well as (ii)) in the theorem. 
When I, I ′ are not weakly separated, the argument is similar.

2) Assume that I, I ′ are weakly separated, and similarly for J, J ′. Suppose that both 
I•, J• are nonempty. Then I◦, J◦ are nonempty as well, and for the matching M formed 
by procedure (P), M r covers I• and M c covers J•.

Denote by a, a′ (resp. b, b′) the minimal and maximal elements in Y r (resp. Y c), 
respectively. Suppose that both a, b are black. Then we can transform M into M ′ by 
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replacing the R-couple containing a, say, ad, and the C-couple containing b, say, bf , by 
the two RC-couples ab and df . It is easy to see that M ′ is feasible and M, M ′ satisfy (8.3)
(since under the transformation M → M ′ the value ζ◦−ζ• increases by two), whence (i) 
is false. When both a′, b′ are black, we act similarly. So we may assume that each pair 
{a, b} and {a′, b′} contains a white element. The case a ∈ I◦ and b ∈ J◦ is possible only 
if |I◦| = |I•| (taking into account that |I◦| ≥ |I•| �= 0, |J◦| ≥ |J•| �= 0, and that I◦, I•, 
as well as J◦, J•, are weakly separated), implying |J◦| = |J•|. But then M r covers I◦
and M c covers J◦; so we can construct a feasible matching M ′ �= M as in the previous 
case (after changing the colors everywhere). And similarly when both a′, b′ are white.

Thus, we may assume that a, b have different colors, and so are a′, b′. Suppose that 
a, a′ ∈ I◦ and b, b′ ∈ J• (the case a, a′ ∈ I• and b, b′ ∈ J◦ is similar). This is possible 
only if |I◦| = |I•| (since |I| ≥ |I ′|, and I, I ′ are weakly separated). Then the feasible 
matching M constructed by (P) consists of only R- and C-couples. Take the R-couple 
in M containing a and the C-couple containing b′, say, π = {a, i} and π′ = {j, b′}; then 
both a, j are white and both i, b′ are black. Replace π, π′ by the RC-couples {a, j} and 
{i, b′}. This gives a feasible matching M ′ �= M satisfying (8.3).

The remaining cases are just as in (a) or (b) of (iii), yielding (i)→(iii). �
Remark 6. Note that the situation when (I◦, I•, J◦, J•) has only one feasible matching 
can also be interpreted as follows. Let us change the colors of all elements in the upper 
half of the circumference O (i.e., I◦ becomes black and I• becomes white). Then the 
quantities of white and black elements in O are equal and the elements of each color go 
in succession cyclically.

Remark 7. When minors [I|J ] and [I ′|J ′] quasicommute with c = 0, we obtain the 
situation of “purely commuting” quantum minors, such as those discussed in Sect. 6.1. 
The last assertion in Proposition 8.2 enables us to completely characterize the set of 
corteges (I|J, I ′|J ′) determining commuting q-minors, as follows.

Proposition 8.3. The equality [I|J ][I ′|J ′] = [I ′|J ′][I|J ] holds if and only if the refinement 
(I◦, I•, J◦, J•) satisfies at least one of the following:

(C1) |I◦| = |J◦| (as well as |I•| = |J•|) and either I◦ < I• and J• < J◦, or, 
symmetrically, I• < I◦ and J◦ < J•;

(C2) assuming for definiteness that |I| ≥ |I ′|, either I• = ∅ and J• has a partition 
J1 ∪ J2 such that |J1| = |J2| and J1 < J◦ < J2, or, symmetrically, J• = ∅ and I• has a 
partition I1 ∪ I2 such that |I1| = |I2| and I1 < I◦ < I2.

Cases (C1) and (C2) are illustrated in the picture by two level diagrams.
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8.4. Rotations

Return to a general UQ identity (5.1). In Sect. 5 we demonstrated two transformations 
of q-balanced (I, K, α, β) that preserve the q-balancedness (namely, the ones of reversing
and transposing, which result in (Irev, Krev, −α, −β) and (I�, K�, α, β), respectively).
Now we demonstrate one more interesting (and less trivial) transformation of (I, K, α, β)
(in Theorem 8.4). We proceed in four steps.

First, for corresponding Xr, Y r ⊂ [m] and Xc, Y c ⊂ [n] (cf. (7.1)), let Y r = (i1 <

· · · < ik) and Y c = (j1 < · · · < jk′). Choose g, h ∈ Z such that

g + h ≤ k if g, h ≥ 0; |g| + |h′| ≤ k′ if g, h ≤ 0; (8.4)

g ≤ k and |h| ≤ k′ if g ≥ 0 ≥ h; |g| ≤ k′ and h ≤ k if g ≤ 0 ≤ h.

Assuming that the numbers i1, m − ik, j1, n − jk′ are large enough, we take sets 
A, B ⊂ [m] and A′, B′ ⊂ [n] such that |A| = |A′| = |g|, |B| = |B′| = |h′|, (A ∪B) ∩Xr = ∅, 
(A′ ∪B′) ∩Xc = ∅, and

(8.5) (a) A = {i1, . . . , ig} and A′ < Y c if g ≥ 0;
(a’) A < Y r and A′ = {j1, . . . , j|g|} if g ≤ 0;
(b) B = {ik−h+1, . . . , ik} and B′ > Y c if h ≥ 0;
(b’) B > Y r and B′ = {jk′−|h|+1, . . . , jk′} if h ≤ 0.

Let ξ be the order-reversing bijection between A and A′, i.e., �-th element of A is 
bijective to (|g| + 1 − �)-th element of A′, and η the order-reversing bijection between B
and B′.

Second, we transform each cortege S = (I|J, I ′|J ′) ∈ I ∪ K into cortege Sg,h =
(Ĩ|J̃ , Ĩ ′|J̃ ′) such that Ĩ ∩ Ĩ ′ = Xr, J̃ ∩ J̃ ′ = Xc, and the refinement (Ĩ◦, Ĩ•, ̃J◦, ̃J•) of 
Sg,h is expressed via the refinement (I◦, I•, J◦, J•) of S as follows:

(i) Ĩ◦ ∪ Ĩ• = (Y r ± A) ± B =: Y r
g,h and J̃◦ ∪ J̃• = (Y c ± A′) ± B′ =: Y c

g,h (where we 
write P +Q for P ∪Q in case P ∩Q = ∅, and write P −Q for P \Q in case P ⊇ Q);

(ii) If i ∈ I◦ (i ∈ I•) is not in A ∪ B, then i ∈ Ĩ◦ (resp. i ∈ Ĩ•), and symmetrically, if 
j ∈ J◦ (j ∈ J•) is not in A′ ∪B′, then j ∈ J̃◦ (resp. j ∈ J̃•);

(iii) If i ∈ I◦ (i ∈ I•) is in A ∪B, then the element bijective to i (by ξ or η) belongs to 
J̃• (resp. J̃◦); and symmetrically, if j ∈ J◦ (j ∈ J•) is in A′ ∪B′, then the element 
bijective to j belongs to Ĩ• (resp. Ĩ◦).

(In other words, ξ and η change the colors of elements occurring in A, B, A′, B′.) We 
call Y r

g,h, Y
c
g,h, Sg,h the (g, h)-rotations of Y r, Y c, S, respectively. Accordingly, we say that 

{Sg,h : S ∈ I} is the (g, h)-rotation of I, denoted as I�
g,h, and similarly for K.

(This terminology is justified by the observation that if g = −h, then each cortege S
is transformed as though being rotated (by |g| positions clockwise or counterclockwise) 
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Fig. 3. An example of rotation with k = 5, k′ = 3, g = 2 and h = −1.

on the circular diagram on Y r � Y c; thereby each element moving across the middle 
horizontal line of the diagram changes its color.)

Third, extend ξ and η to the bijection ρ : Y r �Y c → Y r
g,h �Y c

g,h so that ρ be identical 
on Y r − (A ∪B) and on Y c − (A′ ∪B′). Then a perfect matching M on Y r � Y c induces 
the perfect matching {ρ(π) : π ∈ M} on Y r

g,h � Y c
g,h, denoted as Mg,h. An important 

property (which is easy to check) is that

(8.6) if M is a feasible matching for S ∈ I ∪ K, then Mg,h is a feasible matching for 
Sg,h, and vice versa.

