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Cubillages on cyclic zonotopes, membranes,

and higher separation

Vladimir I. Danilov∗ Alexander V. Karzanov† Gleb A. Koshevoy‡

Abstract. We study certain structural properties of fine zonotopal tilings,
or cubillages, on cyclic zonotopes Z(n, d) of an arbitrary dimension d and
their relations to (d − 1)-separated collections of subsets of a set {1, 2, . . . , n}.
(Collections of this sort are well known as strongly separated ones when d = 2,
and as chord separated ones when d = 3.)
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chord separated sets
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1 Introduction

We consider a generalization of the notions of strongly separated and chord separated

set-systems. Let n be a positive integer and denote the set {1, 2, . . . , n} by [n].

Definition. Let r ∈ [n − 1]. Two sets A,B ⊆ [n] are called r-separated (from each
other) if there is no sequence i0 < i1 < · · · < ir+1 of elements of [n] such that

the elements with even indices (namely, i0, i2, . . .) and the elements with odd indices
(i1, i3, . . .) belong to different sets among A − B and B − A (where A′ − B′ denotes

the set difference {i : A′ ∋ i /∈ B′}). In other words, one can choose r′ ≤ r integers
(“separating points”) a1 ≤ a2 ≤ · · · ≤ ar′ in [n] such that the intervals [ai, ai+1] with

i even cover one of A − B and B − A, while the ones with i odd cover the other of

these sets, where ar′+1 := n and [a, b] denotes {a, a+1, . . . , b}. Accordingly, a collection
(set-system) A ⊆ 2[n] is called r-separated if any two of its members are such.

We denote the set of all inclusion-wise maximal r-separated collections A in 2[n]

as Sn,r+1, and the maximal size |A| of such an A by sn,r+1 (for technical reasons, we
prefer to use the subscript pair (n, r + 1) rather than (n, r)). When all collections in

Sn,r+1 are of the same size, Sn,r+1 is said to be pure.
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In particular, Sn,n consists of the unique collection 2[n] (since any two subsets of [n]
are (n− 1)-separated), giving the simplest purity case.

The concept of 1-separation was introduced, under the name of strong separation,

by Leclerc and Zelevinsky [5] who proved the important fact that

(1.1) for any n ≥ 2, the set Sn,2 is pure (and sn,2 equals
(
n

0

)
+
(
n

1

)
+
(
n

2

)
= 1

2
n(n+1)+1).

Recently an analogous purity result on 2-separation was shown by Galashin [3]:

(1.2) for any n ≥ 3, the set Sn,3 is pure (and sn,3 =
(
n

0

)
+
(
n

1

)
+
(
n

2

)
+
(
n

3

)
).

(In [3], 2-separated sets A,B ⊆ [n] are called chord separated, which is justified by

the observation that if n points 1, 2, . . . , n are disposed on a circumference O, in this
order cyclically, then there is a chord to O separating A− B from B − A.)

However, a nice purity behavior as above for r-separated set-systems with r = 1, 2
is not extended in general to larger r’s, as it follows from profound results on oriented

matroids due to Galashin and Postnikov [4]. Being specified to r-separated set-systems,
the following property is obtained.

Theorem 1.1 [4] Sn,r+1 is pure if and only if min{r, n− r} ≤ 2.

It should be noted that the proof given in [4] is rather sophisticated and long (even
if one extracts merely those arguments that directly concern the sets Sn,r+1), and one

purpose of this paper is to present a shorter and more transparent proof of Theorem 1.1.

In fact, the content of this paper is wider. In particular, we are going to demonstrate
representable cases of extendable and non-extendable set-systems. Here we say that

A ⊆ 2[n] is (n, r+1)-extendable if there exists a maximal by size r-separated collection
in 2[n] including A. (So Sn,r+1 is pure if and only if any r-separated set-system in 2[n]

is (n, r + 1)-extendable.)

Our study of separated set-systems is based on a geometric approach whose

theoretical grounds were originated in the classical work by Manin and Schechtman [6]
where higher Bruhat orders, generalizing weak Bruhat ones, were introduced and well

studied. (Recall that the higher Bruhat order for (n, d) compares certain (so-called
“packet admissible”) total orders on the set

(
[n]
d

)
of d-elements subsets of [n], and it turns

into the weak one when d = 1, which compares permutations on [n].) Subsequently
Voevodskij and Kapranov [7] and Ziegler [8] gave nice geometric interpretations and

established additional important results.

Based on these sources, we deal with a cyclic zonotope Z = Z(n, d), that is the
Minkowski sum of n segments in R

d forming a cyclic configuration, and consider a fine

zonotopal tiling, that is a subdivision Q of Z into parallelotopes; we call it a cubillage for
short. The vertices of Q are associated, in a natural way, with subsets of [n], forming a

collection Sp(Q) ⊆ 2[n], called the spectrum of Q. In the special case d = 2, Q is viewed

as a rhombus tiling on a zonogon, and it is well known due to [5] that the spectra
of these are exactly the maximal strongly separated set-systems in 2[n]. Similarly, the

spectra of cubillages on Z(n, 3) are exactly the maximal chord separated set-systems in
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2[n], as is shown in [3]. It turned out that this phenomenon is extended to an arbitrary
d: the cubillages Q on Z(n, d) are bijective to the maximal by size (d − 1)-separated

set-systems S in 2[n], with the equality Sp(Q) = S; see [4].

This paper is organized as follows. Section 2 reviews definitions and basic properties
of cyclic zonotopes and cubillages. Section 3 gives a short proof of the non-purity

of S6,4, which is the crucial case in our method of proof of Theorem 1.1. As a by-
product, we obtain non-(n,4)-extendable 3-separated collections consisting of only three

sets. To show the other non-purity cases in Theorem 1.1, we need to use additional
notions and constructions, which generalize those exhibited in [1] for d = 3 and are

discussed in Section 4. Here we introduce a membrane in a cubillage Q on Z(n, d),

to be a special (d − 1)-dimensional subcomplex M in Q (when the latter is regarded
as the corresponding polyhedral complex). An important fact is that any cubillage on

Z(n, d− 1) can be lifted as a membrane in some cubillage on Z(n, d). Also we describe
nice operations on cubillages on Z(n, d) (called contraction and expansion ones) that

produce cubillages on Z(n− 1, d) and Z(n+ 1, d).

