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Cubillages on cyclic zonotopes, membranes,
and higher separation
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Abstract. We study certain structural properties of fine zonotopal tilings,
or cubillages, on cyclic zonotopes Z(n,d) of an arbitrary dimension d and
their relations to (d — 1)-separated collections of subsets of a set {1,2,...,n}.
(Collections of this sort are well known as strongly separated ones when d = 2,
and as chord separated ones when d = 3.)
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1 Introduction

We consider a generalization of the notions of strongly separated and chord separated
set-systems. Let n be a positive integer and denote the set {1,2,...,n} by [n].

Definition. Let r € [n — 1]. Two sets A, B C [n] are called r-separated (from each
other) if there is no sequence ig < i3 < .-+ < 4,41 of elements of [n] such that
the elements with even indices (namely, iy, s, ...) and the elements with odd indices
(71,13, ...) belong to different sets among A — B and B — A (where A’ — B’ denotes
the set difference {i: A" > ¢ ¢ B’}). In other words, one can choose r’ < r integers

(“separating points”) a; < ay < -+ < @, in [n] such that the intervals [a;, a;11] with
1 even cover one of A — B and B — A, while the ones with i odd cover the other of
these sets, where a,/1 := n and [a, b] denotes {a,a+1,...,b}. Accordingly, a collection

(set-system) A C 2["l is called r-separated if any two of its members are such.

We denote the set of all inclusion-wise maximal r-separated collections A in 2™
as S, ,+1, and the maximal size |A| of such an A by s,,,41 (for technical reasons, we
prefer to use the subscript pair (n,r + 1) rather than (n,r)). When all collections in
S;.r+1 are of the same size, S,, 41 is said to be pure.
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In particular, S, ,, consists of the unique collection 2" (since any two subsets of [r]
are (n — 1)-separated), giving the simplest purity case.

The concept of 1-separation was introduced, under the name of strong separation,
by Leclerc and Zelevinsky [5] who proved the important fact that

(1.1) for any n > 2, the set S,, 5 is pure (and s, equals (7) + (1) +(5) = 3n(n+1)+1).

Recently an analogous purity result on 2-separation was shown by Galashin [3]:
(1.2) for any n > 3, the set S, 3 is pure (and s,3 = (7) + (1) + (5) + (5))-

(In [3], 2-separated sets A, B C [n] are called chord separated, which is justified by
the observation that if n points 1,2,...,n are disposed on a circumference O, in this
order cyclically, then there is a chord to O separating A — B from B — A.)

However, a nice purity behavior as above for r-separated set-systems with r = 1,2
is not extended in general to larger r’s, as it follows from profound results on oriented
matroids due to Galashin and Postnikov [4]. Being specified to r-separated set-systems,
the following property is obtained.

Theorem 1.1 [4] S, 41 is pure if and only if min{r,n —r} < 2.

It should be noted that the proof given in [4] is rather sophisticated and long (even
if one extracts merely those arguments that directly concern the sets S,,,41), and one
purpose of this paper is to present a shorter and more transparent proof of Theorem [T}

In fact, the content of this paper is wider. In particular, we are going to demonstrate
representable cases of extendable and non-extendable set-systems. Here we say that
A C 2" is (n,r + 1)-extendable if there exists a maximal by size r-separated collection
in 2" including A. (So S,.r4+1 1s pure if and only if any r-separated set-system in 2]
is (n,r + 1)-extendable.)

Our study of separated set-systems is based on a geometric approach whose
theoretical grounds were originated in the classical work by Manin and Schechtman [0]
where higher Bruhat orders, generalizing weak Bruhat ones, were introduced and well
studied. (Recall that the higher Bruhat order for (n,d) compares certain (so-called
“packet admissible”) total orders on the set ([2}) of d-elements subsets of [n], and it turns
into the weak one when d = 1, which compares permutations on [n].) Subsequently
Voevodskij and Kapranov [7] and Ziegler [§] gave nice geometric interpretations and
established additional important results.

Based on these sources, we deal with a cyclic zonotope Z = Z(n,d), that is the
Minkowski sum of n segments in R? forming a cyclic configuration, and consider a fine
zonotopal tiling, that is a subdivision () of Z into parallelotopes; we call it a cubillage for
short. The vertices of () are associated, in a natural way, with subsets of [n], forming a
collection Sp(Q) C 2", called the spectrum of Q. In the special case d = 2, Q is viewed
as a rhombus tiling on a zonogon, and it is well known due to [5] that the spectra
of these are exactly the maximal strongly separated set-systems in 2["). Similarly, the
spectra of cubillages on Z(n, 3) are exactly the maximal chord separated set-systems in



21"l as is shown in [3]. It turned out that this phenomenon is extended to an arbitrary
d: the cubillages Q) on Z(n,d) are bijective to the mazimal by size (d — 1)-separated
set-systems S in 2" with the equality Sp(Q) = S; see [4].