An example of rotation of S with M ∈ M(S) is illustrated in Fig. 3.
Fourth, for S = (I|J, I ′|J ′), define ω(S) := δS(A) + δS(A′) + δS(B) + δS(B′), where

δS(A) := |A ∩ I◦|, δS(B) := −|B ∩ I◦|, (8.7)

δS(A′) := |A′ ∩ J◦|, δS(B′) := −|B′ ∩ J◦|.

Theorem 8.4. Let I, K, α, β be q-balanced and let g and h be as in (8.4). Define 
αg,h(Sg,h) := α(S) + ω(S) for S ∈ I, and βg,h(Tg,h) := β(T ) + ω(T ) for T ∈ K. 
Then I�

g,h, K
�
g,h, αg,h, βg,h are q-balanced.

Proof. Let γ : C(I) → C(K) be a bijection providing the q-balancedness of I, K, α, β. 
By (8.6), γ induces a bijection γg,h : C(I�

g,h) → C(K�
g,h). More precisely, for configura-

tions (S; M) ∈ C(I) and (T ; M) = γ(S; M), γg,h maps the configuration (Sg,h; Mg,h) to 
(Tg,h; Mg,h). We assert that γg,h satisfies the corresponding equality of the form

βg,h(Tg,h) − αg,h(Sg,h) = ζ◦(Sg,h; ρ(Π)) − ζ•(Sg,h; ρ(Π)) (8.8)

(cf. (5.3)), yielding the result; here, as before, Π is the set of couples in M colored 
differently in the refinements of S and T .

For additivity reasons, it suffices to show (8.8) when |g| + |h| = 1. We will abbreviate 
corresponding Sg,h, Tg,h, Mg,h as S′, T ′, M ′. (So T ′ is obtained from S′ by the exchange 
operation using ρ(Π) ⊆ M ′.) Let d denote the only element of Y r � Y c that is not 
in Y r

g,h � Y c
g,h, and π = {d, f} the couple in M containing d. Also we define Δ :=

ζ◦(S; Π) − ζ•(S; Π) and Δ′ := ζ◦(S′; ρ(Π)) − ζ•(S′; ρ(Π)).
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Our aim is to show that ω(T ) − ω(S) = Δ′ −Δ; then (8.8) would immediately follow 
from (5.3). One can see that if π /∈ Π, then Δ′ = Δ, and δS(D) = δT (D) holds for 
D = A, A′, B, B′ (cf. (8.7)), implying ω(S) = ω(T ). So we may assume that π ∈ Π. 
Consider possible cases (where S = (I|J, I ′|J ′) and T = (K|L, K ′|L′)).

Case 1. Let g = 1. Then d = i1. First suppose that d ∈ I◦. Then ω(S) = δS(A) = 1
and ω(T ) = δT (A) = 0 (since the exchange operation changes the color of d, i.e., d ∈ K•). 
If π is an R-couple for S, then π contributes 1 to Δ (since d is white and d < f), and 
ρ(π) contributes 0 to Δ′ (since ρ(π) is an RC-couple for S′). Hence ω(T ) −ω(S) = −1 =
Δ′−Δ, as required. And if π is an RC-couple for S, then π contributes 0 to Δ and ρ(π)
contributes −1 to Δ′ (since ρ(π) is a C-couple for S′, ρ(d) is black, ρ(f) = f is white, 
and ρ(d) < f), giving again Δ′ − Δ = −1.

When d ∈ I•, we argue “symmetrically” (as though the roles of S and T , as well as 
ζ◦ and ζ•, are exchanged). Briefly, one can check that: ω(S) = 0 and ω(T ) = 1; if π is 
an R-couple, then π contributes −1 to Δ, and ρ(π) contributes 0 to Δ′; and if π is an 
RC-couple then π contributes 0 to Δ and ρ(π) contributes 1 to Δ′. Thus, every time we 
obtain ω(T ) − ω(S) = 1 = Δ′ − Δ, as required.

Case 2. Let h = 1. Then d = ik. Suppose that d ∈ I◦. Then ω(S) = δS(B) = −1
and ω(T ) = δT (B) = 0. If π is an R-couple for S, then π contributes −1 to Δ (since 
d is white and d > f) and ρ(π) contributes 0 to Δ′ (since ρ(π) is an RC-couple). And 
if π is an RC-couple for S, then π contributes 0 to Δ and ρ(π) contributes 1 to Δ′

(since ρ(π) is a C-couple for S′, ρ(d) is black, and ρ(d) > f). In both cases, we obtain 
ω(T ) − ω(S) = 1 = Δ′ − Δ, as required. When d ∈ I•, we argue “symmetrically”.

Finally, the cases g = −1 and h = −1 are “transposed” to Cases 1 and 2, respectively, 
and (8.8) follows by using relation (5.6). �
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Appendix A. Commutation properties of paths and a proof of Theorem 3.1

This section contains auxiliary lemmas that are used in the proof of Theorem 3.1
given in this section as well, and in the proof of Theorem 4.4 given in Appendix B. 
These lemmas deal with special pairs P, Q of paths in an SE-graph G = (V, E; R, C)
and compare the weights w(P )w(Q) and w(Q)w(P ). Similar or close statements for 
Cauchon graphs are given in [1,2], and our method of proof is somewhat similar and 
rather straightforward as well.

We first specify some terminology, notation and conventions.
When it is not confusing, vertices, edges, paths and other objects in G are identified 

with their corresponding images in the plane. We assume that the set R = {r1, . . . , rm}
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of sources and the set C = {c1, . . . , cn} of sinks lie on the coordinate rays (0, R≥0)
and (R≥0, 0), respectively (then G is disposed within the nonnegative quadrant R2

≥0). 
The coordinates of a point v in R2 (in particular, a vertex v of G) are denoted as 
(α(v), β(v)). It is convenient to assume that two vertices u, v ∈ V have the same first 
(second) coordinate if and only if they belong to a vertical (resp. horizontal) path in G, 
in which case u, v are called V-dependent (resp. H-dependent); for we always can slightly 
perturb G to ensure such a property, without affecting the graph structure in essence. 
When u, v are V-dependent, i.e., α(u) = α(v), we say that u is lower than v (and v is 
higher than u) if β(u) < β(v). (In this case the commutation relation uv = qvu takes 
place.)

Let P be a path in G. We denote: the first and last vertices of P by sP and tP , 
respectively; the interior of P (the set of points of P − {sP , tP } in R2) by Int(P ); the 
set of horizontal edges of P by EH

P ; and the projection {α(x) : x ∈ P} by α(P ). Thus, 
if P is directed, then α(P ) is the interval between α(sP ) and α(tP ).

For a directed path P , the following properties are equivalent: P is non-vertical; 
EH

P �= ∅; and α(sP ) �= α(tP ). We will refer to such a P as a standard path.
For a standard path P , we will take advantage from a compact expression for the 

weight w(P ). We call a vertex v of P essential if either P makes a turn at v (changing 
the direction from horizontal to vertical or conversely), or v = sP /∈ R and the first edge 
of P is horizontal, or v = tP and the last edge of P is horizontal. If u0, u1, . . . , uk is 
the sequence of essential vertices of P in the natural order, then the weight of P can be 
expressed as

w(P ) = uσ0
0 uσ1

1 . . . uσk

k , (A.1)

where σi = 1 if P makes a -turn at ui or if i = k, while σi = −1 if P makes a -turn 
at ui or if i = 0 and u0 is the beginning of P . (Compare with (2.4) where a path from 
R to C is considered.) Note that if P does not begin in R, then its essential vertices are 
partitioned into H-dependent pairs.

Throughout the rest of the paper, for brevity, we denote q−1 by q, and for an inner 
vertex v ∈ W regarded as a generator, we may denote v−1 by v.

A.1. Auxiliary lemmas

These lemmas deal with weakly intersecting directed paths P and Q, which means 
that

P ∩Q = {sP , tP } ∩ {sQ, tQ}; (A.2)

then Int(P ) ∩ Int(Q) = ∅. For such P, Q, we say that P is lower than Q if there are 
points x ∈ P and y ∈ Q such that α(x) = α(y) and β(x) < β(y) (then there are no 
x′ ∈ P and y′ ∈ Q with α(x′) = α(y′) and β(x′) > β(y′)).
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For paths P, Q, we define the value ϕ = ϕ(P, Q) by the relation

w(P )w(Q) = ϕw(Q)w(P ).

Obviously, ϕ(P, Q) = 1 when P or Q is a V-path. In the lemmas below we default assume 
that both P, Q are standard.

Lemma A.1. Let {α(sP ), α(tP )} ∩ {α(sQ), α(tQ)} ∩ R>0 = ∅. Then ϕ(P, Q) = 1.

