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1. Introduction

Let A be a K-algebra over a field K and let ¢ € K*. We deal with an m x n matrix X
whose entries z;; belong to A and satisfy the following “quasi-commutation” relations
(originally appeared in Manin’s work [9]): for i < £ < m and j < k <n,

TijTik = qTikTig, TijTej = qTejTif, (1.1)

* Corresponding author.

E-mail addresses: danilov@cemi.rssi.ru (V.I. Danilov), akarzanov7@gmail.com (A.V. Karzanov).

https://doi.org/10.1016/j.jalgebra.2021.02.027
0021-8693/© 2021 Elsevier Inc. All rights reserved.


https://doi.org/10.1016/j.jalgebra.2021.02.027
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgebra
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jalgebra.2021.02.027&domain=pdf
mailto:danilov@cemi.rssi.ru
mailto:akarzanov7@gmail.com
https://doi.org/10.1016/j.jalgebra.2021.02.027

304 V.I. Danilov, A.V. Karzanov / Journal of Algebra 578 (2021) 3053-318

-1
Tikley = TyjTik and LijTok — TpkLij = (q —4q )xikﬂ?zgw

We call such an X a fine g-matriz over A and are interested in relations in the
corresponding quantized coordinate ring (the algebra of polynomials in the z;; respecting
the relations in A), which are viewed as quadratic identities on g-minors of X. Let us
start with some terminology and notation.

e For a positive integer n’, the set {1,2,...,n'} is denoted by [n/]. Let £™™ denote
the set of ordered pairs (I,.J) such that I C [m], J C [n] and |I| = |J|; we will refer to
such a pair as a cortege and may denote it as (I|.J). The submatrix of X whose rows
and columns are indexed by elements of I and J, respectively, is denoted by X (I|J).
For (I,J) € €™, where I = {i; < iz < --- <} and J = {j1 < ja < -+ < ji}, the
g-determinant (called the g-minor, the quantum minor) of X (I|J) is defined as

k
Axq(I]J) = desk (_Q)Z(U) Hle Tiajo(ay (1.2)

where the factors in [ are ordered from left to right by increasing d, and ¢(c) denotes the
length (number of inversions) of a permutation o. The terms X and/or ¢ in Ax 4(I]J)
may be omitted when they are clear from the context. By definition A(f|@) is the unit
of A.

e A quantum quadratic identity (QI) of our interest is viewed as
> (signiq” Ag (111) Ay (L]7]): i = 1,....N) =0, (1.3)

where for each i, ; € Z, sign, € {+,—}, and (I;|J;), (I/|J!) € £™™. Note that any
pair (I|.J), (I'|J') may be repeated in (1.3) many times. We restrict ourselves to merely
homogeneous QIs, which means that in expression (1.3),

(1.4) each of the sets I; U I/, I; N I}, J; U J/, J; N J] is invariant of i.

When, in addition, (1.3) is valid for all appropriate A, q, X (with m,n fixed), we say
that (1.3) is universal.

In fact, there are plenty of universal QIs. For example, representative classes involving
quantum flag minors were demonstrated by Lakshmibai and Reshetikhin [6] and Taft and
Towber [11]. Extending earlier results, the authors obtained in [4] necessary and sufficient
conditions characterizing all universal QIs. These conditions are given in combinatorial
terms and admit an efficient verification.

Four special cases of universal QIs play a central role in this paper. They are exposed
in (I)-(IV) below; for details, see [4, Sects. 6,8].

In what follows, for integers 1 < a < b < n/, we call the set {a,a + 1,...,b} an
interval in [n'] and denote it as [a..b] (in particular, [1..n'] = [n]). For disjoint subsets
A and {a,...,b}, we may abbreviate AU {a,...,b} as Aa...b. Also for (I|J) € E™™,
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A(I1J) = Ax ¢(I]J) is called a flag (co-flag) g-minor if J = [k] (resp. I = [k]), where
k= |I|=|J|.

(I) Plicker-type relations with triples. Let A C [m], B C [n], {i,7,k} C [m] — A,
¢€[n]—B,and let |A|+1 = |B| and i < j < k. There are several universal QIs on such
elements (see a discussion in [4, Sect. 6.4]). One of them is viewed as

A(Aj|B)A(Aik| B) = A(Aij| BOA(AK|B) + A(Ajk|BOA(A|B). (1.5)

In the flag case (when B = [|B|] and £ = |B| + 1) this turns into a quantum analog of
the classical Plicker relation with a triple ¢ < j < k.