This paper is organized as follows. Section Rlreviews definitions and basic properties
of cyclic zonotopes and cubillages. Section [3] gives a short proof of the non-purity
of Sg4, which is the crucial case in our method of proof of Theorem [Tl As a by-
product, we obtain non-(n,4)-extendable 3-separated collections consisting of only three
sets. To show the other non-purity cases in Theorem [T, we need to use additional
notions and constructions, which generalize those exhibited in [I] for d = 3 and are
discussed in Section @l Here we introduce a membrane in a cubillage @ on Z(n,d),
to be a special (d — 1)-dimensional subcomplex M in () (when the latter is regarded
as the corresponding polyhedral complex). An important fact is that any cubillage on
Z(n,d—1) can be lifted as a membrane in some cubillage on Z(n, d). Also we describe
nice operations on cubillages on Z(n,d) (called contraction and expansion ones) that
produce cubillages on Z(n —1,d) and Z(n + 1,d).

Section [ utilizes this machinery to show relations between (n,d)-, (n + 1,d)-, and
(n+1,d+ 1)-extendable set-systems. As a consequence, we easily prove the remaining
non-purity cases in Theorem [[T] relying on the above result for (n,d) = (6,4). Also
we demonstrate in this section one interesting class of extendable set-systems (in
Proposition [5.3)) and raise two open questions. Section [flis devoted to additional results
involving inversions of membranes. These objects arise as a natural generalization of
the classical notion of inversions for permutations, and their definition for an arbitrary
(n,d) goes back to Manin and Schechtman [6]. In particular, we show that for two
membranes M and M’ in the same cubillage on Z(n,d), if any inversion of M is an
inversion of M’, then Sp(M) U Sp(M') is (d — 1)-separated (see Theorem [6.4]).

2 Cyclic zonotopes and cubillages

The objects that we deal with live in the euclidean space R? of dimension d > 1.
A cyclic configuration of size n > d is meant to be an ordered set = of n vectors
& =E&(t),. .., & = £(t,) in RY lying on the Veronese curve &(t) = (1,¢,¢%,..., 1471,
t € R, and satisfying t; < --- < t,,. A useful property of = is that

(2.1) any d vectors &1y, - . ., &iqq) With (1) < --- < i(d) are independent and, moreover,
det(A) > 0, where A is the matrix whose j-th column is &;y.

In addition, we will also assume that = is Zs-independent (i.e., all combinations of
vectors of = with coefficients 0,1 are different).

The configuration = generates the (cyclic) zonotope Z = Z(Z) in R?, the polytope
represented as the Minkowski sum of line segments [0, ], ¢ = 1,...,n. An object of our
interest is a fine zonotopal tiling on 7, that is a subdivision @) of Z into d-dimensional
parallelotopes of which any two intersecting ones share a common face, and each facet
(a face of codimension 1) of the boundary J(Z) of Z is contained in one of these
parallelotopes. For brevity, we liberally refer to these parallelotopes as cubes, and to @



as a cubillage. In fact, depending on the context, we may think of a cubillage () in two
ways: either as a set of d-dimensional cubes (and may write C' € @ for a cube C in Q)
or as the corresponding polyhedral complex. One can see that

(2.2) each cube in @ is viewed as

ZbeX & + {Z()\a(i)ﬁa(z)i 0< Ay <1,i=1,... ,d)}
for some a(1) < --- < a(d) and X C [n] — a(1)a(2) ---a(d).
Hereinafter, for a subset {a,...,a’} of [n], we use the abbreviated notation a---a’.

When X C [n] and a---a’ are disjoint, their union may be denoted as Xa---a’. Also
for a set S and element i € S, we may write S — i for S — {i}.

For a cube C' in (22), we say that the set a(1) ---a(d) is the type of C, denoted as
7(C). Also, regarding the first coordinate x; of a vector (point) x = (x1,...,74) € R?
as its height, we denote the lowest point ), & of C' by bt(C), called the bottom
of C. The cells of dimensions 0 and 1 in () are called vertices and edges, respectively.
When needed, each edge e is directed so as to be a parallel translation of corresponding
generating vector &;, and we say that e is an edge of color 7, or an i-edge. This forms
a directed graph on the vertices of @, denoted as G = (Vo, Eg).

The subsets X C [n] are naturally identified with the corresponding points ), &
in Z (which are different due the Zs-independence of =). This represents each vertex

of @ as a subset of [n], and the collection of these subsets is called the spectrum of @
and denoted by Sp(Q).

Note that structural properties of cubillages depend on n and d, but the choice
of a cyclic configuration = for these parameters is not important in essence; so we
may speak of cubillages () on a generic cyclic zonotope, denoted as Z(n,d). There are
known a number of nice properties of (). Among those, two rather elementary ones are
as follows:

(2.3) all types 7(C') of cubes C' € @ are different and range the set ([Z}) of d-element
subsets of [n] (so there are exactly () cubes in Q); and

(2:4) 1Sp(@) = (§) + (D) +---+ (3)-

One more useful property of cubillages (which is shown for d = 3 in [I], Prop. 3.5])
and can be straightforwardly extended to an arbitrary d) is:

(2.5) suppose that for disjoint subsets X, A of [n], a cubillage @) contains the vertices
of the form X U A’ for all A" C A; then these vertices belong to a cube in Q).

In particular, if () has vertices X and X, where ¢ € [n] — X, then @) contains the edge
connecting these vertices.

A less trivial fact is shown in [4]; it says that



(2.6) the correspondence () — Sp(Q) gives a bijection between the set Q,, 4 of cubillages
on Z(n,d) and the set S; ; of maximal by size (d — 1)-separated collections in

2l" (in particular, |Sp(Q)| = Sn.q)-

In light of (L) and ([L2), S}, = S,4 when d = 2,3, and in view of ([2.)), all
maximal strongly separated and chord separated set-systems in 2[4 are represented by
the spectra of corresponding cubillages; these facts were established for d = 2 in

(using equivalent terms of pseudo-line arrangements), and for d = 3 in [3]. On the other
hand, Theorem [L.1] asserts that S}, ; # S, 4 when d > 4 and n > d + 2.