Proof. Consider an essential vertex u of P and an essential vertex v of Q. Then for any 
σ, σ′ ∈ {1, −1}, we have uσvσ

′ = vσ
′
uσ unless u, v are dependent.

Suppose that u, v are V-dependent. From hypotheses of the lemma it follows that at 
least one of the following is true: α(sP ) < α(u) < α(tP ), or α(sQ) < α(v) < α(tQ). For 
definiteness assume the former. Then there is another essential vertex z of P such that 
α(z) = α(u) = α(v). Moreover, P makes a -turn an one of u, z, and a -turn at the 
other. Since P ∩Q = ∅ (in view of (A.2)), the vertices u, z are either both higher or both 
lower than v. Let for definiteness u, z occur in this order in P ; then w(P ) contains the 
terms u and z. Let w(Q) contain the term vσ and let uvσ = ρvσu, where σ ∈ {1, −1}
and ρ ∈ {q, q}. Then zvσ = ρvσz, implying uzvσ = vσuz. Hence the contributions 
to w(P )w(Q) and w(Q)w(P ) from the pairs on generators u, z, v (namely, {u, vσ} and 
{z, vσ}) are equal.

Next suppose that u, v are H-dependent. One may assume that α(u) < α(v). Then Q
contains one more essential vertex y �= v with β(y) = β(v) = β(u). Also α(u) < α(v)
and P ∩Q = ∅ imply α(u) < α(y). Let for definiteness α(y) < α(v). Then w(Q) contains 
the terms y, v, and we can conclude that the contributions to w(P )w(Q) and w(Q)w(P )
from the pairs on generators u, y, v are equal (using the fact that α(u) < α(y), α(v)).

These reasonings imply ϕ(P, Q) = 1. �
Lemma A.2. Let α(sP ) = α(sQ) > 0 and α(tP ) �= α(tQ). Let P be lower than Q. Then 
ϕ(P, Q) = q.

Proof. Let u and v be the first essential vertices in P and Q, respectively. Then α(sP ) =
α(sQ) > 0 implies α(u) = α(sP ) = α(sQ) = α(v). Since P is lower than Q, we have 
β(u) ≤ β(v). Moreover, this inequality is strong (since β(u) = β(v) is impossible in view 
of (A.2) and the obvious fact that u, v are the tails of first H-edges in P, Q, respectively).

Now arguing as in the above proof, we can conclude that the discrepancy between 
w(P )w(Q) and w(Q)w(P ) can arise only due to swapping the vertices u, v. Since u gives 
the term u in w(P ), and v the term v in w(Q), the contribution from these vertices to 
w(P )w(Q) and w(Q)w(P ) are expressed as uv and vu, respectively. Since β(u) < β(v), 
we have uv = qvu, and the result follows. �
Lemma A.3. Let α(tP ) = α(tQ) and let either α(sP ) �= α(sQ) or α(sP ) = α(sQ) = 0. 
Let P be lower than Q. Then ϕ(P, Q) = q.
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Proof. We argue in spirit of the proof of Lemma A.2. Let u and v be the last essential 
vertices in P and Q, respectively. Then α(u) = α(tP ) = α(tQ) = α(v). Also β(u) < β(v)
(since P is lower than Q, and taking into account (A.2) and the fact that u, v are 
the heads of H-edges in P, Q, respectively). The condition on α(sP ) and α(sQ) imply 
that the discrepancy between w(P )w(Q) and w(Q)w(P ) can arise only due to swapping 
the vertices u, v (using reasonings as in the proof of Lemma A.1). Observe that w(P )
contains the term u, and w(Q) the term v. So the generators u, v contribute uv to 
w(P )w(Q), and vu to w(Q)w(P ). Now β(u) < β(v) implies uv = qvu, and the result 
follows. �
Lemma A.4. Let α(tP ) = α(sQ) and β(tP ) ≥ β(sQ). Then ϕ(P, Q) = q.

Proof. Let u be the last essential vertex in P and let v, z be the first and second essential 
vertices of Q, respectively (note that z exists because of 0 < α(tP ) = α(sQ) < α(tQ)). 
Then α(u) = α(tP ) = α(sQ) = α(v) < α(z). Also β(u) ≥ β(tP ) ≥ β(sQ) ≥ β(v) = β(z). 
Let Q′ and Q′′ be the parts of Q from sQ to z and from z to tQ, respectively. Then 
α(P ) ∩ α(Q′′) = ∅, implying ϕ(P, Q′′) = 1 (using Lemma A.1 when Q′′ is standard). 
Hence ϕ(P, Q) = ϕ(P, Q′).

To compute ϕ(P, Q′), consider three possible cases.
(a) Let β(u) > β(v). Then u, v form the unique pair of dependent essential vertices 

for P, Q′. Note that w(P ) contains the term u, and w(Q′) contains the term v. Since 
β(u) > β(v), we have uv = qvu, implying ϕ(P, Q′) = q.

(b) Let u = v and let u be the unique essential vertex of P (in other words, P is an 
H-path with sP ∈ R). Note that u = v and β(tP ) ≥ β(sQ) imply tP = u = v = sQ. Also 
α(u) < α(z) and β(u) = β(z); so u, z are H-dependent essential vertices for P, Q′ and 
uz = qzu. We have w(P ) = u and w(Q′) = uz (in view of u = v). Then uuz = uuz =
quzu implies ϕ(P, Q′) = q.

(c) Now let u = v and let y be the essential vertex of P preceding u. Then tP = u =
v = sQ, β(y) = β(u) = β(z), and α(y) < α(u) < α(z). Hence y, u, z are H-dependent, 
w(P ) contains yu, and w(Q′) = uz. We have

yuuz = yuuz = (quy)(qzu) = q2u(qzy)u = quzyu,

again obtaining ϕ(P, Q′) = q. �
Lemma A.5. Let α(tP ) = α(sQ) and β(tP ) < β(sQ). Then ϕ(P, Q) = q.

Proof. Let u be the last essential vertex of P , and v the first essential vertex of Q. 
Then α(u) = α(tP ) = α(sQ) = α(v), and β(tP ) < β(sQ) together with (A.2) im-
plies β(u) < β(v). Also w(P ) contains u and w(Q) contains v. Now uv = qvu implies 
ϕ(P, Q) = q. �
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A.2. Proof of Theorem 3.1

It can be conducted as a direct extension of the proof of a similar Lindström’s type 
result given by Casteels [1, Sect. 4] for Cauchon graphs. To make our description more 
self-contained, we outline the main ingredients of the proof, leaving the details where 
needed to the reader.

Let (I|J) ∈ Em,n, I = {i(1) < · · · < i(k)} and J = {j(1) < · · · < j(k)}. Recall 
that an (I|J)-flow in an SE-graph G (with m sources and n sinks) consists of pairwise 
disjoint paths P1, . . . , Pk from the source set RI = {ri(1), . . . , ri(k)} to the sink set CJ =
{cj(1), . . . , cj(k)}, and (because of the planarity of G) we may assume that each Pd begins 
at ri(d) and ends at cj(d). Besides, we are forced to deal with an arbitrary path system
P = (P1, . . . , Pk) in which for i = 1, . . . , k, Pd is a directed path in G beginning at ri(d)
and ending at cj(σ(d)), where σ(1), . . . , σ(k) are different, i.e., σ = σP is a permutation 
on [k]. (In particular, σP is identical if P is a flow.)

We naturally partition the set of all path systems for G and (I|J) into the set Φ(I|J) of 
(I|J)-flows and the rest Ψ(I|J) (consisting of those path systems that contain intersecting 
paths). The following property easily follows from the planarity of G (cf. [1, Lemma 4.2]):

(A.3) For any P = (P1, . . . , Pk) ∈ Ψ(I|J), there exist two consecutive intersecting paths 
Pd, Pd+1.

The q-sign of a permutation σ is defined by

sgnq(σ) := (−q)�(σ),

where �(σ) is the length of σ (see Sect. 2).
Now we start computing the q-minor [I|J ] of the matrix PathG with the following 

chain of equalities:

[I|J ] =
∑

σ∈Sk

sgnq(σ)
(∏k

d=1
PathG(i(d)|j(σ(d))

)

=
∑

σ∈Sk

sgnq(σ)
(∏k

d=1

(∑
(w(P ) : P ∈ ΦG(i(d)|j(σ(d))

))

=
∑

(sgnq(σP)w(P) : P ∈ Φ(I|J) ∪ Ψ(I|J))

=
∑

(w(P) : P ∈ Φ(I|J)) +
∑

(sgnq(σP)w(P) : P ∈ Ψ(I|J)).

