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Abstract

We consider a planar graph G in which the edges have nonnegative integer
lengths such that the length of every cycle of G is even, and three faces are dis-
tinguished, called holes in G. It is known that there exists a packing of cuts and
(2,3)-metrics with nonnegative integer weights in G which realizes the distances
within each hole. We develop a purely combinatorial strongly polynomial-time
algorithm to find such a packing.
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1 Introduction

An interesting class of problems in combinatorial optimization is formed by the ones
on packing cuts and metrics that are related via a sort of polar duality to popular
multi(commodity)flow demand problems in graphs. (For a discussion on such a rela-
tionship and some appealing examples, see, e.g., [3, Sect. 4],[9, Sects. 71,72,74]. The
simplest example is the polar duality between the classical problems of finding an s–t
flow of a given value in a capacitated graph G and finding a shortest s–t path in G
with nonnegative lengths ℓ of edges, or, equivalently, finding a maximal packing of cuts
separating the vertices s and t in (G, ℓ).)

In this paper we consider a planar graph G = (V,E) embedded in the plane in
which the edges e ∈ E have nonnegative lengths ℓ(e) ∈ R≥0 and a subset H of faces
of G, called holes, is distinguished. Also we are given (implicitly) a certain set M of
metrics on V . Then the (fractional) problem of packing metrics realizing the distances
on the holes for G, ℓ,H,M consists in the following:

PMP: Find metrics m1, . . . ,mk ∈ M and weights λ1, . . . , λk ∈ R≥0 such that:

λ1m1(e) + . . .+ λkmk(e) ≤ ℓ(e) for each e ∈ E; and (1.1)

λ1m1(st) + . . .+ λkmk(st) = distG,ℓ(st) for all s, t ∈ VH , H ∈ H. (1.2)
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Hereinafter we use the following terminology, notation and conventions:

(a) when it is not confusing, a pair (x, y) of vertices may be denoted as xy;

(b) for a face F , its boundary (regarded as a graph) is denoted by bd(F ) = (VF , EF );

(c) a metric on V is meant to be a function m : V × V → R≥0 ∪ {∞} satisfying
m(xx) = 0, m(xy) = m(yx), and m(xy)+m(yz) ≥ m(xz) for all x, y, z ∈ V (admitting
m(xy) = 0 when x ̸= y);

(d) distG,ℓ(uv) denotes the distance in (G, ℓ) between vertices u, v ∈ V , i.e., the
minimum length ℓ(P ) :=

∑
(ℓ(e) : e ∈ EP ) of a path P connecting vertices u and v in

G (where EP is the set of edges in P ); in particular, distG,ℓ is a metric.

Typically the class M of metrics figured in PMP is described by fixing one or more
graphs K = (VK , EK) and ranging over arbitrary mappings γ : V → VK . Then each
γ generates the metric mγ on V by setting mγ(xy) := distK,1(γ(x)γ(y)) for x, y ∈ V

(where 1 stands for the all-unit function on EK). Two special cases of metrics are
important for us:

(i) when K = K2 (the graph with two vertices and one edge), m = mγ is called a
cut-metric; in other words, m is generated by a partition {V1, V2} of V and establishes
distance 0 inside each of V1 and V2, and 1 between the elements of these subsets;

(ii) when K = K2,3 (the complete bipartite graph with parts consisting of two and
three vertices), mγ is called a (2,3)-metric; it is generated by a partition of V into five
subsets S1, S2, S3, T1, T2 and establishes distance 0 inside each of them, 1 between Si

and Tj (i = 1, 2, 3, j = 1, 2), and 2 otherwise.

Nontrivial integrality results on PMP, mentioned below, have been obtained when
|H| is “small” and the edge length function ℓ is cyclically even, which means that ℓ
is integer-valued and the length ℓ(EC) of any cycle C in G is even. (For a function
f : S → R and a subset S ′ ⊆ S, we write f(S ′) for

∑
(f(e) : e ∈ S ′).)

(1.3) If ℓ is cyclically even and M is the set of cut-metrics on V , then PMP has an
integer solution (i.e., having integer weights of all metrics) when |H| = 1 [1] and
when |H| = 2 [8].

(1.4) If |H| = 3, ℓ is cyclically even, and M is formed by cut- and (2,3)-metrics on V ,
then PMP has an integer solution [4] (whereas if M consists only of cut-metrics,
then PMP need not have a solution at all).

(1.5) If |H| = 4, ℓ is cyclically even, and M is formed by cut-, (2,3)- and 4f -metrics
on V , then PMP has an integer solution, where a 4f -metric is generated by a
mapping γ : V → VK with K being a planar graph with four faces [4].

In fact, the existence of a solution to PMP with real-valued weights λ in cases
|H| = 1, 2, 3 can be immediately concluded, via polar duality, from solvability criteria
for corresponding fractional multiflow demand problems given in [7],[6],[5], respectively,
and the essence of (1.3)–(1.5) is just the existence of integer solutions when the lengths
of edges are cyclically even (or, weaker, a half-integer solution when the lengths are
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integer-valued). The proof for |H| ≤ 2 given in [8] is constructive and can be turned
into a pseudo-polynomial algorithm. A strongly polynomial combinatorial algorithm
for finding a solution formed by cut-metrics with integer weights when |H| ≤ 2 and ℓ
is cyclically even is given in [2].

The purpose of this paper is to devise a strongly polynomial combinatorial algorithm
for |H| = 3.

Theorem 1.1 Let G = (V,E) be a planar graph with cyclically even lengths ℓ(e) of
edges e ∈ E and let H be three distinguished faces of G. Then one can find, in
strongly polynomial time, cut- or (2,3)-metrics m1, . . . ,mk and nonnegative integers
λ1, . . . , λk ∈ Z≥0 satisfying (1.1)–(1.2).

Note that this theorem is analogous, in a sense, to a result for arbitrary graphs in [3]
where a strongly polynomial combinatorial algorithm is developed that, given a graph
G = (V,E) with cyclically even lengths of edges and a distinguished set T ⊂ V of five
terminals, finds an integer packing of cuts and (2,3)-metrics realizing the distance for
each pair of terminals.

Our algorithm yielding Theorem 1.1 is given throughout Sects. 2–7. The main
part of the algorithm involves three sorts of good reductions by cuts, called Reductions
I,II,III and described in Sects. 3,5,6, respectively. Here by a reduction by cuts, we
mean finding certain cut-metrics with integer weights and accordingly reducing the
current lengths ℓ, and we say that the reduction is good if combining these cut-metrics
with a solution to PMP for G,H and the reduced lengths ℓ′, we obtain a solution
for ℓ. During the algorithm, as soon as the length of some edge becomes zero, this
edge is immediately contracted. We explain that Reductions I,II,III are implemented
in strongly polynomial time (but do not care of precisely estimating and decreasing
the time bound). It turns out that the sequence of reductions by cuts that we apply
eventually produces a weighted graph (G, ℓ) whose structure is quite simple: it is
formed by three paths connecting the same pair of vertices and having equal lengths.
The distance in this (G, ℓ) is represented as the sum of weighted (2,3)-metrics and,
possibly, one cut-metric, yielding the desired result.

Remark. In fact, our algorithm is self-contained (up to appealing to the algorithm
of [2]) and leads to a proof of the existence theorem (1.4) alternative to that given
in [4]. Note that the latter proof was nonconstructive and can hardly be turned into
an algorithm finding an integer solution for (G, ℓ,H) with |H| = 3 and a cyclically
even ℓ in pseudo polynomial time. The algorithm of this paper combines various com-
binatorial techniques and its description may look rather long. To compare: already a
fractional analog of PMP with |H| = 3 is a nontrivial task to solve. Indeed, a naive
l.p. relaxation of the problem involves exponentially many variables. A more clever
approach relies on the observation in [4, Sect. 3] that there exists a solution using
special cut- and (2,3)-metrics; namely, those cut-metrics ((2,3)-metrics) for which the
corresponding subdivision of G splits the boundary of each hole into at most two (resp.
four) connected pieces. Using this and attracting certain fractional relaxations of cut-
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and (2,3)-metrics, one can compose a consistent linear program that has O(|V |8) vari-
ables and O(|V |9) constraints; then a fractional solution µ can be found in strongly
polynomial time (we omit the details here). However, it is not clear whether µ could
somehow help to find (or approximate) an integer solution. It seems that a “frac-
tional approach” of this or another sort cannot compete with the “natural” strongly
combinatorial algorithm developed in this paper.

2 Initial reductions

We start with additional terminology, notation and conventions.

• Paths, cycles, subgraphs and other objects in a planar graph G = (V,E)
are naturally identified with their images in the plane or sphere. A path P =
(v0, e1, v1, . . . , ek, vk) from x = v0 to y = vk is called an x–y path. When both x, y
belong to (the boundary of) a hole H ∈ H, we also say that P is an H-path. When it
is not confusing, we may use notation P = v0v1 · · · vk (via vertices) or P = e1e2 · · · ek
(via edges). For a simple path P , its subpath with endvertices u and v may be denoted
as P [u, v] (as a rule, but not always, we assume that u, v occur in this order in P ).
Also for paths P = v0v1 · · · vk and P ′ = v′0v

′
1 · · · v′k with vk = v′0, we write P ·P ′ for the

concatenated path v0v1 · · · vkv′1 · · · v′k. When x = y and |EP | > 0, P becomes a cycle.
When needed, a path/cycle is identified with the one reverse to it.

• The set of faces of G is denoted by FG. A face F is regarded as a closed region in
the plane or sphere (i.e., including the boundary bd(F ) = (VF , EF )), and the interior
F − bd(F ) of F is denoted as Int(F ). The boundary bd(F ) may be identified with the
corresponding cycle. Usually the unbounded face of G is assumed to be a hole.