Section 5 utilizes this machinery to show relations between (n, d)-, (n+ 1, d)-, and
(n+1, d+1)-extendable set-systems. As a consequence, we easily prove the remaining

non-purity cases in Theorem 1.1, relying on the above result for (n, d) = (6, 4). Also
we demonstrate in this section one interesting class of extendable set-systems (in

Proposition 5.3) and raise two open questions. Section 6 is devoted to additional results
involving inversions of membranes. These objects arise as a natural generalization of

the classical notion of inversions for permutations, and their definition for an arbitrary

(n, d) goes back to Manin and Schechtman [6]. In particular, we show that for two
membranes M and M ′ in the same cubillage on Z(n, d), if any inversion of M is an

inversion of M ′, then Sp(M) ∪ Sp(M ′) is (d− 1)-separated (see Theorem 6.4).

2 Cyclic zonotopes and cubillages

The objects that we deal with live in the euclidean space R
d of dimension d > 1.

A cyclic configuration of size n ≥ d is meant to be an ordered set Ξ of n vectors

ξ1 = ξ(ti), . . . , ξn = ξ(tn) in R
d lying on the Veronese curve ξ(t) = (1, t, t2, . . . , td−1),

t ∈ R, and satisfying t1 < · · · < tn. A useful property of Ξ is that

(2.1) any d vectors ξi(1), . . . , ξi(d) with i(1) < · · · < i(d) are independent and, moreover,

det(A) > 0, where A is the matrix whose j-th column is ξi(j).

In addition, we will also assume that Ξ is Z2-independent (i.e., all combinations of

vectors of Ξ with coefficients 0,1 are different).

The configuration Ξ generates the (cyclic) zonotope Z = Z(Ξ) in R
d, the polytope

represented as the Minkowski sum of line segments [0, ξi], i = 1, . . . , n. An object of our

interest is a fine zonotopal tiling on Z, that is a subdivision Q of Z into d-dimensional
parallelotopes of which any two intersecting ones share a common face, and each facet

(a face of codimension 1) of the boundary ∂(Z) of Z is contained in one of these
parallelotopes. For brevity, we liberally refer to these parallelotopes as cubes, and to Q
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as a cubillage. In fact, depending on the context, we may think of a cubillage Q in two
ways: either as a set of d-dimensional cubes (and may write C ∈ Q for a cube C in Q)

or as the corresponding polyhedral complex. One can see that

(2.2) each cube in Q is viewed as

∑
b∈X

ξb +
{∑

(λa(i)ξa(i) : 0 ≤ λa(i) ≤ 1, i = 1, . . . , d)
}

for some a(1) < · · · < a(d) and X ⊆ [n]− a(1)a(2) · · ·a(d).

Hereinafter, for a subset {a, . . . , a′} of [n], we use the abbreviated notation a · · · a′.
When X ⊂ [n] and a · · · a′ are disjoint, their union may be denoted as Xa · · ·a′. Also

for a set S and element i ∈ S, we may write S − i for S − {i}.

For a cube C in (2.2), we say that the set a(1) · · ·a(d) is the type of C, denoted as

τ(C). Also, regarding the first coordinate x1 of a vector (point) x = (x1, . . . , xd) ∈ R
d

as its height, we denote the lowest point
∑

b∈X ξb of C by bt(C), called the bottom

of C. The cells of dimensions 0 and 1 in Q are called vertices and edges, respectively.
When needed, each edge e is directed so as to be a parallel translation of corresponding

generating vector ξi, and we say that e is an edge of color i, or an i-edge. This forms
a directed graph on the vertices of Q, denoted as GQ = (VQ, EQ).

The subsets X ⊆ [n] are naturally identified with the corresponding points
∑

b∈X ξb
in Z (which are different due the Z2-independence of Ξ). This represents each vertex
of Q as a subset of [n], and the collection of these subsets is called the spectrum of Q

and denoted by Sp(Q).

Note that structural properties of cubillages depend on n and d, but the choice

of a cyclic configuration Ξ for these parameters is not important in essence; so we
may speak of cubillages Q on a generic cyclic zonotope, denoted as Z(n, d). There are

known a number of nice properties of Q. Among those, two rather elementary ones are
as follows:

(2.3) all types τ(C) of cubes C ∈ Q are different and range the set
(
[n]
d

)
of d-element

subsets of [n] (so there are exactly
(
n

d

)
cubes in Q); and

(2.4) |Sp(Q)| =
(
n

0

)
+
(
n

1

)
+ · · ·+

(
n

d

)
.

One more useful property of cubillages (which is shown for d = 3 in [1, Prop. 3.5])

and can be straightforwardly extended to an arbitrary d) is:

(2.5) suppose that for disjoint subsets X,A of [n], a cubillage Q contains the vertices
of the form X ∪ A′ for all A′ ⊆ A; then these vertices belong to a cube in Q.

In particular, if Q has vertices X and Xi, where i ∈ [n]−X, then Q contains the edge

connecting these vertices.

A less trivial fact is shown in [4]; it says that
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(2.6) the correspondence Q 7→ Sp(Q) gives a bijection between the set Qn,d of cubillages
on Z(n, d) and the set S∗

n,d of maximal by size (d − 1)-separated collections in

2[n] (in particular, |Sp(Q)| = sn,d).