Thus, we have to show that the second sum in the last line is zero. It will follow from 
the existence of an involution η : Ψ(I|J) → Ψ(I|J) without fixed points such that for 
each P ∈ Ψ(I|J),

sgnq(σP)w(P) = −sgnq(ση(P))w(η(P)). (A.4)
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To construct the desired η, consider P = (P1, . . . , Pk) ∈ Ψ(I|J), take the minimal i
such that Pi and Pi+1 meet, take the last common vertex v of these paths, represent Pi

as the concatenation K ◦ L, and Pi+1 as K ′ ◦ L′, so that tK = tK′ = sL = sL′ = v, and 
exchange the portions L, L′ of these paths, forming Qi := K ◦ L′ and Qi+1 := K ′ ◦ L. 
Then we assign η(P) to be obtained from P by replacing Pi, Pi+1 by Qi, Qi+1. It is 
routine to check that η is indeed an involution (with η(P) �= P) and that

�(ση(P)) = �(σP) + 1, (A.5)

assuming w.l.o.g. that σ(i) < σ(i + 1). On the other hand, applying to the paths 
K, L, K ′, L′ Lemmas A.2 and A.4, one can obtain

w(Pi)w(Pi+1) = w(K)w(L)w(K ′)w(L′) = qw(K)w(L)w(L′)w(K ′)

= q2w(K)w(L′)w(L)w(K ′) = qw(K)w(L′)w(K ′)w(L) = qw(Qi)w(Qi+1),

whence w(P) = qw(η(P)). This together with (A.5) gives

sgnq(σP)w(P) + sgnq(ση(P))w(η(P)) = (−q)�(σP)qw(η(P)) + (−q)�(σP)+1w(η(P)) = 0,

yielding (A.4), and the result follows. �
Appendix B. Proof of Theorem 4.4

Using notation as in the hypotheses of this theorem, we first consider the case when

(C): π = {f, g} is a C-couple in M(φ, φ′) with f < g and f ∈ J .

(Then f ∈ J◦ and g ∈ J•.) We have to prove that

w(φ)w(φ′) = qw(ψ)w(ψ′) (B.1)

The proof is given throughout Sects. B.1–B.5. The other possible cases in Theorem 4.4
will be discussed in Sect. B.6.

B.1. Snakes and links

Let Z be the exchange path determined by π (i.e., Z = P (π) in notation of Sect. 4). 
It connects the sinks cf and cg, which may be regarded as the first and last vertices of Z, 
respectively. Then Z is representable as a concatenation Z = Z1◦Z2◦Z3◦ . . .◦Zk−1◦Zk, 
where k is even, each Zi with i odd (even) is a directed path contained in φ (resp. φ′), 
and Zi stands for the path reversed to Zi. More precisely, let z0 := cf , zk := cg, and for 
i = 1, . . . , k− 1, let zi denote the common endvertex of Zi and Zi+1. Then each Zi with 
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Fig. 4. Here: the bends z1, . . . , z9 are marked by squares; the white and black snakes are drawn by thin and 
thick solid zigzag lines, respectively; the white links L1, . . . , L7 are drawn by short-dotted lines, and the 
black links M1, . . . , M6 by long-dotted lines.

i odd is a directed path from zi to zi−1 in 〈Eφ − Eφ′〉, while each Zi with i even is a 
directed path from zi−1 to zi in 〈Eφ′ − Eφ〉.

We refer to Zi with i odd (even) as a white (resp. black) snake.
Also we refer to the vertices z1, . . . , zk−1 as the bends of Z. A bend zi is called a peak

(a pit) if both path Zi, Zi+1 leave (resp. enter) zi; then z1, z3, . . . , zk−1 are the peaks, 
and z2, z4, . . . , zk−2 are the pits. Note that some peak zi may coincide with some pit zj ; 
in this case we say that zi, zj are twins.

The rests of flows φ and φ′ consist of directed paths that we call white and black links, 
respectively. More precisely, the white (black) links correspond to the connected compo-
nents of the subgraph φ (resp. φ′) from which the interiors of all snakes are removed. So 
a link connects either (a) a source and a sink (being a component of φ or φ′), or (b) a 
source and a pit, or (c) a peak and a sink, or (d) a peak and a pit. We say that a link is 
unbounded in case (a), semi-bounded in cases (b), (c), and bounded in case (d). Note that

(B.2) a bend zi occurs as an endvertex in exactly four paths among snakes and links, 
namely: either in two snakes and two links (of different colors), or in four snakes 
Zi, Zi+1, Zj , Zj+1 (when zi, zj are twins).

We denote the sets of snakes and links (for φ, φ′, π) by S and L, respectively; the corre-
sponding subsets of white and black elements of these sets are denoted as S◦, S•, L◦, L•. 
An example with k = 10 is drawn in Fig. 4.

The weight w(φ)w(φ′) of the double flow (φ, φ′) can be written as the corresponding 
ordered product of the weights of snakes and links; let N be the string (sequence) of 
snakes and links in this product. The weight of the double flow (ψ, ψ′) uses a string 
consisting of the same snakes and links but occurring in another order; we denote this 
string by N ∗.
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We say that two elements among snakes and links are invariant if they occur in the 
same order in N and N ∗, and permuting otherwise. In particular, two links of different 
colors are invariant, whereas two snakes of different colors are always permitting.

For example, observe that the string N for the example in Fig. 4 is viewed as

L1L2Z1L3Z3Z9L4L5Z5L6Z7L7M1Z2Z10M2Z4M3Z8M4M5Z6M6,

whereas N ∗ is viewed as

L1L2Z2Z10L3Z4L6Z8L4L5Z6L7M1Z1M2Z3Z9M4M5Z5M3Z7M6.

For A, B ∈ S∪L, we write A ≺ B (resp. A ≺∗ B) if A occurs in N (resp. in N ∗) earlier 
than B. We define ϕA,B = ϕB,A := 1 if A, B are invariant, and define ϕA,B = ϕB,A by 
the relation

w(A)w(B) = ϕA,Bw(B)w(A) (B.3)

if A, B are permuting and A ≺ B. Note that ϕA,B is defined somewhat differently than 
ϕ(P, Q) in Sect. A.1.

For A, B ∈ S ∪ L, we may use notation (A, B) when A, B are permuting and A ≺ B

(and usually write {A, B} when their orders by ≺ and ≺∗ are not important for us).
Our goal is to prove that in case (C),

∏
(ϕA,B : A,B ∈ S ∪ L) = q, (B.4)

whence (B.1) will immediately follow.
We first consider the non-degenerate case. This means the following restriction:

(B.5) all coordinates α(z1), . . . , α(zk−1), α(cj), j ∈ J ∪ J ′, are different.

The proof of (B.4) subject to (B.5) will consist of three stages I, II, III where we 
compute the total contribution from the pairs of links, the pairs of snakes, and the pairs 
consisting of one snake and one link, respectively. As a consequence, the following three 
results will be obtained (implying (B.4)).

Proposition B.1. In case (B.5), the product ϕI of the values ϕA,B over all links A, B ∈ L
is equal to 1.

Proposition B.2. In case (B.5), the product ϕII of the values ϕA,B over all snakes 
A,B ∈ S is equal to q.

Proposition B.3. In case (B.5), the product ϕIII of the values ϕA,B where one of A, B
is a snake and the other is a link is equal to 1.
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These propositions are proved in Sects. B.2–B.4. Sometimes it will be convenient for 
us to refer to a white (black) snake/link concerning φ, φ′, π as a φ-snake/link (resp. a 
φ′-snake/link), and similarly for ψ, ψ′, π.

B.2. Proof of Proposition B.1

Under the exchange operation for (φ, φ′) using Z, any φ-link becomes a ψ-link and any 
φ′-link becomes a ψ′-link. The white links occur in N earlier than the black links, and 
similarly for N ∗. Therefore, if A, B are permuting links, then they are of the same color. 
This implies that A ∩B = ∅. Also each endvertex of any link either is a bend or belongs 
to R∪C. Then (B.5) implies that the sets {α(sA), α(tA)} ∩R>0 and {α(sB), α(tB)} ∩R>0
are disjoint. Now Lemma A.1 gives ϕA,B = 1, and the proposition follows. �
B.3. Proof of Proposition B.2

Consider two snakes A = Zi and B = Zj , and let A ≺ B. If |i − j| > 1 then A ∩B = ∅
and, moreover, {α(sA), α(tA)} ∩ {α(sB), α(tB)} = ∅ (in view of (B.5) and since Z is 
simple). This gives ϕA,B = 1, by Lemma A.1.