• We say that VH := ∪(VH : H ∈ H) is the set of terminals. The other vertices of
G are called inner. Also we address the adjective inner to the faces in FG −H and to
the edges not contained in the boundaries of holes.

• Usually we will abbreviate the distance function distG,ℓ to d. Note that the cyclic
evenness of ℓ implies that for any edge e = uv of G, the integers ℓ(e) and d(uv) have
the same parity. The distances d(xy) for all x, y ∈ V are computed in the beginning
of the algorithm and updated when needed.

We assume that G, ℓ,H satisfy the following conditions, which will simplify our
description, leading to no loss of generality in essence:

(C1): G is connected and has no loops and parallel edges, and the cycle bd(F ) is
simple for each face F ; in particular |VF | ≥ 3 for each face F .

(For otherwise we can make easy reductions of the problem, preserving the cyclic
evenness.) The properties in (C1) will be default maintained during the algorithm.
One more useful simplification is as follows.

(OP1) In the current graph, if there appears an edge e = uv with ℓ(e) = 0, then we
immediately contract this edge (identifying the vertices u and v).
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Also at the preprocessing stage of the algorithm, operations (OP2)–(OP5) described
below are applied, step by step, in an arbitrary order. To describe them, we need
additional definitions and notation.

For a face F , let ΠF denote the set of all pairs x, y ∈ VF of vertices in F . Due to
condition (1.2), an important role is played by the set of terminal pairs ∪(ΠH : H ∈ H),
denoted as ΠH. We say that an s–t path P in G is an H-geodesic (resp. an H-geodesic
for H ∈ H) if P is shortest w.r.t. ℓ and st ∈ ΠH (resp. st ∈ ΠH). For vertices
x, y, z ∈ V , define the values

ε(x|yz) := d(xy) + d(xz)− d(yz); and

∆(xy) := min{d(sx) + d(xy) + d(yt)− d(st) : st ∈ ΠH} (2.1)

(which are efficiently computed when needed). For brevity we write ∆(x) for ∆(xx).
Clearly each ∆(xy) is nonnegative and even, and we say that xy (resp. x) is tight if
∆(xy) = 0 (resp. ∆(x) = 0). In operations (OP2)–(OP4) we decrease the current
length ℓ, trying to make the values ∆ as small as possible while preserving the cyclical
evenness and the original distances d on ΠH.

(OP2) Suppose that there exists (and is chosen) a non-tight vertex x (this is possible
only if x is inner). Then we decrease the length of each edge incident to x by the
minimum of these lengths and ∆(x)/2 (this minimum is a positive integer).

As a result, at least one of the following takes place: (i) ℓ(e) becomes 0 for some edge
e incident to x, or (ii) ∆(x) becomes 0. In case (i), we contract e (by applying (OP1)),
and if ∆(x) is still nonzero, repeat (OP2) with the same x.

(OP3) Suppose that there exists an edge e = xy ∈ E with ℓ(e) ≥ 2 and ∆(xy) > 0.
Then we reduce the length ℓ(e) to the minimal nonnegative integer α so that α
and d(xy) have the same parity and d(sx) + α + d(yt) ≥ d(st) for all st ∈ ΠH.

(OP4) Suppose that there are two different vertices x, y in an inner face F which
are not adjacent in G and such that ∆(xy) > 0. Then we connect x, y by edge
e, inserting it inside F (thus subdividing F into two inner faces), and assign the
length ℓ(e) in the same way as in (OP3).

Clearly (OP3) and (OP4) preserve both the cyclical evenness of lengths and the
distances on ΠH, and we can see that

(2.2) if the new value ∆(xy) is still nonzero, then ℓ(e) = 1

(taking into account that e should be contracted when ℓ(e) = 0). Note that if none of
(OP3) and (OP4) is applicable, then each edge e = xy satisfies ℓ(e) = d(xy). Moreover,
the following useful property takes place:

(C2): for each face F and vertices x, y ∈ VF , the pair xy is tight.
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Indeed, this is trivial when F is a hole. So suppose that F is inner and xy is non-tight.
By (OP4), this is possible only if xy is an edge. By (2.2), ℓ(xy) = 1. Take a vertex
z ∈ VF different from x, y (existing by (C1)). Since d(zx) + d(zy) + ℓ(xy) is even and
ℓ(xy) = 1, either d(zx) = d(zy) + ℓ(xy) ≥ 1 + 1 = 2 or d(zy) = d(zx) + ℓ(xy) ≥ 2. For
definiteness, assume the former. Then zx is tight (since ∆(zx) > 0 would imply that
z, x are connected by edge e with ℓ(e) = d(zx) = 1, by (2.2), contradicting d(zx) ≥ 2).
This implies that there exists an H-geodesic passing z, x, and hence an H-geodesic
passing x, y. Then ∆(xy) = 0; a contradiction.

The final operation is intended for getting rid of “redundant” edges.

(OP5) Suppose that some face F contains a dominating edge e = xy, which means
that d(xy) = ℓ(P ), where P is the x–y path in bd(F ) not containing e (so
bd(F ) = P ∪{e}). Then we delete e from G (thus merging F with the other face
containing e and preserving the distance d).

Let ℓ, d,∆ be the corresponding functions obtained upon termination of the pre-
processing stage. Then (C1) and (C2) hold, and

(C3): no face of G has a dominating edge.

The preprocessing stage takes O(|V |2) applications of (OP2)–(OP5). This follows
from observations that if, at some step, a pair x, y ∈ V becomes tight, then it remains
tight upon termination of the process (unless x, y merge). Also if a dominating edge
is deleted by (OP5), then this edge could never appear again, and (“symmetrically”)
if an edge xy is created by (OP4) (from a non-tight pair), then e becomes tight and
could not be handled again (unless it is deleted by (OP5) or (OP2)).

3 Reduction I

In this section we further simplify (G, ℓ,H) by using the algorithm from [2] which finds
a packing of cuts realizing the corresponding distances in the two-hole case.

For X ⊂ V , define δX = δGX to be the set of edges of G connecting X and V −X,
referring to it as the cut generated by X (or by V −X), and define ρX = ρHX to be
the set of pairs st ∈ ΠH separated by X, i.e., s ̸= t and |{s, t} ∩X| = 1. The cut δX
is associated with the cut-metric corresponding to the the partition {X,V −X}.

Let χE′
denote the incidence vector of a subset E ′ ⊆ E, i.e., χE′

(e) = 1 if e ∈ E ′,
and 0 if e ∈ E − E ′.

Definition. Let C be a collection of cuts δX in G equipped with weights λ(X) ∈ Z≥0.
We call (C, λ) reducible (for G, ℓ,H) if the function ℓ′ := ℓ−

∑
(λ(X)χδX : δX ∈ C) (of

reduced lengths) is nonnegative and the distance function d′ := distG,ℓ′ satisfies

d′(st) = d(st)−
∑

(λ(X) : δX ∈ C, st ∈ ρX) for each st ∈ ΠH. (3.1)

We also say that the lengths ℓ′ are obtained by a good reduction using (C, λ).
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An advantage from such a reduction is clear: once we succeeded to find a reducible
(C, λ), it remains to solve PMP with (G, ℓ′,H). Indeed, ℓ′ is cyclically even (since
any cycle and cut have an even number of edges in common), and taking an integer
solution to PMP with (G, ℓ′,H) and adding to it the weighted cut metrics associated
with (C, λ), we obtain an integer solution to the original problem (since (1.1)–(1.2)
for ℓ are provided by the nonnegativity ℓ′ and relation (3.1)). Also ℓ 7→ ℓ′ does not
decrease the set of H-geodesics. In particular, the following property (which will be
used to show strongly polynomial complexity of the algorithm) holds:

(3.2) if ε(x|st) for st ∈ ΠH or ∆(xy) (defined in (2.1)) is zero before a good reduction,
then it remains zero after the reduction.

Any subcollection of weighted cuts in a reducible (C, λ) is reducible as well (for
one can see that if λ1, λ2 : C → Z≥0 and λ1 + λ2 = λ, then each (C, λi) satisfies the
equality as in (3.1)). Also if a cut δX (with unit weight) is reducible and if the subgraph
⟨X⟩ = ⟨X⟩G ofG induced byX ⊂ V consists of k components ⟨X1⟩, . . . , ⟨Xk⟩, then each
cut δXi is reducible as well (in view of χδX = χδX1+· · ·+χδXk and ρX ⊆ ρX1∪. . .∪ρXk),
and similarly for the components of ⟨V −X⟩. So we always may deal with only those
cuts δX for which both subgraphs ⟨X⟩ and ⟨V −X⟩ are connected, called simple cuts.
The planarity of G implies that

(3.3) for a simple cut δX and any face F , |δX ∩ EF | ∈ {0, 2}.

The main part of the proof of Theorem 1.1 will consist in showing (throughout
Sects. 3–7) the following assertion.

Proposition 3.1 When |H| = 3, one can find, in strongly polynomial time, a reducible
collection of cuts with integer weights so that the reduction of (G, ℓ,H) by these cuts
results in a triple (G′, ℓ′,H′) where |H′| ≤ 3 and G′ has no inner faces: FG′ = H′.

As a step toward proving this assertion, in the rest of this section we eliminate
one sort of reducible cuts. Unless otherwise is explicitly said, when speaking of a
shortest path (or a geodesic), we mean that it is shortest w.r.t. the current length ℓ,
or ℓ-shortest.

Fix a hole H and consider an H-geodesic P with ends s, t ∈ VH . Let LH(st) denote
the pair of s–t paths that form the boundary of H.