In light of (1.1) and (1.2), S∗

n,d = Sn,d when d = 2, 3, and in view of (2.6), all

maximal strongly separated and chord separated set-systems in 2[d] are represented by

the spectra of corresponding cubillages; these facts were established for d = 2 in [5]

(using equivalent terms of pseudo-line arrangements), and for d = 3 in [3]. On the other
hand, Theorem 1.1 asserts that S∗

n,d 6= Sn,d when d ≥ 4 and n ≥ d+ 2.

In our further analysis we will use additional facts on the structure of the boundary

∂(Z) of a zonotope Z = Z(n, d). Let us say that a set X ⊆ [n] is a k-pieced cortege if
it is the union of k intervals (including the case k = 0). As a non-difficult exercise, one

can obtain the following description for the collection Sp(Z) (= Sp(∂(Z))) of subsets
of [n] represented by the vertices of Z:

(2.7) for Z = Z(n, d), Sp(Z) consists of exactly those sets X ⊆ [n] that are (d − 1)-

separated from any subset of [n]; specifically: when d is even, Sp(Z) is formed
by all d/2-pieced corteges containing at least one of the elements 1 and n and

all k-pieced corteges with k < d/2, while when d is odd, Sp(Z) is formed by all

(d+ 1)/2-pieced corteges containing both 1 and n and all k-pieced corteges with
k ≤ (d− 1)/2.

In particular, Sp(Z) is included in any collection in Sn,d.

In case n = d, the zonotope Z turns into one cube and the purity of Sn,n is trivial.

And in case n = d+1, one can conclude from (2.7) that there are exactly two subsets of
[n] that do not belong to Sp(Z), one being formed by the odd elements, and the other

by the even elements of [n], i.e., the sets X = 135 . . . and Y = 246 . . . . Clearly they
are not (d− 1)-separated from each other. Therefore, Sn,n−1 consists of two collections

Sp(Zn,n−1) ∪ {X} and Sp(Zn,n−1) ∪ {Y }, implying that Sn,n−1 is pure. This together

with (1.1) and (1.2) gives “if” part of Theorem 1.1.

The non-purity cases of this theorem (giving “only if” part) are discussed in
Sections 3 and 5.

3 Case (n, d) = (6, 4)

This case is crucial and will be used as a base to handle the other non-purity cases in

Theorem 1.1 (in Sect. 5).

Consider Z = Z(6, 4). By (2.7), Sp(Z) consists of all intervals and all 2-pieced

corteges containing 1 or 6. A direct enumeration shows that the number of these
amounts to 52. Therefore, 26 − 52 = 12 subsets of [6] are not in Sp(Z), namely:

(3.1) 24, 245, 25, 235, 35, 135, 1356, 136, 1346, 146, 1246, 246.
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(Recall that a · · · b stands for {a, . . . , b}.) Let Ai denote i-th member in this sequence
(so A1 = 24 and A12 = 246). Form the collection

A := Sp(Z) ∪ {A1, A5, A9}.

It consists of 52 + 3 = 55 sets, whereas the number s6,4 is equal to
(
6
0

)
+

(
6
1

)
+

(
6
2

)
+(

6
3

)
+
(
6
4

)
= 57. Now the non-purity of S6,4 is implied by the following

Lemma 3.1 A is a maximal 3-separated collection in 2[6].

Proof By (2.7), any two X ∈ Sp(Z) and Y ∈ A are 3-separated. Observe that
|Ai−1△Ai| = 1 for any 1 ≤ i ≤ 12 (where A0 := A12 and A△B denotes the symmetric

difference (A−B)∪ (B−A)). Then any A,A′ ∈ {A1, A5, A9} satisfy |A△A′| ≤ 4. This
implies that A and A′ are 3-separated. Therefore, the collection A is 3-separated.

The maximality of A follows from the observation that adding to A any member

of {Ai : 1 ≤ i ≤ 12, i 6= 1, 5, 9} would violate the 3-separation. Indeed, a routine
verification shows that A1 is not 3-separated from any of A6, A7, A8, and similarly for

A5 and {A10, A11, A12}, and for A9 and {A2, A3, A4}.

Remark 1. To visualize a verification in the above proof, one can use the circular

diagram illustrated in the picture below where the sets from (3.1) are disposed in the
cyclic order. Here the sets A1, A5, A9 are drawn in boxes and connected by lines with

those sets where the 3-separation is violated. Note that, instead of A1, A5, A9, one could
take in the lemma any triple of the form Ai, Ai+4, Ai+8 (taking indices modulo 12).

24

351346

In conclusion of this section recall that a collection in 2[n] is called (n, d)-extendable
if it can be extended to a maximal by size (d − 1)-separated collection in 2[n], or,

equivalently (in view of (2.6)), if there exists a cubillage on Z(n, d) whose spectrum
includes the given collection. An immediate consequence of Lemma 3.1 is the existence

of small non-extendable 3-separated collections.

Corollary 3.2 Any 3-separated triple of the form {Ai, Ai+4, Ai+8}, e.g. {24, 35, 1346},
is not (6,4)-extendable (defining Ai′ as above and taking indices modulo 12).

(Here we take into account that any maximal 3-separated collection in 2[6] includes

Sp(Z(6, 4)).) Note that, in view of Lemma 5.1 in Sect. 5, this corollary implies that
{Ai, Ai+4, Ai+8} is not (n, 4)-extendable for any n ≥ 6.
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4 Membranes and pies

For further purposes, we need additional notions, borrowing terminology from [1].

4.1 Membranes. Let π : Rd → R
d−1 be the projection along the last coordinate

vector, i.e., sending x = (x1, . . . , xd) to (x1, . . . , xd−1). Then π(Ξ) = (π(ξ1), . . . , π(ξn))
is again a cyclic configuration and Z(π(Ξ)) forms a (d−1)-dimensional cyclic zonotope.

We may use notation Z(n, d− 1) for Z(π(Ξ)) and call it the projection of Z(n, d).

Definition. Let Q be a cubillage on Z(n, d). By a membrane in Q we mean a
subcomplex M of Q that is bijectively projected by π to Z(n, d− 1).