Now let |i − j| = 1. Then A, B have different colors; hence A is white and B is black 
(in view of A ≺ B). So i is odd, and two cases are possible:

Case 1 : j = i + 1 and zi is a peak: zi = sA = sB ;
Case 2 : j = i − 1 and zi−1 is a pit: zi−1 = tA = tB .

Each of these cases falls into two subcases (using the term “lower” from Appendix A).

Subcase 1a: j = i + 1 and A is lower than B.
Subcase 1b: j = i + 1 and B is lower than A.
Subcase 2a: j = i − 1 and A is lower than B.
Subcase 2b: j = i − 1 and B is lower than A.

These subcases are illustrated in the picture:

Under the exchange operation using Z, any snake changes its color; so A, B are per-
muting. Applying to A, B Lemmas A.2 and A.3, we obtain ϕA,B = q in Subcases 1a, 2a, 
and ϕA,B = q in Subcases 1b, 2b.

It is convenient to associate with a bend z the number γ(z) which is equal to +1
if, for the corresponding pair A ∈ S◦ and B ∈ S• sharing z, A is lower than B (as in 
Subcases 1a, 2a), and equal to −1 otherwise (as in Subcases 1b, 2b). Define
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γZ :=
∑

(γ(z) : z a bend of Z). (B.6)

Then ϕII = qγZ . Thus, ϕII = q is equivalent to

γZ = 1. (B.7)

To show (B.7), we are forced to deal with a more general setting. More precisely, let 
us turn Z into simple cycle D by combining the directed path Z1 (from z1 to z0 = cf ) 
with the horizontal path from cf to cg (to create the latter, we formally add to G the 
horizontal edges (cj , cj+1) for j = f, . . . , g − 1). The resulting directed path Z̃1 from z1
to cg = zk is regarded as the new white snake replacing Z1. Then Z̃1 shares the end zk
with the black path Zk; so zk is a pit of D, and Z̃ is lower than Zk. Thus, compared 
with Z, the cycle D acquires an additional bend, namely, zk. We have γ(zk) = 1, implying 
γD = γZ + 1. Then (B.7) is equivalent to γD = 2.

On this way, we come to a new (more general) setting by considering an arbitrary 
simple (non-directed) cycle D rather than a special path Z. Moreover, instead of an 
SE-graph as before, we can work with a more general directed planar graph G in which 
any edge e = (u, v) points arbitrarily within the south-east angle, i.e., satisfies α(u) ≤
α(v) and β(u) ≥ β(v). We call G of this sort a weak SE-graph.

So now we are given a colored simple cycle D in G, i.e., D is representable as a 
concatenation D1 ◦ D2 ◦ . . . ◦ Dk−1 ◦ Dk, where each Di is a directed path in G; a 
path (“snake”) Di with i odd (even) is colored white (resp. black). Let d1, . . . , dk be 
the sequence of bends in D, i.e., di is a common endvertex of Di and Di+1 (letting 
Dk+1 := D1). We assume that D is oriented according to the direction of Di with i even. 
When this orientation is clockwise (counterclockwise) around the bounded region OD of 
the plane surrounded by D, we say that D is clockwise (resp. counterclockwise). Then 
the cycle arising from the above path Z is clockwise.

Our goal is to prove the following

Lemma B.4. Let D be a colored simple cycle in a weak SE-graph G. If D is clockwise 
then γD = 2. If D is counterclockwise then γD = −2.

(Note that this need not hold for a self-intersecting colored closed curve D.)

Proof. We use induction on the number η(D) of bends in D. It suffices to consider the 
case when D is clockwise (since for a counterclockwise cycle D′ = D

′
1◦D′

2◦. . .◦D
′
k−1◦D′

k, 
the reversed cycle D

′ = D
′
k ◦D′

k−1 ◦ . . . ◦D
′
2 ◦D′

1 is clockwise, and it is easy to see that 
γD′ = −γD′).

W.l.o.g., one may assume that the coordinates β(di) of all bends di are different (as 
we can make, if needed, a due small perturbation of D, which does not affect γ).

If η(D) = 2, then D = D1 ◦D2, and the clockwise orientation of D implies that the 
path D1 is lower than D2. So γ(d1) = γ(d2) = 1, implying γD = 2.
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Now assume that η(D) > 2. Then at least one of the following is true:
(a) there exists a peak di such that the horizontal line through di meets D on the left 

of di, i.e., there is a point x in D with α(x) < α(di) and β(x) = β(di);
(b) there exists a pit di such that the horizontal line through di meets D on the right 

of di.
(This can be seen as follows. Let dj be a peak with β(dj) maximum. Then the clockwise 

orientation of D implies that Dj+1 lies on the right from Dj. If β(dj−1) < β(dj+1), then, 
by easy topological reasonings, either the pit dj+1 is as required in (b) (when dj+2 is on 
the right from Dj+1), or the peak dj+2 is as required in (a) (when dj+2 is on the left 
from Dj+1), or both. And if β(dj−1) > β(dj+1), then dj−1 is as in (b).)

We may assume that case (a) takes place (as case (b) is symmetric to (a), in a sense). 
Choose the point x as in (a) with α(x) maximum and draw the horizontal line-segment 
L connecting the points x and di. Then the interior of L does not meet D. Two cases 
are possible:

(I) Int(L) is contained in the region OD; or
(O) Int(L) is outside OD.
Since x cannot be a bend of D (in view of β(x) = β(di) and β(di) �= β(di′) for any 

i′ �= i), x is an interior point of some snake Dj ; let D′
j and D′′

j be the parts of Dj from 
sDj

to x and from x to tDj
, respectively. Using the facts that D is oriented clockwise and 

this orientation is agreeable with the forward (backward) direction of each black (resp. 
white) snake, one can realize that

(B.8) (a) in case (I), Dj is white and γ(di) = −1 (i.e., for the white snake Di and black 
snake Di+1 that share the peak di, Di+1 is lower than Di); and (b) in case (O), 
Dj is black and γ(di) = 1 (i.e., Di is lower than Di+1).

See the picture (where the orientation of D in each case is indicated):

The points x and di split the cycle (closed curve) D into two parts ζ ′, ζ ′′, where the 
former contains D′

j and the latter does D′′
j .

We first examine case (I). The line L divides the region OD into two parts O′ and O′′

lying above and below L, respectively. Orienting the curve ζ ′ from x to di and adding to 
it the segment L oriented from di to x, we obtain closed curve D′ surrounding O′. Note 
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that D′ is oriented clockwise around O′. We combine the paths D′
j, L (from x to di) 

and Di into one directed path A (going from sD′
j

= sDj
= dj to tDi

= di−1). Then D′

turns into a correctly colored simple cycle in which A is regarded as a white snake and 
the white/black snakes structure of the rest preserves (cf. (B.8)(a)).

In its turn, the curve ζ ′′ oriented from di to x plus the segment L (oriented from x
to di) form closed curve D′′ that surrounds O′′ and is oriented clockwise as well. We 
combine L and Di+1 into one black snake B (going from x to di+1). Then D′′ becomes 
a correctly colored cycle, and x is a peak in it. (The point x becomes a vertex of G.) We 
have γ(x) = 1 (since the white D′′

j is lower than the black B).
The creation of D′, D′′ from D in case (I) is illustrated in the picture:

We observe that, compared with D, the pair {D′, D′′} misses the bend di (with γ(di) =
−1) but acquires the bend x (with γ(x) = 1). Then

η(D) = η(D′) + η(D′′), (B.9)

implying η(D′), η(D′′) < η(D). Therefore, we can apply induction. This gives γD′ =
γD′′ = 2. Now, by reasonings above,

γD = γD′ + γD′′ + γ(di) − γ(x) = 2 + 2 − 1 − 1 = 2,

as required.
Next we examine case (O). The curve ζ ′ (containing D′

j) passes through the black 
snake Di+1, and the curve ζ ′′ (containing D′′

j ) through the white snake Di. Adding to 
each of ζ ′, ζ ′′ a copy of L, we obtain closed curves D′, D′′, respectively, each inheriting 
the orientation of D. They become correctly colored simple cycles when we combine 
the paths D′

j , L, Di+1 into one black snake (from dj−1 to di+1) in D′, and combine the 
paths L, Di into one white snake (from the new bend x to di) in D′′. Let O′, O′′ be the 
bounded regions in the plane surrounded by D′, D′′, respectively. Two cases are possible 
(as illustrated in the picture below):

(O1) O′ includes O′′ (and OD);
(O2) O′′ includes O′ (and OD).
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Observe that in case (O1), D′ is clockwise and D′′ is counterclockwise, whereas in 
case (O2) the behavior is converse. Also γ(di) = 1 and γ(x) = −1. Like case (I), rela-
tion (B.9) is true and we can apply induction. Then in case (O1), we have γD′ = 2 and 
γD′′ = −2, whence

γD = γD′ + γD′′ + γ(di) − γ(x) = 2 − 2 + 1 − (−1) = 2.