Definitions. For P as above and LH(st) = {L,L′}, define Ω(P,L) to be the closed
region of the sphere bounded by P and L and not containing the hole H, and define
GP,L = (VP,L, EP,L) to be the subgraph of G lying in Ω(P,L). We say that the pair
(P,L) (and the region Ω(P,L)) is of type i and denote τ(P,L) := i if Ω(P,L) contains
exactly i holes (then τ(P,L) + τ(P,L′) = |H| − 1). The pair (P,L) is called normal if
L is shortest, and excessive otherwise (when ℓ(L) > dist(st) = ℓ(P )). Also we write
τ(P ) := min{τ(P,L), τ(P,L′)} and define τ(H) to be the maximum τ(P ) over all
H-geodesics P , referring to τ(P ) and τ(H) as the type of P and H, respectively.

In particular, if |H| ≤ 4 then τ(P ), τ(H) ≤ 1. In the picture below, H =
{H,H ′, H ′′}, τ(P,L) = 0 and τ(P ′, L′) = 1.
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An algorithm of eliminating excessive pairs of types 0,1 (Reduction I).
Suppose that a pair (P,L) as above (concerning H, s, t) has type i ≤ 1 and is excessive.
For convenience, assume that the region Ω(P,L) is bounded. Let α := (ℓ(L)−d(st))/2;
then α is an integer ≥ 1. We wish to make a good reduction by cuts so as to turn L

into an H-geodesic while preserving the distance d(st).

To this aim, we consider the auxiliary PMP with (GP,L, ℓP,L,H′), where ℓP,L is the
restriction of ℓ to the edge set EP,L, and H′ consists of the i holes of H located in
Ω(P,L) plus the outer face H of GP,L (with the boundary P ∪ L).

Since |H′| = i+1 ≤ 2, we can apply the strongly polynomial algorithm of [2] to find
a packing of (simple) cuts δX with integer weights λ(X) > 0 realizing the distances on
ΠH′ . From this packing we extract the set C of those cuts that meet bd(H) (twice).
Since P is shortest, each cut in C meets P at most once. Then C is partitioned into
the set C ′ of cuts δX with |δX ∩L| = 2 (and δX ∩P = ∅) and the rest (formed by the
cuts δX with |δX ∩ L| = |δX ∩ P | = 1).

One can see that
∑

(λ(X) : δX ∈ C ′) = α (in view of ℓ(xy) = d(xy) for all edges xy
in L ∪ P ). We assert that (C ′, λ′) is reducible in the whole (G, ℓ), where λ′ := λ C′ .

To show this, assume that for each δX ∈ C ′, the vertices s, t are not in X (since the
generating set X of this cut can be taken up to the complement to VP,L and in view of
|δX ∩ L| = 2). Then X ∩ P = ∅, and X generates the same cut in both GP,L and G.

Define ℓ′ := ℓ−
∑

(λ(X)χδX : δX ∈ C ′). Let d̃ be the distance within the subgraph
GP,L with the lengths ℓ′(e) of edges e ∈ EP,L. The fact that the path P separating
GP,L from the rest of G is ℓ-shortest easily implies that any ℓ-shortest path in GP,L is
ℓ-shortest in the whole G. Also (C ′, λ′) is reducible for (GP,L, ℓP,L,H′), the cuts in C ′

do not meet P , and
∑

(λ(X) : δX ∈ C ′) = α. These properties imply:

(3.4) in GP,L, both P,L are ℓ′-shortest, and ℓ′(L) = d̃(st) = d(st) = ℓ(P ); and

(3.5) any pq ∈ ΠH′ satisfies d̃(pq) = d(pq)−
∑

(λ(X) : δX ∈ C ′, pq ∈ ρH′(X)).

Lemma 3.2 (C ′, λ′) is reducible for (G, ℓ,H).

Proof Consider pq ∈ ΠH and a simple p–q path Q in G. It suffices to show that

ℓ′(Q) ≥ d(pq)−
∑

(λ(X) : δX ∈ C ′, pq ∈ ρHX). (3.6)

Let p, q belong to H ′ ∈ H and let the subgraph Q ∩ P consist of k components
Y1, . . . , Yk, occurring in this order in Q. We use induction on k.
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Suppose that k ≥ 2. Take vertices u ∈ Y1 and v ∈ Y2, and let Q′ := Q[u, v] and
P ′ := P [u, v]. Then ℓ′(Q′) ≥ ℓ′(P ′) (by (3.4)). Therefore, replacing in Q the piece Q′

by P ′, we obtain a p–q path Q′′ in G with ℓ′(Q′′) ≤ ℓ′(Q) and such that the number of
components of Q′′ ∩ P is less than k, and then we apply induction.

It remains to consider the cases when either (a) Q∩P = ∅, or (b) Q∩P is nonempty
and connected. In case (a), Q is entirely contained in one of the subgraphs GP,L and
G′ := (G − GP,L) ∪ P . If Q ⊂ GP,L, then (3.6) follows from (3.5). And if Q ⊂ G′,
then (3.6) follows from ℓ′(Q) = ℓ(Q) ≥ d(pq).

In case (b), if Q is entirely contained in GP,L or in G′, then we argue as in case (a).
So we may assume that p is in GP,L − P , q is in G′ − P . Take a vertex v in P ∩ Q,
and let Q1 := Q[p, v] and Q2 := Q[v, q] (which lie in GP,L and G′, respectively). By
planarity reasons, there is a unique hole containing both p, q, namely, H (where p
occurs in L, and q in the other path in LH(st)). Then ℓ′(Q1) ≥ d̃(pv) (by (3.5)) and
ℓ′(Q2) = ℓ(Q2) ≥ d(vq). Also for any δX ∈ C ′, neither q nor v is in X. This implies
that pq ∈ ρHX if and only if pv ∈ ρH′X. Hence a :=

∑
(λ(X) : δX ∈ C ′, pq ∈ ρHX) is

equal to b :=
∑

(λ(X) : δX ∈ C ′, pv ∈ ρH′X), and we have

ℓ′(Q) = ℓ′(Q1) + ℓ(Q2) ≥ d̃(pv) + d(vq)

= d(pv)− b+ d(vq) = d(pv) + d(vq)− a ≥ d(pq)− a,

implying (3.6).

Applying the above procedure, step by step, to the excessive pairs of types 0 and
1, we get rid of all such pairs. Each path L ∈ LH(s, t) (H ∈ H, s, t ∈ VH) is treated
at most once (in view of (3.2)), and therefore the whole process, called Reduction I,
takes O(|V |2) iterations and is implemented in strongly polynomial time (relying on
the complexity of the algorithm in [2]).

So we may further assume that

(C4): (G, ℓ,H) has no excessive pairs (P,L) with τ(P,L) ≤ 1; therefore, when
|H| ≤ 4, for any H ∈ H and s, t ∈ VH , at least one of the two s–t paths L,L′ in
bd(H) is shortest: d(st) = min{ℓ(L), ℓ(L′)}

(since at least one of the pairs (P,L) and (P,L′) has type ≤ 1). In other words, for
each H ∈ H, the cycle bd(H) is isometric. One more useful observation for |H| = 3 is:

(3.7) if H = {H,H ′, H ′′} and P is an H-geodesic with ends s, t separating the holes
H ′ and H ′′, then both paths in LH(st) are shortest.

4 Elimination of lenses without holes

Consider distinct holes H,H ′ ∈ H, an H-geodesic P , and an H ′-geodesic P ′. Suppose
that P, P ′ have common vertices x, y and let Q (resp. Q′) be the subpath of P (resp.
P ′) between x and y. Suppose that the interiors of Q and Q′ are disjoint. Then the
fact that both P, P ′ are shortest implies P ∩Q′ = P ′ ∩Q = {x, y}.
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Definition. We denote the (closed) region of the sphere bounded by Q ∪ Q′ and
containing neither H nor H ′ by Ω(Q,Q′) and call it a lens for P, P ′ with ends x, y. If,
in addition, Ω(Q,Q′) contains no hole, it is called a 0-lens. (See the picture.)

H''H'H

P P'

Ω(Q,Q')
Q' Q

x

y

In what follows, for a vertex v and an edge e of a path P , we may liberally write
v ∈ P for v ∈ VP and e ∈ P for e ∈ EP .

It turns out that conditions (C2)–(C3) provide the following nice property.

Proposition 4.1 There exists no 0-lens at all.

Proof Suppose, for a contradiction, that a 0-lens Ω(Q,Q′) does exist, and let
H,H ′, P, P ′, x, y,Q,Q′ be as above. Let GQ,Q′ = (VQ,Q′ , EQ,Q′) be the subgraph of
G lying in Ω := Ω(Q,Q′). We rely on the following

Claim In the graph GQ,Q′, each edge e is contained in a shortest x–y path, and similarly
for any pair of vertices in a face of GQ,Q′ in Ω.

Proof of Claim. One may assume that e is an inner edge of GQ,Q′ (i.e., not on Q∪Q′).
By (C2), there exists an H-geodesic L containing e. Using the fact that Ω has no hole,
one can realize that L crosses at least twice some of P, P ′. Moreover, there are two
vertices u, v of L such that e belongs to L′ := L[u, v] and at least one of the following
takes place: both u, v are in P ; both u, v are in P ′. Assume that u, v are chosen so that
L′ is minimal under this property and let for definiteness u, v ∈ P . Let R := P [u, v].

Let L̃ be the path obtained from P by replacing its part R by L′; this is again a
geodesic containing e. Moreover, the minimal choice of L′ implies that at least one of
the vertices u and v, say, u, belongs to Q, while the other, v, either (a) belongs to Q

as well, or (b) is not in Ω.

In case (a), we may assume that L′ is entirely contained in Ω. Then replacing in Q

the part between u and v by L′, we just obtain the desired x–y path containing e.