In particular, M has dimension (d − 1), each facet of M is projected to a (d − 1)-

dimensional “cube” (represented as in (2.2) where each ξ• should be replaced by π(ξ•)),
and these “cubes” constitute a cubillage of Z(n, d− 1), whence the collection Sp(M) is

(d− 2)-separated (cf. (2.6)). A converse property says that any cubillage can be lifted

as a membrane into some cubillage of the next dimension:

(4.1) for any cubillage Q′ on Z(n, d − 1), there exists a cubillage Q on Z(n, d) and a
membrane M in Q such that π(M) = Q′.

(This fact can be deduced from results on higher Bruhat orders and related aspects

in [6, 7, 8]. See also [1, Sec. 5] for a direct construction when d = 3.)

When the choice of Q as in (4.1) is not important for us, we may think of the

(abstract) membrane M in Z(n, d) representing a cubillage Q′ on Z(n, d − 1), saying
that M is obtained by lifting Q′. (To construct such an M , one should take the points

in Z(n, d) representing the same subsets of [n] as those in Sp(Q′) and then extend the
corresponding 2d−1-element subsets of these points into (d − 1)-dimensional “cubes”;

cf. (2.5)).

Two membranes are of an especial interest. For a closed set X of points in Z =
Z(n, d), let X fr (resp. Xrear) be the subset of points of X “seen” in the direction of d-th

coordinate vector ed (resp. −ed), i.e., such that for each x′ ∈ π(X), this subset contains
the point x ∈ π−1(x′) ∩X with the minimal (resp. maximal) value xd. We call it the

front (resp. rear) side of X. When X = Z, the sides Z fr and Z rear (respecting their
cell structures) are membranes of any cubillage on Z. The subcomplex Z fr ∩ Z rear is

called the rim of Z and denoted as Z rim.

Borrowing terminology from [1], we refer to π(Z fr) and π(Z rear) are the standard

and anti-standard cubillages on Z(n, d−1), denoted as Qst
n,d−1 and Qant

n,d−1, respectively.

As a refinement of (2.7), one can characterize the spectra of Z rim, Z fr and Z rear for
Z = Z(n, d) as follows (a check-up is routine and we omit it here):

(4.2) (i) when d is even, Sp(Z rim) consists of all d/2-pieced corteges containing both
elements 1 and n, and all k-pieced corteges with k < d/2, whereas when d

is odd, Sp(Z rim) consists of all (d− 1)/2-pieced corteges containing at least
one of 1 and n, and all k-pieced corteges with k < (d− 1)/2;
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(ii) Sp(Z fr)−Sp(Z rim) consists of all d/2-pieced corteges containing the element
1 but not n when d is even, and consists of all (d − 1)/2-pieced corteges

containing none of 1 and n when d is odd;

(iii) Sp(Z rear) − Sp(Z rim) consists of all d/2-pieced corteges containing the
element n but not 1 when d is even, and consists of all (d + 1)/2-pieced

corteges containing both 1 and n when d is odd.

4.2 Pies, contraction and expansion. For a cubillage Q on Z(n, d) and i ∈ [n],
let Πi = Πi(Q) be the subcomplex of Q formed by the cubes C having an edge of color

i, called i-cubes. We refer to Πi as the i-pie in Q. It has the following nice properties

(which are shown by attracting standard topological reasonings):

(4.3) (i) Πi is representable as the “direct Minkowski sum” {x = β+α : β ∈ Bi, α ∈
Si}, where Bi is a subcomplex of Q homeomorphic to a (d− 1)-dimensional

ball and Si is the segment [0, ξi];

(ii) removing from Q the point set Π− (Bi ∪B′

i), where B′

i := Bi+ ξi, produces
two connected components R and R′ containing Bi and B′

i, respectively.

(iii) gluing R with R′ shifted by −ξi, we obtain a cubillage on the zonotope
Z(Ξ− ξi); it is denoted as Q/i and called the i-contraction of Q;

(iv) Sp(Q/i) consists of all sets X ⊆ [n] − i such that at least one of X,Xi is

in Sp(Q).

When i = n, the pie structure becomes more transparent. Namely, the maximality
of color n in the type of each cube in Πn provides that the ball Bn (B′

n) is contained

in the front (resp. rear) side of Πn (a similar fact is also true for i = 1 but need not
hold when 1 < i < n). This implies that

(4.4) Bn is a membrane in the reduced cubillage (n-contraction) Q/n.

In other words, the n-contraction operation applied to Q, defined by (ii),(iii) in (4.3),
transforms the pie Πn into a membrane of Q/n. A converse operation blows a membrane

into an n-pie.

More precisely, let M be a membrane in a cubillage Q′ on the zonotope Z ′ =

Z(n− 1, d). Define Z−(M) (Z+(M)) to be the part of Z ′ between (Z ′)fr and M (resp.
between M and (Z ′)rear) and define Q−(M) (Q+(M)) to be the subcubillage of Q′

contained in Z−(M) (resp. Z+(M)). The n-expansion operation for (Q′,M) consists in
shifting Z+(M) equipped with Q+(M) by the vector ξn and filling the “space between”

M and M + ξn by the corresponding set of n-cubes. More precisely, each (d − 1)-
dimensional cube C ′ (having type τ(C ′) and bottom vertex bt(C ′)) in M generates

the n-dimensional cube C = C ′ + [0, ξn]; so τ(C) = τ(C ′) ∪ {n} and bt(C) = bt(C ′).
Then combining Q−(M) with the shifted subcubillage Q+(M) + ξn and the “blowed

membrane” M + [0, ξn] (forming an n-pie), we obtain a cubillage on Z(n, d). This
cubillage is called the n-expansion of Q′ using M and denoted as Qn(Q

′,M).