(IT) Co-Plicker-type relations with triples. They are “symmetric” to those in (I).
Namely, we deal with A C [m], B C [n], £ € [m] — A and {i,5,k} C [n] — B such
that |A| = |B|+ 1 and 7 < j < k. Then there holds:

A(A|Bj)A(AL|Bik) = A(AlBij) A(A|Bk) + A(Al Bjk)A(A| Bi). (1.6)

(III) Dodgson-type relations. Let i,k € [m] and j,¢ € [n] satisfy k —i = £ —j > 0.
Form the intervals A := [i + 1..k — 1] and B := [j + 1..£ — 1]. The universal QI which is
a quantum analog of the classical Dodgson relation is viewed as (cf. [4, Sect. 6.5])

A(Ai|Bj)A(AK|BE) = A(Aik|Bjt)A(A|B) + qA(Ai| BOA(AK|Bj).  (1.7)

In particular, when A = B = (), we obtain the expression A(ik|j¢) = A(i|j)A(k|¢) —
qA(i|0)A(k|j) (with k =14+ 1 and £ = j + 1), taking into account that A(@|@) = 1. This
matches formula (1.2) for the g-minor of a 2 x 2 submatrix.

(IV) Quasi-commutation relations on interval g-minors. The simplest possible kind of
universal Qs involves two corteges (I|J), (I'|J') € E™™ and is viewed as

AIINAI'NT) = q*A(I'|J)A(I]T) (1.8)

for some ¢ € Z. When g-minors A(I]J) and A(I’|J’) satisty (1.8), they are called quasi-
commuting. (For example, three relations in (1.1) are such.) Leclerc and Zelevinsky [7]
characterized such minors in the flag case, by showing that A(I|[|I]]) and A(I'|[|I]])
quasi-commute if and only if the subsets I, I’ of [m] are weakly separated (for a definition,
see [7]). In a general case, a characterization of quasi-commuting g-minors is given in
Scott [10] (see also [4, Sect. 8.3] for additional aspects).

For purposes of this paper, it suffices to consider only interval g-minors, i.e., assume
that all I, J,I’, J" are intervals. Let for definiteness |I| > |I’| and define
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a:=|{i" e I': i <min(I)}|, B:={i" € I': i > max(I)}|, (1.9)
vi= 5" €J":j <min(J)}|, §:={j € J:j >max(J)}.

Then the facts that I,.J,I’,J" are intervals and that |I| > |I’| imply of = ~vd = 0.
Specializing Proposition 8.2 from [4] to our case, we obtain that

(1.10) for |I| > |I’|, interval g-minors A(I]J) and A(I’|J’) quasi-commute (universally)
if and only if ay = 86 = 0; in this case, ¢ as in (1.8) is equal to S+ — a — 7.

In fact, we will use (1.10) only when A(I|J) is a flag or co-flag interval ¢g-minor, and
similarly for A(I'|J’) (including mixed cases with one flag and one co-flag g-minors).

In this paper we explore the issue when the special quadratic identities exhibited
in (I)~(IV) determine all other universal QIs. More precisely, let P = Py, n, P* =P, .,
and D = D,,, denote the sets of relations as in (1.5), (1.6), and (1.7), respectively
(concerning the corresponding objects in (I)—(III)). Also let Q = Q,,,, denote the set of
quasi-commuting relations in (IV) concerning the flag and co-flag interval cases.

Definitions. For A, g, m,n as above, f : E™™ — A is called a QI-function if its values
satisfy the quadratic relations similar to those in the universal QIs on g-minors (i.e.,
when we formally replace A(I|J) by f(I|J) in these relations). When f : £™™ — A is
assumed to satisfy the relations as in P, P* and D, we say that f is an RQI-function
(abbreviating “a function obeying restricted quadratic identities”).

Note that if f: E™™ — A satisfies a quadratic relation Q, and « is an element of the
center of A (i.e. ax = xa for any x € A), then af satisfies @ as well. Hence if f is a QI-
or RQI-function, then so is af. Due to this, in what follows we will default assume that
any function f on ™" we deal with is normalized, i.e., satisfies f(0|0) = 1 (which is
consistent with A(Q|0) = 1).