In case (b), L′ meets Q′ at a vertex v′ such that L′[u, v′] lies in Ω and contains e.
Let s, t be the ends of L̃ (and P ); we may assume that s, u, v′, v, t occur in this order in
L̃. Since u ∈ Q, the subpath L̃[s, u] (= P [s, u]) passes one of the ends x, y of the lens Ω,
say, x; see the picture below. Then the desired shortest x–y path in GQ,Q′ containing
e is obtained by concatenating Q[x, u], L′[u, v′] and Q′[v′, y] (taking into account that
the lengths of Q′[x, v′] and L̃[x, v′] are equal).
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The assertion for a pair of vertices w, z in a face F of GQ,Q′ in Ω is proved in a
similar way. More precisely, take an H-geodesic D passing w and z, existing by (C2),
and let D′ := D[w, z]. Making, if needed, appropriate exchange operations involving
P,D′ and/or P ′, D′, one can “improve” D′ so as to get it entirely contained in Ω
(keeping w, z). Now we argue as above, with D′ in place of e.

By the Claim, GQ,Q′ is the union of shortest x–y paths; therefore, one can direct
the edges of GQ,Q′ so that each shortest x–y path turns into a directed x–y path, and
vice versa. It follows that each face F of the planar graph GQ,Q′ has two vertices xF

and yF such that bd(F ) is formed by two xF–yF paths A and B, which are extended
to shortest x–y paths C := P ′

F ·A ·P ′′
F and D := P ′

F ·B ·P ′′
F (where P ′

F , P
′′
F are shortest

x–xF and yF–y paths in GQ,Q′ , respectively).

Suppose that A has an intermediate vertex u and B has an intermediate vertex v
(assuming F ⊂ Ω). By the Claim, u and v belong to a shortest x–y path L in GQ,Q′ ; let
for definiteness x, u, v, y occur in this order in L. By the planarity, L′ := L[u, v] must
intersect either (a) the path P ′

F , or (b) the path P ′′
F . The graph GQ,Q′ , being directed

as indicated above, is acyclic. But in case (a), the subgraph C∪L′ has a directed cycle,
and in case (b), so does the subgraph D ∪ L′; a contradiction.

Thus, either A or B has no intermediate vertex, i.e., has only one edge e. Since
ℓ(A) = ℓ(B), e is dominating in F . This contradicts (C3), and the result follows.

One consequence of the non-existence of 0-lenses that will be used later is as follows.

(4.1) Let (Pi, Li), . . . , (Pk, Lk) be normal pairs of type 0 for a hole H, and let Ωi :=
Ω(Pi, Li) ∪ H. Then for each hole H ′ ̸= H, no H ′-geodesic has a vertex in
Int(Ω1 ∪ · · · ∪ Ωk).

Indeed, such an H ′-geodesic would create a 0-lens with some Pi.

5 Necklaces

In this section we further simplify the graph (G, ℓ) by handling one more sort of re-
ducible cuts. In fact, our description in the previous sections was applicable to an
arbitrary number of holes. This and the next sections will be devoted to the three-hole
case only (though some ingredients are valid for |H| > 3 as well).
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Fix a holeH and denote the ℓ-length of bd(H) by σ = σH . By (C4) and (3.7), bd(H)
is isometric and each H-geodesic of type 1 (if exists) connects antipodal terminals in
bd(H) (i.e. being at distance σ/2).

To simplify our description technically, we insert (for a while) extra terminals in the
boundary bd(H) to make it central symmetric. More precisely, for each s ∈ VH , when
s does not have the antipodal terminal in bd(H), we add such a vertex by splitting
the corresponding edge pq ∈ EH into two edges pt and tq whose lengths are such
that ℓ(pt) + ℓ(tq) = ℓ(pq) and d(st) = d(sp) + ℓ(pt) = d(sq) + ℓ(qt) = σ/2 (using
d(sp) + ℓ(pq) + d(qs) = σ, cf. (C4)). This modification does not affect the problem,
and we keep the previous notation (G, ℓ,H). (It increases the number of vertices and,
possibly, creates non-tight pair of vertices involving t, violating (C2); but this will not
be important for us.)

Let s1, s2, . . . , s2n = s0 be the sequence of vertices of the (modified) boundary cy-
cle bd(H) in the clockwise order around Int(H). (Note that in illustrations, when
H is the outer face of G, then the order of these vertices around the rest of G looks
anti-clockwise.) For each si, its antipodal vertex si+n is also denoted as ti (here-
inafter the indices are taken modulo 2n). A path of the form sisi+1 · · · sj is denoted by
L(sisj); then L(sjsi) is the path “complementary” to L(sisj) in bd(H). When vertices
si(1), si(2), . . . , si(k) (admitting i(j) = i(j + 1)) follow in this order cyclically, making at
most one turn, we write si(1) → si(2) → · · · → si(k).

When L := L(st) is shortest, we denote by P0(st) the set of shortest s–t paths P
such that τ(P,L) = 0. For P, P ′ ∈ P0(st), let P∧P ′ (resp. P∨P ′) be the s–t path which
together with L forms the boundary of Ω(P,L)∩ Ω(P ′, L) (resp. Ω(P,L)∪ Ω(P ′, L)).
Then ℓ(P ∧ P ′) + ℓ(P ∨ P ′) = ℓ(P ) + ℓ(P ′), implying that both P ∧ P ′, P ∨ P ′ are
shortest as well. Hence (P0(st),∧,∨) is a lattice with the minimal element L. The
maximal (most remote from L) element of P0(st) is denoted by D(st); then Ω(P,L) ⊆
Ω(D(st), L) for any P ∈ P0(st). Note that D(st) can be extracted from the subgraph
of shortest s–t paths in strongly polynomial time.

We are going to examine an interrelation of paths for two antipodal pairs si, ti
and sj, tj with si → sj → ti → tj. For brevity we write Li,P0

i , Di,Ωi for
L(siti), P0(siti), D(siti), Ω(D(siti), L(siti)), respectively, and similarly for j. Also we
abbreviate s := si, t := ti, s

′ := sj, and t′ := tj.

Consider paths M ∈ P0
i and N ∈ P0

j . Then M ∩N ̸= ∅; let x and y be the first and
last vertices ofM occurring inM∩N . SinceM,N are shortest, ℓ(M [x, y]) = ℓ(N [x, y]).
Two cases are possible:

Case 1 : either x = y or x precedes y in N ;

Case 2 : y precedes x in N .

We first consider Case 1. Represent M as M1 ·M2 ·M3, and N as N1 ·N2 ·N3, where
M2 := M [x, y] and N2 := N [x, y]. One can see that exchanging the parts M2 and N2

in M and N , we again obtain paths of type 0, one belonging to P0
i , and the other to

P0
j . To slightly simplify our considerations, we will assume that M2 = N2, denoting
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this path as M̂ . (Note that if M = Di and N = Dj, then M2 = N2 follows from the
maximality of Di, Dj.) Form the s–t′ path P and the s′–t path P ′ as

P := M1 · M̂ ·N3 and P ′ := N1 · M̂ ·M3,

and let Ω := Ω(P,L(st′)) and Ω′ := Ω(P ′, L(s′t)). Clearly both regions Ω′,Ω contain
no hole; also Ω ⊆ Ωi∪Ωj and Ω′ ⊆ Ωi∩Ωj. See the left fragment of the picture (where
H is the outer face of G).

x

s

s'

t'

t

x y

σ/2-a

s

s'

t'

t

y
H N1

M1

Ω'

N3

M3

a a

σ/2-a

b c
f

H

P

P'

Define

a := d(ss′) (= d(tt′)), b := d(s′x), c := d(yt), and f := d(xy).

Since the paths Li, Lj,M,N are shortest and have the same length σ/2, we have

ℓ(P ′) = b+ f + c ≥ d(s′t) = σ/2− a and ℓ(P ) = σ − ℓ(P ′) ≤ σ/2 + a. (5.1)

We distinguish between two subcases:

Subcase 1a : the path P ′ is shortest: ℓ(P ′) = d(s′t);

Subcase 1b : ℓ(P ′) > d(s′t).

If Subcase 1b happens, we devise a certain collection of reducible cuts and make a
good reduction, aiming to obtain a situation as in Subcase 1a. For this purpose, we
apply the algorithm of [2] to solve the auxiliary one-hole PMP with (G, ℓ, {H}), i.e.,
we handle the same G and ℓ but regard H ′, H ′′ as inner faces (see the right fragment
of the above picture). It finds a packing C of (simple) cuts δX with integer weights
λ(X) > 0 realizing the distances on ΠH .

Let ε := ℓ(P ′)− d(s′t). Then (cf. (5.1))

ℓ(P ′) = σ/2− a+ ε and ℓ(P ) = σ − ℓ(P ′) = σ/2 + a− ε. (5.2)

Since the path M is shortest and connects antipodal terminals of H, each cut
δX ∈ C meets M exactly once, and similarly for N . Let C ′ be the set of cuts δX ∈ C
meeting L(s′t). Then each δX ∈ C ′ meets L(t′s) as well, whereas each δX ∈ C − C ′

meets one edge in each of L(ss′) and L(tt′). Partition C − C ′ as C1 ∪ C2, where C1 is
formed by the cuts not meeting P , and C2 is the rest (consisting of the cuts δX with
|δX ∩M1| = |δX ∩ N3| = 1). Let h′, h1, h2 be the sums of values λ(X) over the cuts
δX in C ′, C1, C2, respectively. The cuts in C (weighted by λ) must saturate the shortest
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paths Li, Lj,M,N (in the sense, that for each edge e in these paths, the sum of λ(X)’s
over δX ∈ C containing e is equal to ℓ(e)). Then they saturate P and P ′. So L(s′t)
and L(t′s) are saturated by the cuts of C ′, P by the cuts of C ′ ∪C2, and L(ss′)∪L(tt′)
by the cuts of C1 ∪ C2. Then (in view of (5.2))

h′ = σ/2− a, h2 = (ℓ(P )− h′)/2 = a− ε/2 and h1 = a− h2 = ε/2. (5.3)

For each δX ∈ C1, since δX do not meet P , we may assume that X ⊂ Ω−P (where
Ω = Ω(P,L(st′)). Let λ1 be the restriction of λ to C1. We assert the following

Lemma 5.1 (C1, λ1) is reducible for (G, ℓ,H); in other words, for the reduced length
ℓ′ := ℓ−

∑
(λ(X)χδX : δX ∈ C1), any p–q path Q in G with pq ∈ ΠH satisfies

ℓ′(Q) ≥ d(pq)−
∑

(λ(X) : δX ∈ C1, pq ∈ ρHX). (5.4)

Proof If Q is a p–q path with p, q ∈ VH , then (5.4) immediately follows from the
reducibility of (C1, λ1) for (G, ℓ, {H}). So assume that pq ∈ ΠH′ ∪ΠH′′ . Then both p, q
are not in Ω− P .