In our further analysis we will use additional facts on the structure of the boundary
0(Z) of a zonotope Z = Z(n,d). Let us say that a set X C [n] is a k-pieced cortege if
it is the union of k intervals (including the case k = 0). As a non-difficult exercise, one
can obtain the following description for the collection Sp(Z) (= Sp(9(Z))) of subsets
of [n] represented by the vertices of Z:

(2.7) for Z = Z(n,d), Sp(Z) consists of exactly those sets X C [n] that are (d — 1)-
separated from any subset of [n]; specifically: when d is even, Sp(Z) is formed
by all d/2-pieced corteges containing at least one of the elements 1 and n and
all k-pieced corteges with k& < d/2, while when d is odd, Sp(Z) is formed by all
(d+ 1)/2-pieced corteges containing both 1 and n and all k-pieced corteges with
E<(d—1)/2.

In particular, Sp(Z) is included in any collection in S,, 4.

In case n = d, the zonotope Z turns into one cube and the purity of S,, ,, is trivial.
And in case n = d+1, one can conclude from (Z7) that there are exactly two subsets of
[n] that do not belong to Sp(Z), one being formed by the odd elements, and the other
by the even elements of [n], i.e., the sets X = 135... and Y = 246... . Clearly they
are not (d — 1)-separated from each other. Therefore, S, ,_; consists of two collections
Sp(Zpn—1) U{X} and Sp(Z,, ,,—1) U {Y}, implying that S,,,—; is pure. This together
with (LT]) and (L2) gives “if” part of Theorem [Tl

The non-purity cases of this theorem (giving “only if” part) are discussed in
Sections [ and

3 Case (n,d) = (6,4)

This case is crucial and will be used as a base to handle the other non-purity cases in
Theorem [I.1] (in Sect. [).

Consider Z = Z(6,4). By ([2.1), Sp(Z) consists of all intervals and all 2-pieced
corteges containing 1 or 6. A direct enumeration shows that the number of these
amounts to 52. Therefore, 26 — 52 = 12 subsets of [6] are not in Sp(Z), namely:

(3.1) 24, 245, 25, 235, 35, 135, 1356, 136, 1346, 146, 1246, 246.



(Recall that a---b stands for {a,...,b}.) Let A; denote i-th member in this sequence
(so Ay =24 and Ay = 246). Form the collection

A = Sp(Z) U {Ah A5, Ag}

It consists of 52 + 3 = 55 sets, whereas the number s 4 is equal to (g) + (?) + (g) +

(g) + (Z) = 57. Now the non-purity of Sg 4 is implied by the following

Lemma 3.1 A is a mazimal 3-separated collection in 29

Proof By (21), any two X € Sp(Z) and Y € A are 3-separated. Observe that
|A; 1 AA;| =1 for any 1 <i < 12 (where Ay := Aj5 and AAB denotes the symmetric
difference (A— B)U (B — A)). Then any A, A" € {A;, A5, Ay} satisfy |AAA’| < 4. This
implies that A and A’ are 3-separated. Therefore, the collection A is 3-separated.
The maximality of A follows from the observation that adding to A any member
of {A4; 1 <i <12, i # 1,5,9} would violate the 3-separation. Indeed, a routine
verification shows that A; is not 3-separated from any of Ag, A7, Ag, and similarly for
A5 and {A107 AH, Alg}, and for Ag and {AQ, Ag, A4} |

Remark 1. To visualize a verification in the above proof, one can use the circular
diagram illustrated in the picture below where the sets from ([BI) are disposed in the
cyclic order. Here the sets A;, A5, Ag are drawn in boxes and connected by lines with
those sets where the 3-separation is violated. Note that, instead of A;, A5, Ag, one could
take in the lemma any triple of the form A;, A; 4, A;1s (taking indices modulo 12).

35

lﬁ% 135
—/

In conclusion of this section recall that a collection in 2" is called (n, d)-extendable
if it can be extended to a mazimal by size (d — 1)-separated collection in 20 or,
equivalently (in view of (2.6])), if there exists a cubillage on Z(n,d) whose spectrum
includes the given collection. An immediate consequence of Lemma [B.1]is the existence
of small non-extendable 3-separated collections.

Corollary 3.2 Any 3-separated triple of the form {A;, Aiy4, Airs}, e.g. {24, 35,1346},
is not (6,4 )-extendable (defining Ay as above and taking indices modulo 12).

(Here we take into account that any maximal 3-separated collection in 2% includes
Sp(Z(6,4)).) Note that, in view of Lemma [5.1] in Sect. [, this corollary implies that
{A;, Aiya, Ajis} is not (n, 4)-extendable for any n > 6.
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4 Membranes and pies

For further purposes, we need additional notions, borrowing terminology from [I].

4.1 Membranes. Let 7 : R — R%! be the projection along the last coordinate
vector, i.e., sending x = (x1,...,x4) to (z1,...,24-1). Then 7(Z) = (7(&), ..., 7(&))
is again a cyclic configuration and Z(7(Z)) forms a (d—1)-dimensional cyclic zonotope.
We may use notation Z(n,d — 1) for Z(m(Z)) and call it the projection of Z(n,d).