And in case (O2), we have γD′ = −2 and γD′′ = 2, whence

γD = γD′ + γD′′ + γ(di) − γ(x) = −2 + 2 + 1 − (−1) = 2.

Thus, in all cases we obtain γD = 2, yielding the lemma. �
This completes the proof of Proposition B.2. �

B.4. Proof of Proposition B.3

Consider a link L. By Lemma A.1, for any snake P , ϕL,P �= 1 is possible only if L
and P have a common endvertex v. Note that v /∈ R ∪ C.

First assume that sL /∈ R. Then there are exactly two snakes containing sL, namely, 
a white snake A and a black snake B such that sL = tA = tB . If L is white, then A and 
L belong to the same path in φ; therefore, A ≺ L ≺ B. Under the exchange operation 
A becomes black, B becomes white, and L continues to be white. Then B, L belong to 
the same path in ψ; this implies B ≺∗ L ≺∗ A. So both pairs (A, L) and (L, B) are 
permuting. Lemma A.4 gives ϕA,L = q and ϕL,B = q, whence ϕA,LϕL,B = 1.

Now let L be black. Then A ≺ B ≺ L and B ≺∗ A ≺∗ L. So both pairs {A, L} and 
{B, L} are invariant, whence ϕA,L = ϕB,L = 1.

Next we assume that tL /∈ C. Then there are exactly two snakes, a white snake A′

and a black snake B′, that contain tL, namely: tL = sA′ = sB′ . If L is white, then 
L ≺ A′ ≺ B′ and L ≺∗ B′ ≺∗ A′. Therefore, {L, A} and {L, B′} are invariant, yielding 
ϕL,A′ = ϕL,B′ = 1. And if L is black, then A′ ≺ L ≺ B′ and B′ ≺∗ L ≺∗ A′. So both 
(A′, L) and (L, B′) are permuting, and we obtain from Lemma A.4 that ϕA′,L = q and 
ϕL,B′ = q, yielding ϕA′,LϕL,B′ = 1.

These reasonings prove the proposition. �
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B.5. Degenerate case

We have proved relation (B.4) in a non-degenerate case, i.e., subject to (B.5), and 
now our goal is to prove (B.4) when the set

Z := {z1, . . . , zk−1} ∪ {cj : j ∈ J ∪ J ′}

contains distinct elements u, v with α(u) = α(v). We say that such u, v form a defect pair. 
A special defect pair is formed by twins zi, zj (i.e., bends satisfying i �= j, α(zi) = α(zj)
and β(zi) = β(zj)). Another special defect pair is of the form {sP , tP } when P is a 
vertical snake or link, i.e., α(sP ) = α(tP ).

We will show (B.4) by induction on the number of defect pairs.
Let a be the minimum number such that the set X := {u ∈ Z : α(u) = a} contains a 

defect pair. We denote the elements of X as v0, v1, . . . , vr, where for each i, vi−1 is higher
than vi, which means that either β(vi−1) > β(vi), or vi−1, vi are twins and vi−1 is a pit 
(while vi is a peak) in the exchange path Z. The highest element v0 is also denoted by u.

In order to conduct induction, we deform the graph G within a sufficiently narrow 
vertical strip S = [a − ε, a + ε] ×R (where 0 < ε < min{|α(z) −a| : z ∈ Z−X}) to get rid 
of the defect pairs involving u in such a way that the configuration of snakes/links in the 
arising graph G̃ remains “equivalent” to the initial one. More precisely, we shift the bend 
u at a small distance (< ε) to the left, keeping the remaining elements of Z; then the 
bend u′ arising in place of u satisfies α(u′) < α(u) and β(u′) = β(u). The snakes/links 
with an endvertex at u are transformed accordingly; see the picture for an example.

Let Π and Π̃ denote the L.H.S. value in (B.4) for the initial and deformed configura-
tions, respectively. Under the deformation, the number of defect pairs becomes smaller, 
so we may assume by induction that Π̃ = q. Thus, we have to prove that

Π = Π̃. (B.10)

We need some notation and conventions. For v ∈ X, the set of (initial) snakes and 
links with an endvertex at v is denoted by Pv. For U ⊆ X, PU denotes ∪(Pv : v ∈ U). 
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Corresponding objects for the deformed graph G̃ are usually denoted with tildes as well; 
e.g.: for a path P in G, its image in G̃ is denoted by P̃ ; the image of Pv is denoted by 
P̃v (or P̃ṽ), and so on. The set of standard paths in PU (resp. P̃U ) is denoted by Pst

U

(resp. P̃st
U ). Define

Πu,X−u :=
∏

(ϕP,Q : P ∈ Pu, Q ∈ PX−u). (B.11)

A similar product for G̃ (i.e., with P̃u instead of Pu) is denoted by Π̃u,X−u.
Note that (B.10) is equivalent to the equality

Πu,X−u = Π̃u,X−u. (B.12)

This follows from the fact that for any paths P, Q ∈ S ∪ L different from those involved 
in (B.11), the values ϕP,Q and ϕP̃ ,Q̃ are equal. (The only nontrivial case arises when 

P, Q ∈ Pu and Q is vertical (so Q̃ becomes standard). Then tQ = v1. Hence Q ∈ PX−u, 
the pair P, Q is involved in Πu,X−u, and the pair P̃ , Q̃ in Π̃u,X−u.)

To simplify our description technically, one trick will be of use. Suppose that for 
each standard path P ∈ Pst

X , we choose a point (not necessarily a vertex) vP ∈ Int(P )
in such a way that α(sP ) < α(vP ) < α(tP ), and the coordinates α(vP ) for all such 
paths P are different. Then vP splits P into two subpaths P ′, P ′′, where we denote 
by P ′ the subpath connecting sP and vP when α(sP ) = a, and connecting vP and tP
when α(tP ) = a, while P ′′ is the rest. This provides the following property: for any 
P, Q ∈ Pst

X , ϕP ′,Q′′ = ϕQ′,P ′′ = 1 (in view of Lemma A.1). Hence ϕP,Q = ϕP ′,Q′ϕP ′′,Q′′ . 
Also P ′′ = P̃ ′′. It follows that (B.12) would be equivalent to the equality

∏
(ϕP ′,Q′ : P ∈ Pu, Q ∈ PX−u) =

∏
(ϕP̃ ′,Q̃′ : P ∈ Pu, Q ∈ PX−u).

In light of these observations, it suffices to prove (B.12) in the special case when

(B.13) any P ∈ Pu and Q ∈ PX−u satisfy {α(sP ), α(tP )} ∩ {α(sQ), α(tQ)} = {a}.

For i = 0, . . . , r, we denote by Ai, Bi, Ki, Li, respectively, the white snake, black snake, 
white link, and black link that have an endvertex at vi. Note that if vi−1, vi are twins, 
then the fact that vi−1 is a pit implies that Ai−1, Bi−1 are the snakes entering vi−1, and 
Ai, Bi are the snakes leaving vi; for convenience, we formally define Ki−1, Ki, Li−1, Li

to be the same trivial path consisting of the single vertex vi. Note that if vr ∈ C, then 
some paths among Ar, Br, Kr, Lr vanish (e.g., both snakes and one link).