Our goal is to prove two results on QI-functions. Let us say that a cortege (I|J) € E™"
is a double interval if both I,.J are intervals. A double interval (I|J) is called pressed if
at least one of I, J is an initial interval, i.e., either I = [|I|] or J = [|J|] or both (yielding
a flag or co-flag case); the set of these is denoted as Pint = Pint,, .

Theorem 1.1. Let RQI-functions f,g : E™" — A — {0} coincide on Pint,, ,. Let, in
addition, for any (I|J) € E™", the element f(I|J) be not a zero divisor in A. Then f
and g coincide on the entire E™™.

It follows that any QI-function is uniquely determined by its values on Pint and
relations as in P, P* and D.

The second theorem describes a situation when taking values on Pint arbitrarily
within a representative part of 4, one can extend these values to a QI-function (so one
may say that, Pint plays a role of “basis” for QI-functions, in a sense).
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Theorem 1.2. Let fy : Pint — A* (where A* is the set of invertible elements of A).
Suppose that fo satisfies the quasi-commutation relations (as in (1.8) in (IV)) on Pint.
Then fqy is extendable to a QI-function f on E™™.

It should be noted that Theorems 1.1 and 1.2 can be regarded as quantum analogs of
corresponding results in [5] devoted to universal quadratic identities on minors of matri-
ces over a commutative semiring (e.g. over R~ or over the tropical semiring (R, 4+, max));
see Theorem 7.1 there.

This paper is organized as follows. Section 2 contains a proof of Theorem 1.1. Section 3
reviews a construction, due to Casteels [2], used in our approach to proving the second
theorem. According to this construction (of which idea goes back to Cauchon diagrams
in [3]), the minors of a generic g-matrix can be expressed as the ones of the so-called
path matriz of a special planar graph G, ,, viewed as an extended square grid of size
m X n. There is a one-to-one correspondence between the pressed interval corteges in
E™™ and the inner vertices of G,, . This enables us to assign each generator involved
in the construction of entries of the path matrix (formed in Lindstrém’s style via path
systems, or “flows”, in G,,,) as the ratio of two values of fy; this is just where we
use that fy takes values in A*. Relying on this construction, we prove Theorem 1.2 in
Section 4; here the crucial step is to show that the quasi-commutation relations on the
values of fy imply the relations on generators needed to obtain a correct path matrix.
Finally, in Section 5 we describe a situation when a function fy on Pint,, , exposed in
Theorem 1.2 has a unique extension to £™™ that is a QI-function, or, roughly speaking,
when the values on Pint and relations as in P, P*, D and Q determine a QI-function on
E™ ™ thus yielding all other universal Qls.

2. Proof of Theorem 1.1

Let f,g: E™™ — A be as in the hypotheses of this theorem. To show that f(I|J) =
g(I|J) holds everywhere, we consider three possible cases for (I|J) € £™™. In the first
and second cases, we use induction on the value

o(I,J) :=max(I) — min(]) + max(J) — min(J).

Case 1. Let (I]J) be such that: (i) f(I'|J") = g(I’|J’) holds for all (I'|J") € E™™ with
o(I',J") < o(I,J); and (ii) I is not an interval.

Define ¢ := min(/), k := max(l) and A :=1I — {i,k}. Take £ € J and let B :=J — (.
Since I is not an interval, there is j € [m] such that i < j < kand j ¢ I. Then j ¢ A
and (Aik|B¢) = (I|J). Applying to f and g Pliicker-type relations as in (1.5), we have

f(Aj|B) f(Aik|Bl) = f(Aij|BO) f(AK|B) + f(Ajk|BL) f(AilB), and (2.1)
9(Aj|B)g(Aik|Bl) = g(Aij| BO)g(Ak|B) + g(Ajk| Bl)g(Ail B). (2.2)
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The choice of 4, j, k, £ provides that in these relations, the number o(A’, B') for each of
the five corteges (A’|B’) different from (Aik|BY) (= (I]J)) is strictly less than o(I|.J). So
f and g coincide on these (A’|B’), by condition (i) on (I]J). Subtracting (2.2) from (2.1),
we obtain

f(AjIB) (f(1}J) = g(1]J)) = 0.