Definition. Let @ be a cubillage on Z(n,d). By a membrane in () we mean a
subcomplex M of @ that is bijectively projected by 7 to Z(n,d — 1).

In particular, M has dimension (d — 1), each facet of M is projected to a (d — 1)-
dimensional “cube” (represented as in (Z2) where each £, should be replaced by 7(&,)),
and these “cubes” constitute a cubillage of Z(n,d — 1), whence the collection Sp(M) is
(d — 2)-separated (cf. (Z8])). A converse property says that any cubillage can be lifted
as a membrane into some cubillage of the next dimension:

(4.1) for any cubillage @’ on Z(n,d — 1), there exists a cubillage Q) on Z(n,d) and a
membrane M in @) such that 7(M) = @'.

(This fact can be deduced from results on higher Bruhat orders and related aspects
in [6l [7, 8]. See also [II, Sec. 5] for a direct construction when d = 3.)

When the choice of @ as in ([A]) is not important for us, we may think of the
(abstract) membrane M in Z(n,d) representing a cubillage ' on Z(n,d — 1), saying
that M is obtained by lifting @Q'. (To construct such an M, one should take the points
in Z(n,d) representing the same subsets of [n] as those in Sp(Q’) and then extend the
corresponding 2%~ !-element subsets of these points into (d — 1)-dimensional “cubes”;

cf. 2.5)).

Two membranes are of an especial interest. For a closed set X of points in Z =
Z(n,d), let X (resp. X™) be the subset of points of X “seen” in the direction of d-th
coordinate vector ey (resp. —ey), i.e., such that for each 2’ € w(X), this subset contains
the point z € 7—!(2’) N X with the minimal (resp. maximal) value z4. We call it the
front (resp. rear) side of X. When X = Z, the sides ZT and Z*™ (respecting their
cell structures) are membranes of any cubillage on Z. The subcomplex Z & N Zrear s
called the 7im of Z and denoted as Z™™,

Borrowing terminology from [I], we refer to n(Z) and 7(Z™) are the standard
and anti-standard cubillages on Z(n,d—1), denoted as Qif’ 4—1 and Qifg_l, respectively.
As a refinement of (27)), one can characterize the spectra of Z"™ Z and Z* for

Z = Z(n,d) as follows (a check-up is routine and we omit it here):

(4.2) (i) when d is even, Sp(Z™™) consists of all d/2-pieced corteges containing both
elements 1 and n, and all k-pieced corteges with k < d/2, whereas when d
is odd, Sp(Z™™) consists of all (d — 1)/2-pieced corteges containing at least
one of 1 and n, and all k-pieced corteges with k < (d —1)/2;



(ii) Sp(Z™)—Sp(Z™™) consists of all d/2-pieced corteges containing the element
1 but not n when d is even, and consists of all (d — 1)/2-pieced corteges
containing none of 1 and n when d is odd;

(iii) Sp(Z™) — Sp(Z™™) consists of all d/2-pieced corteges containing the
element n but not 1 when d is even, and consists of all (d 4+ 1)/2-pieced
corteges containing both 1 and n when d is odd.

4.2 Pies, contraction and expansion. For a cubillage Q on Z(n,d) and i € [n],
let II; = I1;(Q) be the subcomplex of () formed by the cubes C' having an edge of color
1, called i-cubes. We refer to II; as the i-pie in ). It has the following nice properties
(which are shown by attracting standard topological reasonings):

(4.3) (i) TII; is representable as the “direct Minkowski sum” {x = f+a«a: € B;, a €
S;}, where B; is a subcomplex of ) homeomorphic to a (d — 1)-dimensional
ball and S; is the segment [0, &];

(ii) removing from () the point set I1 — (B; U B}), where B, := B; +¢&;, produces
two connected components R and R’ containing B; and B}, respectively.

(iii) gluing R with R’ shifted by —¢;, we obtain a cubillage on the zonotope
Z(2 = &); it is denoted as Q)/i and called the i-contraction of Q;

(iv) Sp(Q/i) consists of all sets X C [n] — ¢ such that at least one of X, Xi is
in Sp(Q).

When ¢ = n, the pie structure becomes more transparent. Namely, the maximality
of color n in the type of each cube in II,, provides that the ball B, (B)) is contained
in the front (resp. rear) side of II,, (a similar fact is also true for ¢ = 1 but need not
hold when 1 < ¢ < n). This implies that

(4.4) B, is a membrane in the reduced cubillage (n-contraction) Q/n.

In other words, the n-contraction operation applied to @), defined by (ii),(iii) in (£3]),
transforms the pie II,, into a membrane of () /n. A converse operation blows a membrane
into an n-pie.

More precisely, let M be a membrane in a cubillage )" on the zonotope Z' =
Z(n —1,d). Define Z~ (M) (Z*(M)) to be the part of Z' between (Z')* and M (resp.
between M and (Z')™*) and define Q@ (M) (Q*(M)) to be the subcubillage of @’
contained in Z~ (M) (resp. ZT(M)). The n-expansion operation for (@', M) consists in
shifting Z* (M) equipped with Q@ (M) by the vector &, and filling the “space between”
M and M + &, by the corresponding set of n-cubes. More precisely, each (d — 1)-
dimensional cube C’ (having type 7(C’) and bottom vertex bt(C’)) in M generates
the n-dimensional cube C' = C" 4 [0,&,]; so 7(C) = 7(C") U {n} and bt(C) = bt(C").
Then combining @~ (M) with the shifted subcubillage Q* (M) + &, and the “blowed
membrane” M + [0,&,] (forming an n-pie), we obtain a cubillage on Z(n,d). This
cubillage is called the n-expansion of @ using M and denoted as @, (Q’, M).