The n-contraction and n-expansion operations are naturally related to each other
(as a straightforward generalization to an arbitrary d of Proposition 3.4 from [1]):
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(4.5) (i) the correspondence (Q′,M) 7→ Qn(Q
′,M), where Q′ is a cubillage on

Z(n− 1, d) and M is a membrane in Q′, gives a bijection between the set of

such pairs (Q′,M) in Z(n− 1, d) and the set Qn,d of cubillages on Z(n, d);

(ii) under this correspondence, Q′ is the n-contraction Q/n of Q = Qn(Q
′,M)

and M is the image of the n-pie in Q under the n-contraction operation.

5 Other non-purity cases

Return to proving “only if” part of Theorem 1.1. For any (n, d) with min{d − 1, n −
d+1} ≥ 3, we have n−6 ≥ d−4 ≥ 0. Therefore, “only if” part of Theorem 1.1 (with r
replaced by d− 1) will follow from Lemma 3.1 concerning (n, d) = (6, 4) and the next

two assertions on lifting set-systems in 2[n].

Lemma 5.1 Let A ⊆ 2[n]. Then A is (n, d)-extendable if and only if A is (n + 1, d)-

extendable.

Lemma 5.2 Let A ⊆ 2[n], n′ := n + 1, and A′ := {Xn′ : X ∈ A}. Then A is (n, d)-

extendable if and only if A ∪A′ is (n + 1, d+ 1)-extendable.

Proof of Lemma 5.1 Clearly A is (d− 1)-separated relative to n if and only if it is
(d− 1)-separated relative to n+ 1.

If A is (n, d)-extendable, then A ⊆ Sp(Q) for some cubillage Q on Z = Z(n, d).
Let Q′ be the (n+1)-extension of Q using as a membrane the rear side Z rear of Z (see

Sect. 4.2 for definitions). Then A ⊆ Sp(Q′), implying that A is (n+ 1, d)-extendable.

Conversely, if A is (n+1, d)-extendable, then A ⊆ Sp(Q′) for some cubillage Q′ on
Z(n + 1, d). Let Q be the (n + 1)-contraction of Q′ (i.e., Q is a cubillage on Z(n, d)

obtained by shrinking the (n + 1)-pie in Q′, cf. (4.3)). Since the sets in A do not
contain the element n+1, their corresponding vertices in Q′ preserve under the (n+1)-

contraction operation. So A ⊆ Sp(Q) and therefore A is (n, d)-extendable.

Proof of Lemma 5.2 Let A be (n, d)-extendable (in particular, A is (d − 1)-
separated). Take a cubillage Q on Z(n, d) with A ⊆ Sp(Q). By (4.1), there exist a

cubillage Q′ on Z(n, d+ 1) and a membrane M in Q′ such that Q = π(M), where π is
the projection R

d+1 → R
d as in Sect. 4.1. Let Q′′ be the n′-expansion of Q′ using M .

Then Q′′ is a cubillage on Z(n + 1, d + 1). Take the n′-pie Πn′ in Q′′. Then the side
Bn′ of Πn′ contains the vertices of M , whereas the side B′

n′ contains the vertices Xn′

for X ∈ Sp(M) (cf. (4.3)(ii)). Since A ⊆ Sp(M) = Sp(Bn′), we have A′ ⊆ Sp(B′

n′),
whence A ∪A′ ⊆ Sp(Q′′). Thus, A ∪A′ is (n+ 1, d+ 1)-extendable.

Conversely, let A∪A′ be (n+1, d+1)-extendable (in particular, it is d-separated).

Then A ∪ A′ ⊆ Sp(Q) for some cubillage Q on Z(n + 1, d + 1). By (2.5), any X ∈ A
must be connected with Xn′ ∈ A′ by an n′-edge in Q. This implies that A ∪ A′ is
contained in the n′-pie of Q (in which A and A′ lie in the sides Bn′ and B′

n′ of Πn′,

respectively). Then the n′-contraction operation applied to Q transforms Q and Πn′

into a cubillage Q′ on Z(n, d + 1) and a membrane M in Q′, preserving the vertices
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of Bn′. Hence A ⊆ Sp(M), and now taking the cubillage Q′′ := π(M) on Z(n, d), we
obtain A ⊆ Sp(Q′′), as required.

Note that Lemmas 5.1 and 5.2 can also be used to demonstrate an interesting class
of extendable set-systems, as follows.

Proposition 5.3 Let k ∈ [n], B ⊆ 2[k], D ⊆ {k + 1, . . . , n}, and d := |D|. Let C
consist of the sets of the form B ∪ D′ for all B ∈ B and D′ ⊆ D. Suppose that B is
2-separated. Then C is (n, d+ 3)-extendable.

Proof We use induction on n + d. When d = 0, C becomes B, and therefore it is

(n, 3)-extendable (by (1.2)).

So assume that d ≥ 1. Let p be the maximal element in D. If p < n then C
is contained in 2[n−1]. By Lemma 5.1, C is (n, d + 3)-extendable if and only if it is

(n− 1, d+ 3)-extendable, and we can apply induction.

Now let p = n. Form C′ := {X ∈ C : n /∈ X} and C′′ := {X ∈ C : n ∈ X}. Then

C′ ∩ C′′ = ∅, C′ ∪ C′′ = C, and the construction of C implies that C′′ = {Xn : X ∈ C′}.
Therefore, by Lemma 5.2, C is (n, d+ 3)-extendable if and only if C′ is (n− 1, d+ 2)-

extendable. Since C′ consists of the sets of the form B ∪ D′ for all B ∈ B and D′ ⊆
D ∩ [n− 1], we can apply induction.

As a special case in this proposition, we obtain the following

Corollary 5.4 For any D ⊆ [n] with |D| ≤ d, the collection {X ⊆ D} (forming the
vertex set of a “cube”) is (n, d)-extendable.

(In this case one should take as B the “cube” on three smallest elements of D.)