If Q does not meet Ω−P , then we have ℓ′(Q) = ℓ(Q) (in view of X ⊂ Ω−P for each
δX ∈ C1), and (5.4) is trivial. Suppose that Q ∩ (Ω− P ) ̸= ∅. Then Q crosses at least
one of M,N . Let for definiteness Q meets Ω(M,Li)−M , and take a maximal subpath
R of Q such that R ⊂ Ω(M,Li) and R ̸⊂ M . Let u, v be the endvertices of R, and
let M ′ := M [u, v]. The fact that M is ℓ′-shortest implies that ℓ′(M ′) ≤ ℓ′(R). Then,
replacing in Q the part R by M ′, we obtain a p–q path Q′ with ℓ′(Q′) ≤ ℓ′(Q). If Q′

still meets Ω− P , we repeat the procedure (treating the pair (Q′,M) or (Q′, N)), and
so on. Eventually, we obtain a p–q path Q̃ such that ℓ′(Q̃) ≤ ℓ′(Q) and Q̃∩(Ω−P ) = ∅,
yielding (5.4) for Q.

From (5.2),(5.3) it follows that for the updated length function,

(5.5) the path P ′ becomes shortest (of length σ/2−a), and the lengths of P and L(st′)
become the same.

Thus, the above procedure turns Subcase 1b into Subcase 1a, as required.

Next we consider Case 2. Let x = v0, v1, . . . , vk = y be the common vertices of
M and N , in this order in M and, accordingly, in the reverse order in N (taking into
account that M,N are shortest). For p = 1, . . . , k, let ωp be the region bounded by the
subpaths M(p) := M [vp−1, vp] and N(p) := N [vp, vp−1] and not containing H. Then
either (a) ωp lies in Ω(M,Li) ∩ Ω(N,Lj) (in particular, M(p) may coincide with the
reverse path N(p)−1 to N(p)), or (b) Int(ωp) is nonempty and lies in the complement
of Ω(M,Li) ∪ Ω(N,Lj). To slightly simplify our considerations, we exclude the cases
when Int(ωp) is nonempty and contains no hole (which will lead to no loss of generality).
Namely, for each p where such a situation happens, we perturb N , by replacing its part
N(p) by M(p)−1. Clearly the updated s′–t path N is again shortest and of type 0.

So we will further assume that for each p where M(p) ̸= N(p)−1, the region ωp

contains one or two holes among H ′, H ′′; in this case we say that ωp is essential. We
come to four subcases of Case 2.
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Subcase 2a : No region ωp is essential; equivalently, M [x, y] = N−1[y, x].

Subcase 2b : Only one ωp is essential and it contains exactly one hole, say, H ′.

Subcase 2c : Two ωp, ωq are essential (each containing one hole).

Subcase 2d : One ωp is essential and it contains both H ′, H ′′.

We first handle (simultaneously) Subcases 2a and 2b; they are illustrated in the left
and right fragments of the picture, respectively.
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We are going to reduce these subcases to a situation as in Subcase 1a. As before, let
a := d(ss′). Represent M as M1 ·M2 ·M3, and N as N1 ·N2 ·N3, where M2 := M [x, y]
and N2 := N [y, x] (then M2 = N−1

2 in Subcase 2a). Form the s–t′ path P := M1 ·N3

and the s′–t path P ′ := N1 ·M3 and define

f := ℓ(M2) (= ℓ(N2)) and ε := ℓ(P ′)− d(s′t).

Then ℓ(P ′) = d(s′t) + ε = σ/2− a+ ε. Since ℓ(M) = ℓ(N) = σ/2, we have

ℓ(P ) = ℓ(M) + ℓ(N)− ℓ(P ′)− ℓ(M2)− ℓ(N2) = σ/2 + a− ε− 2f. (5.6)

To make the desired reduction, we use the algorithm of [2] to solve the auxiliary one-
or two-hole PMP with (G, ℓ, H̃), where H̃ := {H} in Subcase 2a, and H̃ := {H,H ′}
in Subcase 2b. Let (C, λ) be an integer solution to it. We extract from C the set C ′

of cuts meeting L(s′t) (and its opposite path L(t′s)) and the set C ′′ of cuts meeting
L(ss′) (and L(tt′)). Then

h′ :=
∑

(λ(X) : δX ∈ C ′) = σ/2− a and h′′ :=
∑

(λ(X) : δX ∈ C ′′) = a. (5.7)

Partition C ′′ as C1∪C2, where C1 consists of the cuts not meeting P , and accordingly
define hi :=

∑
(λ(X) : δX ∈ Ci), i = 1, 2. Each cut δX ∈ C2 meets P twice (since

δX ∩ P ̸= ∅ implies |δX ∩M1| = |δX ∩N3| = 1). Therefore, ℓ(P ) ≥ h′ + 2h2, and this
holds with equality since P is saturated by (C, λ). Using (5.6) and (5.7), we have

2h2 = ℓ(P )− h′ = (σ/2 + a− ε− 2f)− (σ/2− a) = 2a− 2f − ε.

This and h1 + h2 = a imply
h1 = f + ε/2. (5.8)

The following assertion is similar to Lemma 5.1.
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Lemma 5.2 In Subcases 2a,2b, (C1, λ1) is reducible for (G, ℓ,H), where λ1 := λ C1.

Proof Let Q be a p–q path in G with pq ∈ ΠH. We have to show relation (5.4) for
Q and ℓ′ := ℓ−

∑
(λ(X)χδX : δX ∈ C1). This is done in a way similar to the proof of

Lemma 5.1. More precisely, if pq ∈ ΠH̃, then (5.4) is immediate from the reducibility

of (C1, λ1) for (G, ℓ, H̃). And if pq ∈ ΠH−H̃, then both p, q are not in Ω − P , where
Ω := Ω(P,L(st′)). Making, if needed, the corresponding replacements in Q using pieces
of M or N (like in the proof of Lemma 5.1), we obtain a p–q path Q′ disjoint from
Ω− P and such that ℓ′(Q′) ≤ ℓ′(Q). Then ℓ′(Q′) = ℓ(Q′), implying (5.4) for Q.

Note that since each cut δX ∈ C1 does not meet P and M,N are shortest, either
|δX∩M2| = 1 or |δX∩N1| = |δX∩M3| = 1. Then (5.8) implies that (C1, λ1) saturates
M2 and uses ε units of the ℓ-length of P ′. It follows that for the updated lengths,

(5.9) the path P ′ becomes shortest, and the lengths of M2 and N2 become zero.

In other words, contracting the edges with zero length, we obtain a situation as in
Subcase 1a, as required. (Note that the hole H ′ vanishes if |H̃| = 2.)

In Subcase 2c, we act in a similar fashion. Suppose that H ′ ⊂ ωp, H
′′ ⊂ ωq, and

q < p. Let z := vq. Then H ′′ is located between M [x, z] and N [z, x], whereas H ′

between M [z, y] and N [y, z]; see the left fragment of Fig. 1.
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Figure 1: Subcase 2c (left) and Subcase 2d (right)

Let P ′ := N1 ·M3 and define ε := ℓ(P ′)− d(s′t) and f := ℓ(M [z, y]) (= ℓ(N [y, z])).
Find an integer solution (C, λ) to the two-hole PMP with (G, ℓ, H̃), where H̃ :=
{H,H ′}. Extract from C the set C ′′ of cuts meeting L(ss′) and partition C ′′ as C1 ∪ C2,
where C1 is formed by the cuts not meeting M [s, z]. Let λ1 be the restriction of λ to C1.
Arguing as in the previous case, one can conclude that (C1, λ1) is reducible for (G, ℓ,H)
and that

∑
(λ(X) : δX ∈ C1) = f + ε/2. Then for the reduced length function, the

path P ′ becomes shortest, and the lengths of the paths M [z, y] and N [y, z] become
zero. Then the hole H ′ vanishes and we obtain PMP with two holes.

It remains to consider Subcase 2d. We distinguish between two possibilities for
s = si and s′ = sj.
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I. Suppose that j = i + n; then s = t′ = x and s′ = t = y. Let z := vp−1 and
u := vp, i.e., the region ωp containing H ′ and H ′′ is bounded by the paths M [z, u] and
N [u, z]. Suppose that u ̸= y. Then we make a good reduction, aiming to decrease
the length of the path M ′ := M [u, y] (= N−1[u, y]) to zero (and then to contract
M ′). For this purpose, we find a solution (C, λ) to the auxiliary one-hole problem
PMP with (G, ℓ, {H}) and extract from C the set C1 of cuts meeting M ′. Since M,N
are shortest paths connecting the antipodal terminals x, y and both holes H ′, H ′′ are
disposed between M [z, u] and N [u, z], one can conclude that (C1, λ1) is reducible for
(G, ℓ,H) and saturates M ′. Then, after the reduction using (C1, λ1) followed by the
corresponding contractions, u and y become merged into one vertex.

If x ̸= z, we handle the subpath M [x, z] in a similar way.