When vertices vi and vi+1 are connected by a (vertical) path in S ∪L, we denote such 
a path by Pi and say that the vertex vi is open; otherwise vi is said to be closed. Note 
that vi, vi+1 can be connected by either one snake, or one link, or two links (namely, 
Ki, Li); in the latter case, Pi is chosen arbitrarily among them. In particular, if vi, vi+1
are twins, then vi is open and the role of Pi is played by any of the trivial links Ki, Li. 
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Obviously, in a sequence of vertical paths Pi, Pi+1, . . . , Pj , the snakes and links alternate. 
One can see that if Pi is a white snake, i.e., Pi = Ai = Ai+1 =: A, then both black snakes 
Bi, Bi+1 are standard, and we have vi = sBi

and vi+1 = tBi+1 . See the left fragment of 
the picture:

Symmetrically, if Pi is a black snake: Bi = Bi+1 =: B, then the white snakes Ai, Ai+1
are standard, vi = sAi

and vi+1 = tAi+1 ; see the right fragment of the above picture.
In its turn, if Pi is a nontrivial white link, i.e., Pi = Ki = Ki+1, then two cases 

are possible: either the black links Li, Li+1 are standard, vi = sLi
and vi+1 = tLi+1 , or 

Li = Li+1 = Pi. And if Pi is a black link, the behavior is symmetric. See the picture:

Now we are ready to start proving equality (B.12). Note that the deformation of G
preserves both orders ≺ and ≺∗.

We say that paths P, P ′ ∈ Pst
X are separated (from each other) if they are not contained 

in the same path of any of the flows φ, φ′, ψ, ψ′. The following observation will be of use:

(B.14) if P, P ′ ∈ Pst
X have the same color (concerning φ, φ′), are separated, and P ′ is 

lower than P , then P ′ ≺ P ; and similarly w.r.t. ψ, ψ′, ≺∗.

Indeed, suppose that P, P ′ are white, and let Q and Q′ be the components of the flow φ
containing P and P ′, respectively. Since P, P ′ are separated, the paths Q, Q′ are different. 
Moreover, the fact that P ′ is lower than P implies that Q′ is lower than Q (since Q, Q′

are disjoint). Then Q′ precedes Q in φ, yielding P ′ ≺ P , as required. When P, P ′ concern 
one of φ′, ψ, ψ′, the argument is similar.

In what follows we will use the abbreviated notation A, B, K, L for the paths 
A0, B0, K0, L0 (respectively) having an endvertex at u = v0. Also for R ∈ PX−u, we 
denote the product ϕA,RϕB,RϕK,RϕL,R by Π(R), and denote by Π̃(R) a similar prod-
uct for the paths Ã, B̃, K̃, L̃, R̃ (in G̃). One can see that Πu,X−u (resp. Π̃u,X−u) is equal 
to the product of the values Π(R) (resp. Π̃(R)) over R ∈ PX−u.

To show (B.12), we examine several cases. First we consider

Case (R1): the vertex u is closed; in other words, all paths A, B, K, L are standard.
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Proposition B.5. In case (R1), Π(R) = Π̃(R) = 1 holds for any R ∈ PX−u. As a 
consequence, (B.12) is valid.

Proof. Let R ∈ Pvp for p ≥ 1. Observe that (B.13) together with the fact that the 
vertex u moves to the left under the deformation G 	→ G̃ implies {α(sP̃ ), α(tP̃ )} ∩
{α(sR̃), α(tR̃)} = ∅ for any P ∈ Pu. This gives Π̃(R) = 1, by Lemma A.1.

To show Π(R) = 1, assume that R is standard (otherwise this equality is trivial). 
Since u is closed, A, B, K, L are separated from R.

Note that A, B, K, L, R are as follows: either (a) tA = tB = sK = sL or (b) sA =
sB = tK = tL, and either (c) α(sR) = a or (d) α(tR) = a. Let us examine the possible 
cases when the combination of (a) and (d) takes place.

1) Let R be a white link, i.e., R = Kp. Since R is white and lower than A, B, K, L, we 
have R ≺ A, B, K, L (cf. (B.14)). The exchange operation preserves the color of R. Then 
R ≺∗ A, B, K, L. Therefore, all pairs {P, R} with P ∈ Pu are invariant, and Π(R) = 1
is trivial.

2) Let R = Lp. Since R is black, we have A, K ≺ R ≺ B, L. The exchange operation 
changes the colors of A, B and preserves the ones of K, L, R. Hence B, K ≺∗ R ≺∗ A, L, 
giving the permuting pairs (A, R) and (R, B). Lemma A.3 applied to these pairs implies 
ϕA,R = q and ϕR,B = q. Then Π(R) = ϕA,RϕR,B = qq = 1.

3) Let R = Ap. Then R ≺ A, B, K, L and B, K ≺∗ R ≺∗ A, L (since the exchange 
operation changes the colors of A, B, R). This gives the permuting pairs (R, B) and 
(R, K). Then ϕR,B = q, by Lemma A.3, and ϕR,K = q by Lemma A.5, and we obtain 
Π(R) = ϕR,BϕR,K = 1.

4) Let R = Bp. We have A, K ≺ R ≺ B, L and R ≺∗ A, B, K, L, giving the permuting 
pairs (A, R) and (K, R). Then ϕA,R = q, by Lemma A.3, and ϕK,R = q, by Lemma A.5, 
whence Π(R) = 1.

The other combinations, namely, (a) and (c), (b) and (c), (b) and (d), are examined 
in a similar way (by appealing to appropriate lemmas from Appendix A), and we leave 
this to the reader as an exercise. �

Next we consider

Case (R2): u is open; in other words, at least one path among A, B, K, L is vertical 
(going from u = v0 to v1).

It falls into several subcases examined in propositions below.

Proposition B.6. In case (R2), let R ∈ Pst
X−u be separated from A, B, K, L. Then Π(R) =

Π̃(R).

Proof. We first assume that u and v1 are connected by exactly one path P0 (which is 
one of A, B, K, L) and give a reduction to the previous proposition, as follows.

Suppose that we replace P0 by a standard path P ′ of the same color and type (snake or 
link) such that sP ′ = u (and α(tP ′) > a). Then the set P ′

u := ({A, B, K, L} −{P0}) ∪{P ′}
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becomes as in case (R1), and by Proposition B.5, the corresponding product Π ′(R) of 
values ϕR,Q over Q ∈ P ′

u is equal to 1. (This relies on the fact that R is separated from 
A, B, K, L.)

Compare the effects from P ′ and from P̃0. These paths have the same color and type, 
and both are separated from, and higher than R. Also α(sP ′) = α(tP̃0

) = a. Then using 
appropriate lemmas from Appendix A, one can conclude that {ϕR,P ′ , ϕR,P̃0

} = {q, q}. 
Therefore,

Π̃(R) = ϕR,P̃0
= Π ′(R)ϕ−1

R,P ′ = Π(R).

Now let u and v1 be connected by two paths, namely, by K, L. We again can appeal to 
Proposition B.5. Consider P ′′

u := {A, B, K ′′, L′′}, where K ′′, L′′ are standard links (white 
and black, respectively) with sK′′ = sL′′ = u. Then Π ′′(R) :=

∏
(ϕR,P : P ∈ P ′′

u ) = 1
and {ϕR,K′′ , ϕ

R,K̃
} = {ϕR,L′′ , ϕR,L̃} = {q, q}. We obtain

Π̃(R) = ϕ
R,K̃

ϕR,L̃ = Π ′′(R)ϕ−1
R,K′′ϕ

−1
R,L′′ = ϕR,AϕR,B = Π(R),

as required. �
Proposition B.7. In case (R2), let R be a standard path in Pvp with p ≥ 1. Let R be not 
separated from at least one of A, B, K, L. Then Π(R) = Π̃(R).

Proof. We first assume that P0 is the unique vertical path connecting u and v1 (in 
particular, u and v1 are not twins). Then R is not separated from P0.

Suppose that P0 and R are contained in the same path of the flow φ; equivalently, 
both P0, R are white and P0 ≺ R. Then neither ψ nor ψ′ has a path containing both 
P0, R (this is easy to conclude from the fact that one of R and Pp−1 is a snake and the 
other is a link). Consider four possible cases for P0, R.

(a) Let both P0, R be links, i.e., P0 = K and R = Kp. Then A, K ≺ Kp ≺ B, L and 
Kp ≺∗ B, K, A, L (since K ≺∗ Kp is impossible by the above observation). This gives 
the permuting pairs (A, Kp) and (K̃, Kp), yielding ϕA,Kp

= ϕ
K̃,Kp

.
(b) Let P0 = K and R = Ap. Then A, K ≺ Ap ≺ B, L and B, K ≺∗ Ap ≺∗ A, L. This 

gives the permuting pairs (A, Ap) and (Ap, B), yielding ϕA,Ap
ϕÃp,B

= 1 = ϕ
K̃,Ap

.
(c) Let P0 = A and R = Kp. Then K, A ≺ Kp ≺ L, B and Kp ≺∗ K, B, L, A. This 

gives the permuting pairs (K, Kp) and (Ã, Kp), yielding ϕK,Kp
= ϕÃ,Kp

.
(d) Let P0 = A and R = Ap. Then K, A ≺ Ap ≺ L, B and K, B ≺∗ Ap ≺∗ L, A. This 

gives the permuting pairs (Ã, Ap) and (Ap, B), yielding ϕÃ,Ap
= ϕAp,B .