Thus, one cube of dimension ≤ d within a zonotope Z(n, d) can always be extended

to a cubillage. In contrast, as we have seen earlier (cf. Corollary 3.2), a triple of (duly
separated) “cubes” of dimension 0 need not be extendable. In light of these facts, we

can address the following open question:

(O1) : Whether or not any two “cubes” C = {A∪X : X ⊆ D} and C′ = {A′ ∪ Y : Y ⊆
D′}, where A,A′, D,D′ ⊂ [n], |D|, |D′| ≤ d, and C ∪ C′ is (d− 1)-separated, can

be extended to a cubillage on Z(n, d)?

A similar open question concerns a membrane and a cube:

(O2) : Whether or not any pair consisting of a membrane M in Z(n, d) and a “cube”

C = {A ∪ X : X ⊆ D}, where A,D ⊂ [n], |D| ≤ d, and Sp(M) ∪ C is (d − 1)-

separated, can be extended to a cubillage on Z(n, d)?

6 Inversions

Inversions discussed in this section arise as a natural generalization of the classical
notion of inversions in elements (permutations) of a symmetric group Sn, inspired by
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the observation that a permutation of [n] can be interpreted as a membrane in the
zonogon Z(n, 2). We will use two ways to define inversions, which are shown to be

equivalent. The first one is of a geometric flavor, as follows.

Definitions. Consider a cubillage Q on Z = Z(n, d), a membrane M in Q, and

the corresponding cubillage Q′ := π(M) on Z(n, d − 1). A d-tuple K ∈
(
[n]
d

)
is called

inversive, or an inversion, for M , as well as for Q′, if the cube C of Q having type K lies

before M , i.e., in the region Z−(M) between Z fr and M (see Sect. 4.1 for definitions).
Otherwise (when the cube C ∈ Q with τ(C) = K lies in the region Z+(M) between

M and Z rear), we say that K is straight for M (and for Q′).

An important fact is that the set of inversions for M does not depend on the choice
of a cuballage Q on Z that contains M as a membrane (see Remark 2 below); we denote

this set as Inv(M), or Inv(Q′).

In particular, the smallest case Inv(M) = ∅ (the largest case Inv(M) =
(
[n]
d

)
)

happens when M = Z fr (resp. M = Z rear), or, in terms of cubillages, when Q′ = π(M)

becomes the standard cubillage Qst
n,d−1 (resp. the anti-standard cubillage Qant

n,d−1). (Note

that [8] exhibits necessary and sufficient conditions on a collection in
(
[n]
d

)
to be the set

of inversions for a membrane, but we do not use this in what follows.)

The second way to define inversions relies on a natural binary relations on cubes of
a cubillage. More precisely, given a cubillage Q̃ on Z(ñ, d̃), we say that a cube C ∈ Q̃

immediately precedes a cube C ′ ∈ Q̃ if their sides Crear and (C ′)fr share a facet (a
(d̃ − 1)-dimensional face). Then for C,C ′ ∈ Q̃, we write C ≺

Q̃
C ′ and say that C

precedes C ′ if there is a sequence C = C0, C1, . . . , Ck = C ′ such that Ci−1 immediately
precedes Ci for each i. It can be shown rather easily that the relation ≺

Q̃
is a partial

order (arguing in spirit of the proof of Lemma 4.2 in [1] for d = 3).

A behavior of this order under contraction operations on pies (defined in Sect. 4.2)

is featured as follows.

Lemma 6.1 Let Q∗ be the i-contraction of a cubillage Q̃ on Z(ñ, d̃), where i ∈ [ñ],
and suppose that D,D′ are cubes in Q∗ such that D ≺Q∗ D′. Then the cubes C,C ′ ∈ Q̃

with τ(C) = τ(D) and τ(C ′) = τ(D′) satisfy C ≺Q̃ C ′.

Proof Let Bi, R, R′ be as in (4.3)(i),(ii) for the i-pie Πi in Q̃. It suffices to consider
the case when D immediately precedes D′. Then four cases are possible: (a) both D,D′

lie in the part R of Q∗, (b) both D,D′ lie in the part R′ − ξi of Q∗ corresponding to
R′ in Q̃, (c) D lies in R, and D′ in R′ − ξi, or (d) D lies in R′ − ξi, and D′ in R.

In case (a), we have C = D and C ′ = D′, while in case (b), C = D + ξi and

C ′ = D′ + ξi. So in both cases C immediately precedes C ′. In case (c), we have C = D

and C ′ = D′ + ξi. Also Drear and (D′)fr share a facet F contained in Bi. Therefore, the
pie Πi has the i-cube C ′′ that is the sum of F and the segment [0, ξi]. One can see that

Crear∩ (C ′′)fr = F and (C ′′)rear∩ (C ′)fr = F +ξi. Then C immediately precedes C ′′, and
C ′′ immediately precedes C ′. This implies C ≺

Q̃
C ′. Finally, in case (d), C = D + ξi

and C ′ = D′. Also Drear and (D′)fr share a facet F in Bi. Again, Πi has the i-cube C ′′

that is the sum of F and the segment [0, ξi]. But now we have Crear ∩ (C ′′)fr = F + ξi
and (C ′′)rear ∩ (C ′)fr = F . Then C ≺

Q̃
C ′′ ≺

Q̃
C ′, implying C ≺

Q̃
C ′, as required.
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Now return to Q,M,Q′ as above. Fix a cube C ∈ Q and let K := τ(C). Suppose we
apply to Q the i-contraction operation with i ∈ [n] −K. One can see that under this

operation M turns into a membrane M ′ in the resulting cubillage Q/i, and comparing
the location of C relative to M with that of the “image” of C relative to M ′, one can

see that the status of K preserves, i.e., K is inversive for M ′ if and only if so is for M .

By applying, step by step, the i-contraction operations to all i ∈ [n]−K, we produce
from Q the cubillage Q̂ := Q/([n] −K) consisting of a single cube Ĉ having type K.