The n-contraction and n-expansion operations are naturally related to each other
(as a straightforward generalization to an arbitrary d of Proposition 3.4 from [I]):
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(4.5) (i) the correspondence (@', M) — Q,(Q', M), where Q" is a cubillage on
Z(n —1,d) and M is a membrane in ()’, gives a bijection between the set of
such pairs (@', M) in Z(n — 1,d) and the set Q,, 4 of cubillages on Z(n, d);

(ii) under this correspondence, @' is the n-contraction @/n of Q@ = Q,(Q’, M)
and M is the image of the n-pie in () under the n-contraction operation.

5 Other non-purity cases

Return to proving “only if” part of Theorem [Tl For any (n,d) with min{d — 1, n —
d+1} > 3, we have n—6 > d —4 > 0. Therefore, “only if” part of Theorem [Tl (with r
replaced by d — 1) will follow from Lemma B concerning (n, d) = (6,4) and the next
two assertions on lifting set-systems in 2.

Lemma 5.1 Let A C 2" Then A is (n, d)-estendable if and only if A is (n + 1,d)-
extendable.

Lemma 5.2 Let A C 2 n/ :=n+1, and A’ := {Xn': X € A}. Then A is (n,d)-
extendable if and only if AU A" is (n+ 1,d+ 1)-extendable.

Proof of Lemma [5.1] Clearly A is (d — 1)-separated relative to n if and only if it is
(d — 1)-separated relative to n + 1.

If A is (n,d)-extendable, then A C Sp(Q) for some cubillage Q on Z = Z(n,d).
Let @ be the (n + 1)-extension of () using as a membrane the rear side Z"* of Z (see
Sect. for definitions). Then A C Sp(Q'), implying that A is (n + 1, d)-extendable.

Conversely, if A is (n+ 1, d)-extendable, then A C Sp(Q’) for some cubillage " on
Z(n+1,d). Let @ be the (n 4 1)-contraction of @ (i.e., @ is a cubillage on Z(n,d)
obtained by shrinking the (n + 1)-pie in @', cf. ([@3)). Since the sets in A do not
contain the element n+ 1, their corresponding vertices in )" preserve under the (n+1)-
contraction operation. So A C Sp(Q) and therefore A is (n, d)-extendable. |

Proof of Lemma Let A be (n,d)-extendable (in particular, A is (d — 1)-
separated). Take a cubillage @ on Z(n,d) with A C Sp(Q). By (@), there exist a
cubillage @’ on Z(n,d+ 1) and a membrane M in @’ such that Q = 7(M), where 7 is
the projection R — R? as in Sect. L1l Let Q” be the n/-expansion of Q' using M.
Then Q" is a cubillage on Z(n + 1,d + 1). Take the n'-pie 11, in @”. Then the side
B, of 11, contains the vertices of M, whereas the side B!, contains the vertices Xn’
for X € Sp(M) (cf. [@3)(ii)). Since A C Sp(M) = Sp(B,»), we have A" C Sp(B),),
whence AU A" C Sp(Q”). Thus, AU A" is (n+ 1,d + 1)-extendable.

Conversely, let AUA" be (n+1,d+ 1)-extendable (in particular, it is d-separated).
Then AU A’ C Sp(Q) for some cubillage Q on Z(n + 1,d+ 1). By (25), any X € A
must be connected with Xn' € A" by an n’-edge in ). This implies that A U A" is
contained in the n'-pie of @ (in which A and A’ lie in the sides B,y and B!, of II,,,
respectively). Then the n’-contraction operation applied to ) transforms @ and II,,
into a cubillage Q" on Z(n,d + 1) and a membrane M in ', preserving the vertices
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of B,,. Hence A C Sp(M), and now taking the cubillage Q" := 7n(M) on Z(n,d), we
obtain A C Sp(Q”), as required. |

Note that Lemmas [E.1] and can also be used to demonstrate an interesting class
of extendable set-systems, as follows.

Proposition 5.3 Let k € [n], B C 2 D C {k+1,...,n}, and d := |D|. Let C
consist of the sets of the form BU D' for all B € B and D' C D. Suppose that B is
2-separated. Then C is (n,d + 3)-extendable.

Proof We use induction on n + d. When d = 0, C becomes B, and therefore it is

(n, 3)-extendable (by (L2)).
So assume that d > 1. Let p be the maximal element in D. If p < n then C

is contained in 2"~ By Lemma B.I] C is (n,d + 3)-extendable if and only if it is
(n — 1,d + 3)-extendable, and we can apply induction.

Now let p =n. Form C' :={X € C:n ¢ X} and C" := {X € C: n € X}. Then
C'NC”" =10, C"UC” =C, and the construction of C implies that C" = {Xn: X € C'}.
Therefore, by Lemma [5.2] C is (n,d + 3)-extendable if and only if C’ is (n — 1,d + 2)-
extendable. Since C’ consists of the sets of the form B U D’ for all B € B and D’ C
D N [n — 1], we can apply induction. |

As a special case in this proposition, we obtain the following

Corollary 5.4 For any D C [n] with |D| < d, the collection {X C D} (forming the
vertex set of a “cube”) is (n,d)-extendable.