II. Suppose that 0 < j−i < n. As in Subcases 2a–2c, we representM asM1·M2·M3,
and N as N1 · N2 · N3, where M2 := M [x, y] and N2 := N [y, x]. Besides N , consider
the shortest t′–s′ path N ′ := N−1

3 · M2 · N−1
1 (see the right fragment in Fig. 1 where

N ′ is drawn in bold). Then τ(N ′) = 0, and the paths N and N ′ form a pair as in I.
Therefore, we may assume that N∩N ′ = {s′, t′}. But then all subpaths M1,M3, N1, N3

must degenerate, giving s = t′ and s′ = t. So this is not the case.

We apply the good reductions by cuts described above to all pairs {i, j} ⊂
{1, . . . , 2n} for the hole H (with bd(H) extended to be central symmetric), and then
treat the other holes H ′, H ′′ in a similar way, referring to the whole process as Proce-
dure II. Every time we take as M,N the most remote paths Di ∈ P0

i and Dj ∈ P0
j .

Summing up the above results, we can conclude with the following:

Proposition 5.3 Procedure II takes strongly polynomial time and terminates with
(G, ℓ,H) such that |H| ≤ 3, ℓ is cyclically even, and: for each H ∈ H and antipo-
dal pairs {si, ti} and {sj, tj} with si → sj → ti → tj in bd(H), the paths M := D(siti)
and N := D(sjtj) are subject to Subcase 1a when si ̸= tj, and subject to Subcase 2d
with M ∩N = {si, sj} when si = tj.

Removing the extra terminals that were added before the procedure, we obtain
a similar result in terms of the original graph. More precisely, for H ∈ H, let
s1, s2, . . . , sm = s0 be the vertices of (the original) bd(H) in the clockwise order
around Int(H), and define Lmax

H to be the set of inclusion-wise maximal shortest paths
sisi+1 · · · si′ in bd(H) (taking indices modulo m). For such a path, we denote si′ by
ti. Also we denote the set of indices i for which Lmax

H has a path starting with si by
I = IH . Like the central symmetric case, for i ∈ I, we denote L(siti) by Li and write
P0

i , Di,Ωi for the set of shortest si–ti paths of type 0, the most remote path in P0
i ,

and the region Ω(Di, Li), respectively. Then (after removing the extra terminals) the
following holds:

(5.10) for H ∈ H and i, j ∈ IH with si → sj → ti → tj: (a) if si = tj (and therefore
sj = ti), then Di ∩Dj = {si, sj}; and (b) if si ̸= tj, then for any common vertex
v of Di and Dj, the sj–ti path Dj[sj, v] ·Di[v, ti] is shortest.
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For a fixed H ∈ H and for i ∈ IH , let Gi = (Vi, Ei) be the directed graph that is
the union of shortest paths P ∈ P0(siti), each P being directed from si to ti. We will
take an advantage from the following

Proposition 5.4 (i) The directions of edges in all graphs Gi are agreeable.

(ii) In the graph NH = (W,U) := ∪(Gi : i ∈ I), for each simple directed cycle C,
the region bounded by C and containing H contains no other hole.

(iii) NH admits a function ( cyclic potential) π : W → {0, 1, . . . , σH − 1} such that
π(s1) = 0 and for each edge e = (u, v) ∈ U , ℓ(e) ≡ π(v)− π(u) (mod σH).

Proof For k = 1, . . . ,m = |VH |, define π(sk) := ℓ(L(s1sk)). Then each edge e = sksk+1

of bd(H) satisfies ℓ(e) = π(sk+1) − π(sk), and each i ∈ I satisfies ℓ(L(siti)) = π(ti) −
π(si), taking indices modulo m and taking lengths/potentials modulo σ = σH .

In order to extend π to the other vertices of NH , we first introduce, for each i ∈ I,
its own potential πi : Vi → Z as πi(v) := ℓ(P ), where v ∈ Vi and P is a directed si–v
path in Gi. Then πi(si) = 0 and πi satisfies ℓ(e) = πi(v)−πi(u) for each e = (u, v) ∈ Ei.

We assert that for any i, j ∈ I and v ∈ Vi ∩ Vj, the numbers π(si) + πi(v) and
π(sj) + πj(v) are the same modulo σ (whence π(v) := π(si) + πi(v) is as required).

Indeed, one may assume that si → sj → ti → tj. Then, unless si, sj are antipodal
(in which case Gi ∩ Gj consists of two isolated terminals si = tj and sj = ti and the
assertion is trivial), the region Ωi ∩ Ωj lies between the shortest paths L(sjti) and
D(sjti) (in view of (5.10)). This implies that the subgraphs of Gi and Gj lying in
Ωi ∩ Ωj are the same and equal to Gi ∩ Gj. Moreover, the latter is just the union
of shortest sj–ti paths: Gi ∩ Gj = ∪(P ∈ P0(sjti)) (whence the directions of edges
in Gi and Gj are agreeable, yielding (i)). Since π(si) + πi(sj) ≡ π(sj) (mod σ) and
πi(v) = πi(sj) + πj(v), we can conclude that π(si) + πi(v) ≡ π(sj) + πj(v) (mod σ)
holds for each v ∈ Vi ∩ Vj, and (iii) follows. To see (ii) is easy.

We call the graph N = NH defined in this proposition the necklace for H. (Depend-
ing on the context in what follows, we may also think of the necklace as the underlying
undirected graph.) Two examples are illustrated in the picture; here the potentials are
indicated when all edges in the left (right) fragment have length 1 (resp. 2).

Denoting the set of all H-geodesics of type 0 by P0
H , we can summarize the above

observations and results as follows.
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Corollary 5.5 The initial problem can be reduced, in strongly polynomial time, to
PMP with (G, ℓ,H) satisfying (C1)–(C4) and the next property:

(C5) for each H ∈ H, the subgraph ∪(P ∈ P0
H) of G can be directed so that any

simple directed cycle separates H from H− {H} and has ℓ-length exactly σH .

(This can be concluded from the existence of potential π as above, which implies that
any directed cycle in NH has length kσH for some integer k and that each inner face
in NH is bounded by two directed paths of the same length.)

We denote the set of such cycles in NH embracing H by CH . For C ∈ CH , let
Ω(C) denote the closed region bounded by C and containing H. The correspondence
C 7→ Ω(C) leads to representing CH as the distributive lattice with operations ∧,∨
defined by the relations: for C,C ′ ∈ CH , Ω(C ∧C ′) = Ω(C) ∩Ω(C ′) and Ω(C ∨C ′) =
Ω(C)∪Ω(C ′). Then bd(H) is the minimal element of CH , and we denote the maximal
element in it as DH ; so

ℓ(DH) = σH and Ω(C) ⊆ Ω(DH) for all C ∈ CH .

Note that (4.1) implies the following property:

(5.11) for distinct H,H ′ ∈ H, no H ′-geodesic meets Int(Ω(DH)).

We finish this section with one important special case.

Definition. The necklace NH is called trivial if NH = bd(H).

Proposition 5.6 If τ(H) = 0 then NH is trivial.

(Note that the converse need not hold.)

Proof Suppose that this is not so. Then DH ̸= bd(H) and Ω(DH) contains a face
F ̸= H of G (which lies in a face of NH but may not coincide with the latter). We can
choose two vertices u, v in bd(F ) not contained in a directed path of NH (taking into
account that F has no dominating edge, by (C3)). Then at least one of these vertices,
v say, is not in DH . By (C2), u and v belong to an H-geodesic Q. By (5.11), Q cannot
be an H ′-geodesic for H ′ ̸= H. So Q is an H-geodesic. Moreover, τ(Q) = 0. Then Q
turns into a directed path in NH containing u and v; a contradiction.

6 Elimination of inner edges

In this section we demonstrate one more sort of reducible cuts, aiming to obtain the
following result (as a weakened version of Proposition 3.1).

Proposition 6.1 When |H| = 3, one can find, in strongly polynomial time, a reducible
collection of cuts with integer weights so that the reduction by these cuts results in a
triple (G′, ℓ′,H′) with |H′| ≤ 3 and G′ having no inner edges (i.e., covered by the
boundaries of holes).
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Let (G, ℓ,H) be as in Corollary 5.5. In what follows, until otherwise is explicitly
said, we assume that

(6.1) G has an inner edge or an inner face F with |VF | ≥ 4.

Lemma 6.2 Suppose that for some H ∈ H, the necklace NH is nontrivial. Then the
other two holes are of type 0 (and their necklaces are trivial, by Proposition 5.6).

Proof Let v be a vertex in bd(H) −DH (existing since bd(H) ̸= DH). One can see
that Ω(DH) contains an inner face F of G and a vertex u ̸= v such that

(6.2) both u, v belong to F but not connected by a directed path in NH .

By (C2), u and v belong to an H-geodesic Q. By (5.11), Q is an H-geodesic,
and (6.2) implies that τ(Q) = 1, i.e., Q separates the holes H ′ and H ′′, where H =
{H,H ′, H ′′}. One may assume that the u–v part of Q lies in Ω(DH).

Now suppose that τ(H ′) = 1 as well. Take an H ′-geodesic Q′ separating H and
H ′′. Then Q and Q′ “cross” each other; let x and y be the first and last vertices of Q′

occurring in Q, respectively. Let R and R′ be the x–y parts of Q and Q′, respectively;
see the picture where R,R′ are drawn in bold.

H''

H'H

v u

x

y

R' R

Q'Q

Exchange in Q,Q′ the pieces R,R′, forming H-path Q̃ and H ′-path Q̃′, respectively.
In view of ℓ(Q̃)+ℓ(Q̃′) = ℓ(Q)+ℓ(Q′), both Q̃, Q̃′ are shortest. Also Q̃ does not separate
H ′ and H ′′ and contains both vertices v, u. So Q̃ is an H-geodesic of type 0 passing v

and u, which contradicts (6.2).

This lemma is generalized as follows.