Accordingly, M and Q′ turn into the membrane M̂ := M/([n] − K) in Q̂ and its

projection Q̂′ := π(M̂), respectively. Since Q̂ has exactly two membranes, namely, Ĉ fr

and Ĉrear, and since the status of K preserves during the contraction process, we can

conclude that

(6.1) if K is inversive (straight) for M , then the reduced membrane M̂ := M/([n]−K)
is isomorphic to the rear (resp. front) side of a cube of type K.

Assuming that K consists of elements k1 < · · · < kd, we will write Z(K, d−1) for the
zonotope generated by ξ′p := π(ξkp), p = 1, . . . , d (where, as before, ξ• is a generator from

Ξ). In view of |K| = d, there exist exactly two cubillages on Z ′ := Z(K, d−1), namely,
the standard and anti-standard cubillages, denoted as Qst

K,d−1 and Qant
K,d−1, respectively

(which correspond to the standard and anti-standard cubillages in Z(d, d− 1)).

Since Qst
K,d−1 and Qant

K,d−1 are the projections of C fr and C rear, respectively, where

C is a cube of type K (viz. C = Z(K, d)), (6.1) implies that

(6.2) K ∈
(
[n]
d

)
is an inversion for a membrane M in Z(n, d) if and only if π(M/([n]−

K)) is the anti-standard cubillage Qant
K,d−1 on Z(K, d− 1).

This and Lemma 6.1 lead to a description of inversions for M in terms of the partial
order ≺M , giving the second (“intrinsic”) way to characterize Inv(M). Following [6], for

K ∈
(
[n]
d

)
, define Pac(K) to be the set {K − i : i ∈ K} of (d − 1)-element subsets of

K, called the packet of K. Then each K ′ ∈ Pac(K) is the type of some cube in M . For

convenience, we use the same notation ≺M for the corresponding types; so if C,C ′ ∈ M

and C ≺M C ′, we may write τ(C) ≺M τ(C ′).

Proposition 6.2 Let K ∈
(
[n]
d

)
consist of elements k1 < · · · < kd and let M be a

membrane in Z(n, d). Then the elements of Pac(K) occur in the lexicographic order

(K − kd) ≺M (K − kd−1) ≺M · · · ≺M (K − k1)

if K is straight for M , and in the anti-lexicographic order

(K − k1) ≺M (K − k2) ≺M · · · ≺M (K − kd)

if K is inversive for M .

Proof In view of Lemma 6.1, the required relations for ≺M would follow from similar

relations for ≺M ′ , where M ′ := M/([n] − K). Moreover, since the relations ≺M ′ and
≺π(M ′) on Pac(K) are the same, it suffices to consider cubillages on Z(K, d − 1), or,
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equivalently, on Z(d, d−1). In other words, we have to show that for the sets Ai := [d]−i,
i = 1, . . . , d:

Ad ≺
′ Ad−1 ≺

′ · · · ≺′ A1, and (6.3)

A1 ≺
′′ A2 ≺

′′ · · · ≺′′ Ad, (6.4)

where ≺′ (≺′′) denotes the order in Q′ := Qst
d,d−1 (resp. Q′′ := Qant

d,d−1).

To show this, we first specify the spectra of Q′ and Q′′. Let X (Y ) be the set of

elements i ∈ [d] with d−i odd (resp. even). Note that X and Y are not (d−2)-separated
from each other; so one of X, Y belongs to Sp(Q′), and the other to Sp(Q′′) (taking

into account that each of Sp(Q′) and Sp(Q′′) is (d− 2)-separated and that |Sp(Q′)| =
|Sp(Q′′)| =

(
d

0

)
+
(
d

1

)
+ · · ·

(
d

d−1

)
= 2d − 1; cf. (2.6) and (2.4)). Using Sp(Q′) = Sp(Z fr)

and Sp(Q′′) = Sp(Z rear) for the “cube” Z = Z(d, d) and considering (4.2)(ii),(iii), one

can conclude that
X ∈ Sp(Q′) and Y ∈ Sp(Q′′).

Let us prove (6.3). The cubillage Q′ is formed by d cubes C1, . . . , Cd of types

A1, . . . , Ad, respectively, each of which must contain the unique vertex of Q′ lying
in the interior of Z ′ = Z(d, d − 1), namely, the vertex X (viz.

∑
(π(ξi) : i ∈ X)). It

follows that in the digraph GQ′ (defined in Sect. 2),

(6.5) the vertex X is incident to d edges a1, . . . , ad of GQ′, where each ai is an i-edge,

and ai enters (resp. leaves) X if i ∈ X (resp. i ∈ [d]−X);

(6.6) for i = 1, . . . , d, the cube Ci contains all edges in E := {a1, . . . , ad} except for ai.

Consider “consecutive” cubes Ci, Ci+1 (1 ≤ i < d). They share a facet, namely, the

one lying in the hyperplane Hi spanned by the edge set E − {ai, ai+1}. The required
relation Ai+1 ≺

′ Ai in (6.3) can be reformulated as:

(∗) when seeing in the direction of the last coordinate vector, the cube Ci is located
behind Hi (whereas Ci+1 is located before Hi).

To see (∗), for j = 1, . . . , d, denote π(ξj) by ϕj, and define the vector ϕj to be −ϕj

if j ∈ X, and ϕj otherwise. We write D(β, . . . , β ′) for the determinant of the matrix

formed by a sequence β, . . . , β ′ of d−1 column vectors in R
d−1. Note that (∗) says that

the edge ai+1 of Ci is located behind Hi (and the edge ai of Ci+1 before Hi). One can

realize that this location corresponds to the relation

(∗∗) D := D(ϕ1, ϕ2, . . . , ϕi−1, ϕi+2, ϕi+3, . . . , ϕd, ϕi+1) > 0.

Now validity of (∗∗) follows from

D = (−1)d−i−1D(ϕ1, . . . , ϕi−1, ϕi+1, ϕi+2, . . . , ϕd)

= D(ϕ1, . . . , ϕi−1, ϕi+1, ϕi+2, . . . , ϕd) > 0

(taking into account (2.1) and the fact that ϕi+1 = −ϕi+1 if and only if d − i − 1 is

odd).