(In this case one should take as B the “cube” on three smallest elements of D.)

Thus, one cube of dimension < d within a zonotope Z(n, d) can always be extended
to a cubillage. In contrast, as we have seen earlier (cf. Corollary B.2]), a triple of (duly
separated) “cubes” of dimension 0 need not be extendable. In light of these facts, we
can address the following open question:

(O1) : Whether or not any two “cubes” C ={AUX: X C D}and C'={A'UY:Y C
D'}, where A, A", D, D' C [n], |D|,|D'| <d, and CUC"is (d — 1)-separated, can
be extended to a cubillage on Z(n,d)?

A similar open question concerns a membrane and a cube:

(O2) : Whether or not any pair consisting of a membrane M in Z(n,d) and a “cube”

C={AUX: X C D}, where A,D C [n], |D| <d, and Sp(M)UC is (d — 1)-

separated, can be extended to a cubillage on Z(n,d)?

6 Inversions

Inversions discussed in this section arise as a natural generalization of the classical
notion of inversions in elements (permutations) of a symmetric group S, inspired by

10



the observation that a permutation of [n| can be interpreted as a membrane in the
zonogon Z(n,2). We will use two ways to define inversions, which are shown to be
equivalent. The first one is of a geometric flavor, as follows.

Definitions. Consider a cubillage ) on Z = Z(n,d), a membrane M in @, and
the corresponding cubillage Q' := w(M) on Z(n,d — 1). A d-tuple K € ([Z}) is called
inversive, or an inversion, for M, as well as for ', if the cube C of ) having type K lies
before M, i.e., in the region Z~ (M) between Z% and M (see Sect. LTl for definitions).
Otherwise (when the cube C' € @ with 7(C') = K lies in the region Z*(M) between
M and Z™), we say that K is straight for M (and for Q").

An important fact is that the set of inversions for M does not depend on the choice
of a cuballage @) on Z that contains M as a membrane (see Remark 2 below); we denote
this set as Inv(M), or Inv(Q’).

In particular, the smallest case Inv(M) = () (the largest case Inv(M) = ([g}))
happens when M = Z (resp. M = Z™), or, in terms of cubillages, when Q' = 7(M)
becomes the standard cubillage Q5 ; ;| (resp. the anti-standard cubillage Q2% ;). (Note

that [8] exhibits necessary and sufficient conditions on a collection in (["]) to be the set
of inversions for a membrane, but we do not use this in what follows.)

The second way to define inversions relies on a natural binary relations on cubes of
a cubillage. More precisely, given a cubillage Q on Z(n, d) we say that a cube C' € Q
immediately precedes a cube €' € @ if their sides C™* and (C')F share a facet (a
(d — 1)-dimensional face). Then for C,C" € Q, we write C <5 ¢ and say that C
precedes C if there is a sequence C' = Cy, C1, ..., C), = C’' such that C;_; immediately
precedes C; for each 7. It can be shown rather easily that the relation <g is a partial
order (arguing in spirit of the proof of Lemma 4.2 in [I] for d = 3).

A behavior of this order under contraction operations on pies (defined in Sect. FL.2])
is featured as follows.

Lemma 6.1 Let Q* be the i-contraction of a cubillage @ on Z(ﬁ,cAl}, where i € [n],
and suppose that D, D" are cubes in Q* such that D <g- D'. Then the cubes C,C" € Q)
with 7(C) = 7(D) and 7(C") = 7(D’) satisfy C <5 C".

Proof Let B;, R, R be as in [@3)(i),(ii) for the i-pie II; in Q. It suffices to consider
the case when D immediately precedes D’. Then four cases are possible: (a) both D, D’
lie in the part R of Q*, (b) both D, D’ lie in the part R’ — &; of Q* corresponding to
R'in Q, (¢) D liesin R, and D' in R — &, or (d) D lies in R' — &, and D' in R.

In case (a), we have C' = D and " = D', while in case (b), C' = D + ¢ and
C" = D'+ ¢&;. So in both cases C' immediately precedes C”. In case (c), we have C' = D
and C' = D'+ ¢&;. Also D™ and (D')" share a facet F' contained in B;. Therefore, the
pie II; has the i-cube C” that is the sum of F' and the segment [0, &;]. One can see that
Crear (0" = F and (C") N (C")* = F+¢;. Then C immediately precedes C”, and
C" immediately precedes C’. This implies C' <5 C’. Finally, in case (d), C = D + ¢;
and C" = D'. Also D™ and (D') share a facet F in B;. Again, II; has the i-cube C”
that is the sum of F' and the segment [0, &;]. But now we have C™ N (C")" = F + ¢;
and (C") N (C") = F. Then C <5 C" =<5 €', implying C' <5 ", as required. I
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Now return to @, M, Q" as above. Fix a cube C' € @ and let K := 7(C'). Suppose we
apply to @ the i-contraction operation with i € [n] — K. One can see that under this
operation M turns into a membrane M’ in the resulting cubillage @)/, and comparing
the location of C' relative to M with that of the “image” of C relative to M’, one can
see that the status of K preserves, i.e., K is inversive for M’ if and only if so is for M.