Lemma 6.3 Subject to (6.1), exactly one hole has type 1.

Proof In view of lemma 6.2, we may assume that the necklaces of all holes are trivial.
From (6.1) it follows that there are two vertices u, v contained in an inner face F but
not in the boundary of one hole. By (C2), for some H ∈ H, there is an H-geodesic
Q passing u, v. Since NH is trivial, τ(Q) = τ(H) = 1. Suppose that there is another
hole H ′ of type 1. Choose an H ′-geodesic Q′ of type 1. Then (like in the proof of
Lemma 6.2) there are vertices x, y ∈ VQ ∩ VQ′ such that exchanging in Q,Q′ the pieces

R := Q[x, y] and R′ := Q′[x, y], we obtain an H-geodesic Q̃ and an H ′-geodesic Q̃′,
both of type 0. Since NH and NH′ are trivial, Q̃ lies in bd(H) and Q̃′ lies in bd(H ′).
It follows that x, y ∈ VH ∩ VH′ , R is an H-geodesic, and R′ is an H ′-geodesic, both of
type 1. Now ℓ(R) = σH/2 = ℓ(Q) implies R = Q. Then Q ⊂ bd(H ′), contradicting
the choice of u, v.
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Lemma 6.4 For any two holes H,H ′ ∈ H, bd(H) ∩ bd(H ′) is connected (possibly
empty).

Proof Suppose this is not so. Then there are two paths L ⊂ bd(H) and L′ ⊂ bd(H ′)
that have the same ends, x, y say, but no common intermediate vertices, and such that
one of the two regions of the plane bounded by L ∪ L′, Ω say, contains at least one
inner face and no hole (in view of |H| = 3).

Each pair of vertices in a face within Ω belongs to an H-geodesic lying in Ω and
having both ends in one of L,L′. It follows that the subgraph G′ of G lying in Ω is
included in NH ∪ NH′ . In view of Lemma 6.2, exactly one of the necklaces of H,H ′,
say, NH , is nontrivial. Therefore, G′ ⊂ NH . This implies ℓ(L) = ℓ(L′). But then L
belongs to NH′ ; a contradiction.

Consider the auxiliary graph Γ whose vertices are the inner faces of G and whose
edges are the pairs of inner faces sharing an edge. For a component Γ′ of Γ, let ΩΓ′ be
the union of faces that are the vertices of Γ′. Lemma 6.4 implies that Γ has at most
two components, and for each component Γ′, the region ΩΓ′ is surrounded by three
paths in the boundaries of holes. One more important fact is as follows.

Lemma 6.5 Let an inner face F share an edge e with the hole H of type 1. Suppose
that at least one is true: F has an inner edge, or |VF | ≥ 4 (cf. (6.1)). Then there is
an endvertex x of e and a vertex z ∈ VF such that both x, z belong to an H-geodesic P

of type 1 and satisfy d(zx) + d(xy) > d(zy), where y is the other endvertex of e.

Proof Let x0, x1, . . . , xk be the sequence of vertices in bd(F ). One may assume that
e connects x0, xk and is directed from x0 to xk in NH . Consider two cases.

Case 1 : F ̸⊂ Ω(DH). Then there exists xi which is not in Ω(DH). (Since VF ⊂
Ω(DH) together with F ̸⊂ Ω(DH) would imply VF ⊂ DH , and therefore for some j,
the sequence xjxj−1 · · · x0xkxk−1 · · · xj+1 forms a directed path Q in DH . Moreover,
(C5) and ℓ(xjxj+1) = d(xjxj+1) imply that Q is shortest. Then the edge xjxj+1 is
dominating, contrary to (C3).) Choose xi /∈ Ω(DH).

If there is no hole H ′ such that x0, xi ∈ VH′ , we assign x := x0, y := xk, z := xi.
Then an H-geodesic P containing x and z is an H-geodesic of type 1 (since xi /∈ Ω(DH)
and any H ′-geodesic for H ′ ̸= H lies in bd(H ′), by Lemma 6.3). Also the inequality
d(zx)+d(xy) ≥ d(zy) is strict. For otherwise, taking an H-geodesic Q passing y, z and
replacing its part Q[y, z] by the concatenation of e and a shortest x–z path, we would
obtain a geodesic Q′ passing y, x, z. Then Q′ is an H-geodesic of type 1 connecting y
with its antipodal terminal, s say. But the part of Q′ between x and s is an H-geodesic
of type 1 as well, whence x is antipodal to s; a contradiction.

If there is no hole H ′′ such that xk, xi ∈ VH′′ , we argue in a similar way and assign
x := xk, y := x0, z := xi.

Now let x0, xi ∈ VH′ and xk, xi ∈ VH′′ for H ′, H ′′ ∈ H−{H}. In case H ′ = H ′′, the
shortest path x0, e, xk would lie in bd(H ′), which is impossible since e is shared by H
and F . So H ′ ̸= H ′′. Then concatenating the edge e with one x0–xi path in bd(H ′)
and one xi–xk path in bd(H ′′), we obtain a simple cycle surrounding a region of the
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plane that contains F but no hole. This easily implies that if (a) i ≥ 2, then x1 belongs
to neither bd(H ′′) nor DH , and if (b) i ≤ k − 2 then xk−1 belongs to neither bd(H ′)
nor DH . Since |VF | = k ≥ 4 (by the hypotheses of the lemma), at least one of (a),(b)
takes place. So we can choose either x1 or xk−1 and argue as above for xi.

Case 2 : F ⊂ Ω(DH). Let F ′ be the face of NH containing e and different from
H; then F ⊆ F ′ (possibly F = F ′). Let bd(F ′) be formed by two directed x′–y′ paths
Q and R, and let e belong to Q. Since e is non-dominating, at least one of x′ ̸= x0

and y′ ̸= xk is true. Let for definiteness x′ ̸= x0. Then x0 /∈ DH . We assign x := x0,
y := xk, and assign z to be a vertex xi ∈ VF not in Q. Let P be an H-geodesic passing
x, z. Then P is an H-geodesic (in view of (4.1) and x ∈ Ω(DH)−DH). Also τ(P ) = 1
(since the choice of x0 and xi ensures that the pair x, z does not belong to a directed
path in NH). The required inequality d(xz) + d(xy) > d(yz) is shown as in Case 1.

Consider F, e, x, y, z, P as in this lemma and let s be the endvertex of P different
from x. It is convenient for us to add to G (for a while) extra edges e′ = xz and e′′ = yz

with the lengths ℓ(e′) := d(xz) and ℓ(e′′) := d(yz), placing them in the face F (unless
such edges already exist); this does not affect the problem. Accordingly replace in P

the x–z part by the edge e′. The updated path P divides R2 − Int(H) into two closed
regions Ω′ and Ω′′ containing H ′ and H ′′, respectively. Let for definiteness y lies in Ω′′;
then the face (triangle) T bounded by e, e′, e′′ lies in Ω′′ as well; see the picture.
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Let P ′ be the y–s path that is the concatenation of e′′ and P [z, s]. We wish to
construct a collection of reducible cuts containing both edges e, e′ and traversing Ω′.
To this aim, we extract from G the subgraph G′ = (V ′, E ′) lying in Ω′ ∪ T and, using
the algorithm of [2], solve the auxiliary two-hole PMP with G′, ℓ E′ and H′ := {H ′, H̃},
where H̃ is the face of G′ containing H. This gives a packing C of cuts δX in G′ with
integer weights λ(X) > 0 that realize the distances on ΠH′ .

Let C1, C2, C3 be the collections of cuts δX ∈ C containing {e, e′}, {e, e′′} and {e′, e′′},
respectively. Define ai :=

∑
(λ(X) : δX ∈ Ci), i = 1, 2, 3. The edges of T must be

saturated by (C, λ), i.e., the following equalities hold:

d(xy) = a1 + a2, d(xz) = a1 + a3, d(yz) = a2 + a3.

Hence 2a1 = d(xy) + d(xz)− d(yz) > 0, in view of Lemma 6.5. For each δX ∈ C1, we
may assume that x ∈ X. Since δX can meet any H̃-geodesic at most once, e′ is the
unique common edge of δX and P . Then X does not meet P ′ and therefore δX is a
cut in the whole G.
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Lemma 6.6 Let ℓ′ := ℓ −
∑

(λ(X)χδX : δX ∈ C1) and λ1 := λ C1. Then (C1, λ1) is
reducible for (G, ℓ,H), i.e., any p–q path Q in G with pq ∈ ΠH satisfies (5.4).

Proof We denote the distance in (G′, ℓ′
E′) by d′. For Q as above, let R1, . . . , Rk be

the components of Q∩P , occurring in this order in Q. We use induction on k. If Q is
entirely contained in one of Ω′,Ω′′ (in particular, if k = 0), then (5.4) is easy (taking
into account that (C1, λ1) is reducible for (G′, ℓ E′ ,H′), whence d′(e) = ℓ′(e) = a2,
d′(e′) = ℓ′(e′) = a3, d

′(e′′) = d(e′′) = a2 + a3).

In case k ≥ 2, choose a vertex u in R1 and a vertex v in R2, and let Q̃ := Q[u, v]
and P̃ := P [u, v]. The reducibility of (C1, λ1) for (G

′, ℓ E′ ,H′) implies d′(uv) = ℓ′(P̃ ).

In its turn, ℓ′(Q̃) ≥ d′(uv) when Q̃ lies in Ω′. And when Q̃ lies in Ω′′, we have
ℓ′(Q̃) = ℓ(Q̃) ≥ d(uv) if x ̸= u, v, and ℓ′(Q̃) = ℓ(Q̃) − a1 ≥ d′(uv) otherwise (since
in the latter case P̃ contains the edge e′ and Q̃ must contain either e or e′). Hence
ℓ′(Q̃) ≥ ℓ′(P̃ ) always hold, and (5.4) follows by induction (by replacing Q̃ by P̃ in Q).