To show (6.4), we argue in a similar way, replacing (6.5) by:
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(6.7) in the graph GQ′′, the vertex Y is incident to d edges b1, . . . , bd, where each bi is
an i-edge, and bi enters (resp. leaves) Y if i ∈ Y (resp. i ∈ [d]− Y ).

Using this and the fact that Y if formed by elements i ∈ [d] with d − i even, one

shows that for each i, the cube Ci of type Ai is located before the hyperplane separated
Ci and Ci+1 (cf. (∗)), and (6.4) follows.

Remark 2. The above proposition implies that the “geometric” definition of Inv(M)
(given in the beginning of this section) does not depend on the choice of a cubillage

containing M as a membrane. Next, for a membrane M in Z(n, d), we alternatively
could give a “packet” definition for straight and inversive tuples

(
[n]
d

)
in a spirit of

the statement in this proposition, and then come to the “geometric” characterization
by reversing reasonings in the above proof. This alternative way to define Inv(M)

matches the classical definition due to Manin and Schechtman (cf. Theorem 3 in [6]).
Recall that they introduced a “packet admissible” total order ≺ on

(
[n]
d−1

)
, which means

that for each tuple K ∈
(
[n]
d

)
, the elements of Pac(K) become ordered by ≺ either

lexicographically or anti-lexicographically, and in the latter case, K is said to be an
inversion for (

(
[n]
d−1

)
,≺). (Compare ≺ with ≺M .)

Note also that the method of proof of Proposition 6.2 enables us to reveal one more

useful fact.

Proposition 6.3 Let M be a membrane in Z(n, d) and let K ∈
(
[n]
d

)
consist of

elements k1 < · · · < kd. Then:

(i) K is inversive for M if and only if there is X ∈ Sp(M) such that X ∩ K =

{ki : d− i odd} =: Kodd;

(ii) K is straight for M if and only if there is Y ∈ Sp(M) such that Y ∩K = {ki : d−i

even} =: Keven.

Proof Let [n]−K = {j1, j2, . . . , jn−d} and form the sequence M0 = M,M1, . . . ,Mn−d

of membranes in the corresponding zonotopes, where Mi = (Mi−1)/ji. So M ′ := Mn−d

is a membrane in the final zonotope Z ′ := Z(K, d) (a single cube). We know that if

K is inversive for M , then M ′ = (Z ′)rear and M ′ contains the vertex Kodd, whereas if

K is straight for M , then M ′ = (Z ′)fr and M ′ contains the vertex Keven (cf. the proof
of Proposition 6.2). Now the result follows by observing that for 1 ≤ i ≤ n− d, if the

membrane Mi has a vertex A, then the previous membrane Mi−1 has a vertex A′ of
the form A or A ∪ {ji}.

As a consequence, we obtain the following result.

Theorem 6.4 Let M1, . . . ,Mp be membranes in Z(n, d) such that Inv(M1) ⊂ · · · ⊂
Inv(Mp). Then the collection Sp(M1) ∪ . . . ∪ Sp(Mp) is (d− 1)-separated.

Proof Suppose that this is not so. Then for some i < j, there exist X ∈ Sp(Mi)

and Y ∈ Sp(Mj) that are not (d − 1)-separated from each other. Therefore, there
exist elements i1 < i2 < · · · < id+1 of [n] that alternate in X − Y and Y − X. Let
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for definiteness the elements ik with k odd are contained in X − Y (and the other
in Y − X). Consider the d-element sets K := {i1, . . . , id} and K ′ := {i2, . . . , id+1}.
Then, by Proposition 6.3, K is straight for one, and inversive for the other membrane
among Mi,Mj . But the behavior of Mi,Mj relative to K ′ is opposite. Thus, neither

Inv(Mi) ⊂ Inv(Mj) nor Inv(Mj) ⊂ Inv(Mi) is possible; a contradiction.

We finish this section with two applications.

1) Let M,N be two membranes with Inv(M) ⊂ Inv(N) in Z = Z(n, d). By
Theorem 6.4, the collection C := Sp(M)∪Sp(N) is (d− 1)-separated; so it is tempting

to hope that C is extendable to a maximal by size (d − 1)-separated set-system, or,
equivalently, that there exists a cubillage Q on Z containing both membranes. We can

try to construct such a Q by filling the region Z−(M) (between Z fr and M) with
a “partial” cubillage Q′, and filling the region Z+(N) (between N and Z rear) with a

“partial” cubillage Q′′ (such Q′, Q′′ exist by (4.1)). But what is about the rest of Z
between M and N , denoted as Z(M,N)? (Note that Inv(M) ⊂ Inv(N) provides that

M lies within Z−(N).)

Let us say that M,N are agreeable if the collection Sp(M) ∪ Sp(N) is (n, d)-

extendable, i.e., a cubillage on Z containing both M,N (equivalently, a “partial”
cubillage filling Z(M,N)) does exist. Ziegler [8] explicitly constructed two membranes

M,N in the zonotope Z(8, 4) such that Inv(M) ⊂ Inv(N) but M,N are not agreeable
(in our terms) . This together with Theorem 6.4 implies that the set system S8,4 is not

pure (the latter fact was omitted in [8]). (Compare (O2) in the end of the previous
section that considers the union of a membrane and a cube.)

2) In light of the above result for d = 4, Ziegler asked about the existence of

two non-agreeable membranes in dimension 3. Answering this question, Felsner and
Weil [2] proved that for an arbitrary n, any two membranes M,N with Inv(M) ⊂
Inv(N) in Z(n, 3) are agreeable. Note that the proof in [2] attracted a non-trivial
combinatorial techniqies. An alternative proof immediately follows from Galashin’s

result in [3] (mentioned in (1.2)) and Theorem 6.4.
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