By applying, step b;/ step, the i-contraction operations to all i € [nl—K , we produce
from @ the cubillage @ := @Q/([n] — K) consisting of a single cube C having type K.
Accordingly, M and Q/ turn into the membrane M = M /([n] = K) in Q and its
projection Q = 7T(M ), respectively. Since Q has exactly two membranes, namely, Cfr
and Crear, and since the status of K preserves during the contraction process, we can
conclude that

(6.1) if K is inversive (straight) for M, then the reduced membrane M:=M /([n] — K)
is isomorphic to the rear (resp. front) side of a cube of type K.

Assuming that K consists of elements k) < -- - < kg, we will write Z (K, d—1) for the
zonotope generated by § 1= m(&,), p = 1,. .., d (where, as before, &, is a generator from
=). In view of |K| = d, there exist exactly two cubillages on Z' := Z(K,d — 1), namely,
the standard and anti-standard cubillages, denoted as Q% , ; and Q% _,, respectively
(which correspond to the standard and anti-standard cubillages in Z(d,d — 1)).

Since Q% ,_, and Q3 , are the projections of C'™ and C'"™®, respectively, where

C'is a cube of type K (viz. C' = Z(K,d)), (6.1]) implies that

(6.2) K € (M) is an inversion for a membrane M in Z(n,d) if and only if 7(M/([n] —
K)) is the anti-standard cubillage Q% | on Z(K,d — 1).

This and Lemma 6.1l lead to a description of inversions for M in terms of the partial
order <y, giving the second (“intrinsic”) way to characterize Inv(M). Following [6], for
K € ([Z}), define Pac(K) to be the set {K —i:i € K} of (d — 1)-element subsets of
K, called the packet of K. Then each K’ € Pac(K) is the type of some cube in M. For

convenience, we use the same notation <, for the corresponding types; so if C,C" € M
and C' <y €', we may write 7(C) < 7(C").

Proposition 6.2 Let K € ([2}) consist of elements ky < --- < kg and let M be a

membrane in Z(n,d). Then the elements of Pac(K) occur in the lexicographic order
(K —kq) <ar (K = ka—1) <ar -+ < (K — k)
if K s straight for M, and in the anti-lexicographic order
(K — k1) <p (K —ka) <pr -+ <ar (K — ka)
if K is inversive for M.

Proof In view of Lemma [6.1] the required relations for <,; would follow from similar
relations for <., where M’ := M/([n] — K). Moreover, since the relations <, and
<=7y on Pac(K) are the same, it suffices to consider cubillages on Z(K,d — 1), or
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equivalently, on Z(d, d—1). In other words, we have to show that for the sets A; := [d]—1,
1=1,....d:

Ay </ Aygq << Ay, and (63)
A1 <" A2 <" Ad,

where <" (<) denotes the order in Q" := Q% , , (resp. Q" := Q¥ ;).

To show this, we first specify the spectra of Q" and Q”. Let X (Y) be the set of
elements i € [d] with d—i odd (resp. even). Note that X and Y are not (d—2)-separated
from each other; so one of X, Y belongs to Sp(Q’), and the other to Sp(Q”) (taking
into account that each of Sp(Q’) and Sp(Q") is (d — 2)-separated and that [Sp(Q')| =
ISp(Q")| = (g) + (Cll) + .- (dil) =24 1; cf. 28) and ([Z4). Using Sp(Q’) = Sp(Z )
and Sp(Q") = Sp(Z*) for the “cube” Z = Z(d,d) and considering (.2])(ii),(iii), one
can conclude that

X €Sp(Q") and Y € Sp(Q").

Let us prove (63). The cubillage @’ is formed by d cubes Cf,...,Cy of types
Ay, ..., Ay, respectively, each of which must contain the unique vertex of @’ lying
in the interior of 7’ = Z(d,d — 1), namely, the vertex X (viz. > (7(&): i € X)). It
follows that in the digraph G¢ (defined in Sect. ),

(6.5) the vertex X is incident to d edges ay, ..., aq of G, where each a; is an i-edge,
and a; enters (resp. leaves) X if i € X (resp. i € [d] — X);

(6.6) fori=1,...,d, the cube C; contains all edges in E := {ay,...,aq} except for a;.

Consider “consecutive” cubes C;, Ciy1 (1 < i < d). They share a facet, namely, the
one lying in the hyperplane H; spanned by the edge set £ — {a;, a;11}. The required
relation A;1; < A; in ([63) can be reformulated as:

(%) when seeing in the direction of the last coordinate vector, the cube C; is located
behind H; (whereas C;,4 is located before H;).

To see (), for j =1,...,d, denote 7({;) by p;, and define the vector 3; to be —p;
if j € X, and ¢, otherwise. We write D(f3, ..., ') for the determinant of the matrix
formed by a sequence S, ..., 8’ of d—1 column vectors in R?"!. Note that () says that
the edge a;,1 of C; is located behind H; (and the edge a; of C;;1 before H;). One can
realize that this location corresponds to the relation

(**) D := D(Solu P25+ Pi—1y Pit2, Pit3y -+ 90d7¢i+1) > 0.
Now validity of (%) follows from
D = (_l)d_i_lD(wlﬂ ) Qpi—laazﬁrl? Pit2y -+ Sod)
=D(p1,. ., Qic1, Pit1, Pit2, - - Pa) > 0

(taking into account (2.I]) and the fact that @;,; = —¢;11 if and only if d —7 — 1 is
odd).
To show (G.4]), we argue in a similar way, replacing (G.3]) by:
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(6.7) in the graph Ggn, the vertex Y is incident to d edges by, . .., by, where each b; is
an i-edge, and b; enters (resp. leaves) Y if i € Y (resp. ¢ € [d] = Y).