In all cases, we obtain Π(R) = Π̃(R).
When P0, R are contained in the same path in φ′ (i.e., P0, R are black and P0 ≺ R), 

we argue in a similar way. The cases with P0, R contained in the same path of ψ or ψ′

are symmetric.
A similar analysis is applicable (yielding Π(R) = Π̃(R)) when u and v1 are connected 

by two vertical paths (namely, K, L) and exactly one relation among K ≺ R, L ≺ R, 
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K ≺∗ R and L ≺∗ R takes place (equivalently: either K, R are separated or L, R are 
separated, not both).

Finally, let u and v1 be connected by both K, L, and assume that K, R are not 
separated, and L, R are not separated as well. An important special case is when p = 1
and u, v1 are twins. From the assumption it easily follows that R is a snake. If R is the 
white snake Ap, then we have A, K ≺ Ap ≺ B, L and B, K, A, L ≺∗ Ap. This gives the 
permuting pairs (Ap, B) and (Ap, L̃), yielding ϕAp,B = ϕAp,L̃

(since α(tB) = α(tL̃)). The 

case with R = Bp is symmetric. In both cases, Π(R) = Π̃(R). �
Proposition B.8. Let R = P0 be the unique vertical path connecting u and v1. Then 
Π(R) = Π̃(R) = 1.

Proof. The equality Π(R) = 1 is trivial. To see Π̃(R) = 1, consider possible cases for R. 
If R = K, then Ã ≺ K̃ ≺ B̃, L̃ and B̃ ≺∗ K̃ ≺∗ Ã, L̃, giving the permuting pairs (Ã, K̃)
and (K̃, B̃) (note that tÃ = tB̃ = s

K̃
= ũ). If R = L, then Ã, K̃, B̃ ≺ L̃ and B̃, K̃, Ã ≺∗ L̃; 

so all pairs involving L̃ are invariant. If R = A, then K̃ ≺ Ã ≺ L̃, B̃ and K̃, B̃, L̃ ≺∗ Ã, 
giving the permuting pairs (Ã, L̃) and (Ã, B̃) (note that sÃ = sB̃ = tL̃ = ũ). And the 
case R = B is symmetric to the previous one.

In all cases, using appropriate lemmas from Appendix A (and relying on the fact that 
all paths Ã, B̃, K̃, L̃ are standard), one can conclude that Π̃(R) = 1. �
Proposition B.9. Let both K, L be vertical. Then Π(K)Π(L) = Π̃(K)Π̃(L) = 1.

Proof. The equality Π(K)Π(L) = 1 is trivial. To see Π̃(K)Π̃(L) = 1, observe that 
Ã ≺ K̃ ≺ B̃ ≺ L̃ and B̃ ≺∗ K̃ ≺∗ Ã ≺∗ L̃. This gives the permuting pairs (Ã, K̃) and 
(K̃, B̃). By Lemma A.4, ϕ

Ã,K̃
= q and ϕ

K̃,B̃
= q, and the result follows. �

Taken together, Propositions B.6–B.9 embrace all possibilities in case (R2). Adding 
to them Proposition B.5 concerning case (R1), we obtain the desired relation (B.12) in 
a degenerate case.

This completes the proof of Theorem 4.4 in case (C), namely, relation (B.1). �
B.6. Other cases

Let (I|J), (I ′|J ′), φ, φ′, ψ, ψ′ and π = {f, g} be as in the hypotheses of Theorem 4.4. 
We have proved this theorem in case (C), i.e., when π is a C-couple with f < g and f ∈ J

(see the beginning of Appendix B). In other words, the exchange path Z = P (π), used 
to transform the initial double flow (φ, φ′) into the new double flow (ψ, ψ′), connects the 
sinks cf and cg covered by the “white flow” φ and the “black flow” φ′, respectively.

The other possible cases in the theorem are as follows:

(C1) π is a C-couple with f < g and f ∈ J ′;
(C2) π is an R-couple with f < g and f ∈ I;
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(C3) π is an R-couple with f < g and f ∈ I ′;
(C4) π is an RC-couple with f ∈ I and g ∈ J ;
(C5) π is an RC-couple with f ∈ I ′ and g ∈ J ′.

Case (C1) is symmetric to (C). This means that if double flows (φ, φ′) and (ψ, ψ′) are 
obtained from each other by applying the exchange operation using π (which changes 
the “colors” of both f and g), and if one double flow is subject to (C), then the other is 
subject to (C1). Rewriting w(φ)w(φ′) = qw(ψ)w(ψ′) as w(ψ)w(ψ′) = q−1w(φ)w(φ′), we 
just obtain the required equality in case (C1) (where (ψ, ψ′) and (φ, φ′) play the roles of 
the initial and updated double flows, respectively).

For similar reasons, case (C3) is symmetric to (C2), and (C5) is symmetric to (C4). 
So it suffices to establish the desired equalities merely in cases (C2) and (C4).

To do this, we appeal to reasonings similar to those in Sects. B.2–B.5. More precisely, 
one can check that the descriptions in Sects. B.2 and B.4 (concerning link-link and 
snake-link pairs in N ) remain applicable and Propositions B.1 and B.3 are directly 
extended to cases (C2) and (C4). The method of getting rid of degeneracies developed 
in Sect. B.5 does work, without any troubles, for (C2) and (C4) as well.

As to the method in Sect. B.3 (concerning snake-snake pairs in case (C)), it should 
be modified as follows. We use terminology and notation from Sects. B.1 and B.3 and 
appeal to Lemma B.4.

When dealing with case (C2), we represent the exchange path Z = P (π) as a con-
catenation Z1 ◦ Z2 ◦ Z3 ◦ · · · ◦ Zk, where each Zi with i odd (even) is a snake contained 
in the black flow φ′ (resp. the white flow φ). Then Z1 begins at the source rg and Zk

begins at the source rf . An example with k = 6 is illustrated in the left fragment of the 
picture:

The common vertex (bend) of Zi and Zi+1 is denoted by zi. As before, we associate 
with a bend z the number γ(z) (equal to 1 if, in the pair of snakes sharing z, the white 
snake is lower that the black one, and −1 otherwise), and define γZ as in (B.6). We turn 
Z into simple cycle D by combining the directed path Zk (from rf to zk−1) with the 
vertical path from rg to rf , which is formally added to G. (In the above picture, this 
path is drawn by a dotted line.) Then, compared with Z, the cycle D has an additional 
bend, namely, rg. Since the extended white path Z̃k is lower than the black path Z1, we 
have γ(rg) = 1, and therefore γD = γZ + 1.
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One can see that the cycle D is oriented clockwise (where, as before, the orientation of 
D is agreeable with that of black snakes). So γD = 2, by Lemma B.4, implying γZ = 1. 
This is equivalent to the “snake-snake relation” ϕII = q, and as a consequence, we obtain 
the desired equality

w(φ)w(φ′) = qw(ψ)w(ψ′).

Finally, in case (C4), we represent the exchange path Z as the corresponding con-
catenation Z1 ◦ Z2 ◦ Z3 ◦ · · · ◦ Zk−1 ◦ Zk (with k odd), where the first white snake Z1
ends at the sink cg and the last white snake Zk begins at the source rf . See the right 
fragment of the above picture where k = 5. We turn Z into simple cycle D by adding a 
new “black snake” Zk+1 beginning at rf and ending at cg (it is formed by the vertical 
path from rf to (0, 0), followed by the horizontal path from (0, 0) to cg; see the above 
picture). Compared with Z, the cycle D has two additional bends, namely, rf and cg. 
Since the black snake Zk+1 is lower than each of Z1, Zk, we have γ(rf ) = γ(cg) = −1, 
whence γD = γZ − 2. Note that the cycle D is oriented counterclockwise. Therefore, 
γD = −2, by Lemma B.4, implying γZ = 0. As a result, we obtain the desired equality 
w(φ)w(φ′) = w(ψ)w(ψ′).

This completes the proof of Theorem 4.4. �
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