It remains to consider the situation when k = 1 and Q meets both Ω′ − P and
Ω′′ − P . Let v ∈ VQ ∩ VP , Q′ := Q[p, v] and Q′′ := Q[v, q]. One may assume that
Q′ ⊂ Ω′ (and Q′′ ⊂ Ω′′); then p is in Ω′ − P and q is in Ω′′ − P . This implies pq ∈ ΠH .

Take in (G, ℓ) a shortest p–v path A and a shortest v–q path B. One may assume
that A ⊂ Ω′ and B ⊂ Ω′′. Since pv ∈ ΠH̃ , A is shortest in (G′, ℓ′

E′), whence
ℓ′(Q′) ≥ ℓ′(A). Also one can see that ℓ′(Q′′) ≥ ℓ′(B) (considering both cases v = x
and v ̸= x). So we can replace Q by the concatenation L of A and B. Then ℓ(L) =
d(pv) + d(vq) ≥ d(pq). Since each cut in C1 meets A at most once,

ℓ′(A) = d(pv)− a, (6.3)

where a :=
∑

(λ(X) : δX ∈ C1, pv ∈ ρH′X).

If v ̸= x then, obviously, no cut in C1 meets B, whence ℓ′(B) = ℓ(B) = d(vq) holds,
and (6.3) implies (5.4) (with L in place of Q).

Now suppose that v = x. Let M ′,M ′′ be the x–s paths in bd(H) lying in Ω′ and
Ω′′, respectively. Since both M ′,M ′′ are geodesics (of length σH/2), we may assume
that A,B are parts of (M ′)−1 and M ′′, respectively. Then B (and therefore L) contains
the edge e, whence

ℓ′(B) = d(xq)− a1. (6.4)

Note that (6.3) and (6.4) immediately imply (5.4) if a = 0. So assume a > 0.

Let r be the last vertex of M ′ such that ℓ(M ′[r, s]) ≥ a1. The path R := M ′[r, s]
is “opposite” (in a sense) to the edge e′ in the cycle P ∪M ′, and under the reduction
by (C1, λ1), the lengths of all edges of R, except the first one in case ℓ(R) > a1, reduce
to zero. Then a > 0 implies that the terminal p lies in R and is different from r.
Hence the ℓ-length of R[p, s] is equal to a1 − a (taking into account that each cut of
C1 meeting M ′[x, p] (= A−1) should meet the part R[r, p] of R, and the “contribution”
from these cuts is just a). It follows that ℓ(A) = σH/2 − a1 + a. This together with
ℓ(B) ≥ ℓ(e) ≥ a1 gives

ℓ(L) = ℓ(A) + ℓ(B) ≥ σH/2 + a.
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Then the p–q path L′ ∈ LH(pq) different from L satisfies ℓ(L′) = σH−ℓ(L) ≤ σH/2−a.
This implies d(pq) = ℓ(L′) ≤ σH/2 − a and d(px) + d(xq) = ℓ(L) ≥ d(pq) + 2a. Now
using (6.3) and (6.4), we have

ℓ′(L) = ℓ′(A) + ℓ′(B) = (d(px)− a) + (d(xq)− a1) ≥ d(pq) + a− a1. (6.5)

But a1 − a is equal to the sum of values λ(X) over the cuts δX ∈ C1 separating p

and q. So (6.5) implies the required relation (5.4).

Reduction III: Implementation and convergency. We refer to a natural proce-
dure behind Lemmas 6.5 and 6.6 as Reduction III. It scans all F, e as in Lemma 6.5
and, at a current iteration, finds corresponding x, y, z, P for F, e, compute (C1, λ1) and
reduce ℓ to ℓ′ as in Lemma 6.6, after which the extra edges e′, e′′ (if exist) are deleted.
Note that

(6.6) d(yz) < d(xy) + d(xz) turns into d′(yz) = d′(xy) + d′(xz), where d′ := dG,ℓ′ .

Then we update ℓ := ℓ′, and so on until F, e as in Lemma 6.5 no longer exist.

The process finishes in O(|V |3) iterations. To see this, consider a current iteration
and use notation as above. Assume that ℓ′(e) = a2 > 0 (otherwise e is contracted).
Take an H-geodesic C in (G, ℓ) passing y, z and let C ′ be formed from C by replacing
C[y, z] by the concatenation of e and an ℓ-shortest x–z path. By (6.6), C ′ is ℓ′-shortest
but not ℓ-shortest.

Next we argue as follows. If C ′ is a H̃-geodesic for ℓ′ and H̃ ∈ {H ′, H ′′}, then the
trivial necklace for (H̃, ℓ) captures C ′ and becomes nontrivial (since e /∈ EH′). Now
let C ′ be an H-geodesic for ℓ′. Then τ(C ′) = 0 (for otherwise C ′ connects antipodal
terminals y and s in bd(H), and similarly for its part C ′[x, s]; this is impossible since
ℓ′(e) = a2 > 0). In this case, NH captures a new geodesic (in view of (6.6)).

Thus, in all cases at least one of NH , NH′ , NH′′ grows. This is possible only if for
some v ∈ V and st ∈ ΠH, the excess ε(v|st) changes from a positive value to zero.

This yields the desired complexity and completes the proof of Proposition 6.1.
Moreover, we have shown that upon termination of Reduction III,

(6.7) G has at most two inner faces, and each inner face F has exactly three edges and
shares one edge with each hole.

7 Final reductions and the proof of Theorem 1.1

To finish the proof of the main theorem, it remains to consider G, ℓ,H = {H1, H2, H3}
satisfying (6.7). An example with two inner faces F, F ′ is illustrated in the left fragment
of Fig. 2.

Let VF = {v1, v2, v3} and let vi−1vi+1 be the common edge of F and Hi (taking
indices modulo 3). We replace the “triangle” F by a star. More precisely, insert in
Int(F ) one extra vertex s, delete the edges of bd(F ) and connect s with each vi by an
edge with the length ai such that

ai−1 + ai+1 = d(vi−1vi+1) (= ℓ(vi−1vi+1)), i = 1, 2, 3;
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Figure 2: Transformation to the situation without inner faces

these lengths are unique, nonnegative and integral. Act similarly for the other inner
face F ′ (if exists). This transformation results in a graph with three holes and without
inner faces; see the right fragment of Fig. 2. Also the lengths of edges in this graph are
cyclically even and preserve the distances between the old vertices. Then a solution for
the new triple (keeping notation (G, ℓ,H = {H1, H2, H3}) for it) determines a solution
for the old one, yielding Proposition 3.1.

Thus, we come to the case when the current graph G is formed by three openly
disjoint paths P1, P2, P3 connecting two vertices s and s′, and each hole Hi is bounded
by Pi−1 ∪ Pi+1. Assume that ℓ(P1) ≤ ℓ(P2) ≤ ℓ(P3). Note that if ℓ(P1) < ℓ(P3) then
P1 is an H1-geodesic of type 1 and the pair (P1, P3) is excessive w.r.t. H1 (causing
Reduction I from Sect. 3). So we may assume that P1, P2, P3 have the same length b.

It is convenient to slightly modify (G, ℓ) to make it “path-invariant” and “mirror-
reflective”. More precisely, subdividing some edges of G (which adds at most 5|V |
new vertices), we can update G so that for any vertex x of a path Pi, each other
path Pj has vertex y with d(sy) = d(sx) and vertex z with d(sz) = b − d(sx). Let
s = xi

0, x
i
1, . . . , x

i
k = s′ be the sequence of vertices in Pi, i = 1, 2, 3, and define

λr := ℓ(xi
r−1x

i
r) (= d(sxi

r)− d(sxi
r−1)), r = 1, . . . , k,

which does not depend on i and satisfies λr = λk−r+1.

Now we represent d as the sum of weighted (2,3)-metrics and, possibly, one cut-
metric as follows:

(7.1) for r = 1, 2, . . . , ⌊k/2⌋, define mr to be the (2,3)-metric on V determined by the
partition (S1

r , S
2
r ; T

1
r , T

2
r , T

3
r ), where

S1
r := {xi

p : i = 1, 2, 3, p = 0, 1, . . . , r − 1};
S2
r := {xi

p : i = 1, 2, 3, p = k − r + 1, . . . , k};
T j
r := {xj

p : p = r, . . . , k − r}, j = 1, 2, 3.

(Recall that the (2,3)-metric determined by a partition (S1, S2; T 1, T 2, T 3) of V is the
metric induced by the map γ : V → V (K2,3) with Si = γ−1(si) and T j = γ−1(tj),
where {s1, s2} and {t1, t2, t3} are the color classes of K2,3.) Also when k is odd, we
assign as m⌈k/2⌉ the cut metric on V associated with the cut δX for X := {xi

p : i =
1, 2, 3, p = 0, 1, . . . , ⌊k/2⌋}. Each metric mr is endowed with the weight λr.

A routine verification shows that

d = λ1m1 + λ2m2 + · · ·+ λ⌈k/2⌉m⌈k/2⌉,
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yielding a solution to PMP for (G, ℓ,H). This completes the proof of Theorem 1.1.

In conclusion it should be noted that for PMP with four holes (|H| = 4) and
cyclically even lengths of edges in a planar graph, it is open at present whether there
exists an efficient (weakly or strongly polynomial time) algorithm of finding an integer
solution (consisting of cut-, (2,3)-, and 4f -metrics with integer weights, as required
in (1.5)). At the same time, the non-constructive proof of the existence theorem (1.5)
given in [4] shows that using merely cut-metrics one can properly reduce the problem
so as to obtain a planar graph having at most four faces (after which the reduced prob-
lem becomes rather simple). But how to find such cut-metrics (with integer weights)
efficiently? (Note that using uncrossing techniques, one can show that there exists a
solution with O(|V |9) different cut-metrics.)
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