Using this and the fact that Y if formed by elements i € [d] with d — i even, one
shows that for each 7, the cube C; of type A; is located before the hyperplane separated

C; and Cyyq (cf. (%)), and (64) follows. I

Remark 2. The above proposition implies that the “geometric” definition of Inv (M)
(given in the beginning of this section) does not depend on the choice of a cubillage
containing M as a membrane. Next, for a membrane M in Z(n,d), we alternatively
could give a “packet” definition for straight and inversive tuples ([Z]) in a spirit of
the statement in this proposition, and then come to the “geometric” characterization
by reversing reasonings in the above proof. This alternative way to define Inv(M)
matches the classical definition due to Manin and Schechtman (cf. Theorem 3 in [0]).
Recall that they introduced a “packet admissible” total order < on ( d[f]l), which means
that for each tuple K € ([Z]), the elements of Pac(K') become ordered by < either
lexicographically or anti-lexicographically, and in the latter case, K is said to be an

inversion for ((d[f]l), <). (Compare < with <,.)

Note also that the method of proof of Proposition enables us to reveal one more
useful fact.

Proposition 6.3 Let M be a membrane in Z(n,d) and let K € ([3}) consist of
elements k1 < --- < ky. Then:

(i) K is inversive for M if and only if there is X € Sp(M) such that X N K =
{ki: d —i odd} =: K°;

(ii) K is straight for M if and only if there is Y € Sp(M) such that Y NK = {k;: d—1i
even} =: K.

Proof Let [n|— K = {ji1, o, -, jn_a} and form the sequence My = M, My,..., M, 4
of membranes in the corresponding zonotopes, where M; = (M;_1)/j;. So M’ := M,,_4
is a membrane in the final zonotope Z’ := Z(K,d) (a single cube). We know that if
K is inversive for M, then M’ = (Z')** and M’ contains the vertex K° whereas if
K is straight for M, then M’ = (Z')" and M’ contains the vertex K" (cf. the proof
of Proposition [6.2]). Now the result follows by observing that for 1 <i < n — d, if the
membrane M; has a vertex A, then the previous membrane M;_; has a vertex A’ of

the form A or AU {j;}. 1

As a consequence, we obtain the following result.

Theorem 6.4 Let M, ..., M, be membranes in Z(n,d) such that Inv(M;) C --- C
Inv(M,). Then the collection Sp(M;) U ...USp(M,) is (d — 1)-separated.

Proof Suppose that this is not so. Then for some i < j, there exist X € Sp(M;)
and Y € Sp(M;) that are not (d — 1)-separated from each other. Therefore, there
exist elements i1 < iy < -+ < igyq of [n] that alternate in X —Y and Y — X. Let
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for definiteness the elements i, with k£ odd are contained in X — Y (and the other
in Y — X). Consider the d-element sets K := {iy,...,iq} and K' := {io, ... iq41}.
Then, by Proposition [6.3] K is straight for one, and inversive for the other membrane
among M;, M;. But the behavior of M;, M; relative to K’ is opposite. Thus, neither
Inv(M;) C Inv(M;) nor Inv(M;) C Inv(M;) is possible; a contradiction. 1

We finish this section with two applications.

1) Let M,N be two membranes with Inv(M) C Inv(N) in Z = Z(n,d). By
Theorem [6.4] the collection C := Sp(M)USp(N) is (d — 1)-separated; so it is tempting
to hope that C is extendable to a maximal by size (d — 1)-separated set-system, or,
equivalently, that there exists a cubillage () on Z containing both membranes. We can
try to construct such a @ by filling the region Z~ (M) (between ZT and M) with
a “partial” cubillage @', and filling the region Z*(N) (between N and Z'™) with a
“partial” cubillage Q" (such @', Q" exist by (4J])). But what is about the rest of Z
between M and N, denoted as Z(M, N)? (Note that Inv(M) C Inv(N) provides that
M lies within Z~(N).)

Let us say that M, N are agreeable if the collection Sp(M) U Sp(N) is (n,d)-
extendable, i.e., a cubillage on Z containing both M, N (equivalently, a “partial”
cubillage filling Z (M, N)) does exist. Ziegler [8] explicitly constructed two membranes
M, N in the zonotope Z(8,4) such that Inv(M) C Inv(N) but M, N are not agreeable
(in our terms) . This together with Theorem implies that the set system Sg4 is not
pure (the latter fact was omitted in [8]). (Compare (O2) in the end of the previous
section that considers the union of a membrane and a cube.)

2) In light of the above result for d = 4, Ziegler asked about the existence of
two non-agreeable membranes in dimension 3. Answering this question, Felsner and
Weil [2] proved that for an arbitrary n, any two membranes M, N with Inv(M) C
Inv(N) in Z(n,3) are agreeable. Note that the proof in [2] attracted a non-trivial
combinatorial techniqies. An alternative proof immediately follows from Galashin’s
result in [3] (mentioned in (L2))) and Theorem .41
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