This implies f(I|J) = g(I|J) (since f(Aj|B) # 0 and f(Aj|B) is not a zero divisor, by
the hypotheses of the theorem).

Case 2. Let (I|J) be subject to condition (i) from the previous case and suppose that
J is not an interval. Then taking ¢ := min(J), k := max(J), B := J — {i,k}, £ € I,
A:=1—/, applying to f, g the corresponding co-Pliicker-type relations as in (1.6), and
arguing as above, we again obtain f(I|J) = g(I|J).

Thus, it remains to examine double intervals (I|.J). We rely on the equalities f(I|J) =
g(I|J) when (I|J) is pressed (belongs to Pint), and use induction on the value

n(I,J) := max(I) + min(I) + max(J) + min(.J).

Case 8. Let (I|J) € E™™ be a non-pressed double interval. Define ¢ := min(I) — 1, k :=
max([), j :=min(J) -1, £ :=max(J), A:==I—k, B:=J—{. Then i,j > 1 (since (I|.J)
is non-pressed). Also (I|J) = (Ak|B?). Suppose, by induction, that f(I'|J") = g(I'|J’)
holds for all double intervals (I'|J") € £™™ such that n(I', J") < n(I, J).

Applying to f and g Dodgson-type relations as in (1.7), we have

f(Ai|Bj) f(Ak|Bl) = f(Aik|Bjl) f(A|B) + qf(Ai| Bl) f(Ak|Bj), and (2.3)
9(Ai|Bj)g(Ak|Bl) = g(Aik|Bjl)g(A|B) + qg(Ai| Bl)g(Ak|Bj). (2.4)
One can see that for all corteges (A’|B’) occurring in these relations, except for

(Ak|Bf), the value n(A’, B’) is strictly less than n(I,J). Therefore, subtracting (2.4)
from (2.3) and using induction on 7, we obtain

f(AilBj) (f(Ak|B) — g(Ak|BE)) = 0,

whence f(I|J) = g(I|J), as required.
This completes the proof of the theorem. O

3. Flows in a planar grid
The proof of Theorem 1.2 essentially relies on a construction of quantum minors via

certain path systems (“flows”) in a special planar graph. This construction is due to
Casteels [2] and it was based on ideas in Cauchon [3] and Lindstrém [8]. Below we
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review details of the method needed to us, mostly following terminology, notation and
conventions used for the corresponding special case in [4].

Extended grids. Let m,n € Z~y. We construct a certain planar directed graph, called
an extended m x n grid and denoted as Gy, = G = (V, E), as follows.

(G1) The vertex set V is formed by the points (i,5) in the plane R? such that i €
{0} U [m], j € {0} U [n] and (i,5) # (0,0). Hereinafter, it is convenient to us to
assume that the first coordinate i of a point (4, 5) in the plane is the vertical one.

(G2) The edge set E consists of edges of two types: “horizontal” edges, or H-edges, and
“vertical” edges, or V-edges.

(G3) The H-edges are directed from left to right and go from (¢,57 — 1) to (4,4) for all

i=1,....mand j=1,...,n.
(G4) The V-edges are directed downwards and go from (7,j) to (i — 1,7) for all ¢ =
1,...omand j=1,...,n.
Two subsets of vertices in G are distinguished: the set R = {rq,...,rm} of sources,

where r; := (4,0), and the set C' = {c1,...,¢,} of sinks, where ¢; := (0,7). The other
vertices are called inner and the set of these (i.e., [m] x [n]) is denoted by W = W.
The picture illustrates the extended grid Gs 4.

r3o

7"20

7O

0125 Czeg 03(5 0425

Each inner vertex v € W of G = Gy, 5, is regarded as a generator. This gives rise to
assigning the weight w(e) to each edge e = (u,v) € F (going from a vertex u to a vertex
v) in a way similar to that introduced for Cauchon graphs in [2], namely:

(3.1) (i) w(e) :=wv if e is an H-edge with u € R;
(ii) w(e) ;== u~tv if e is an H-edge and u,v € W;
(iii) w(e) ;=1 if e is a V-edge.

This in turn gives rise to defining the weight w(P) of a directed path P =

(vo,e€1,v1,...,ek,v;) (Where e; is the edge from v;—1 to v;) to be the ordered (from
left to right) product, namely:

w(P) = w(er)w(ez) - - -w(eg). (3.2)
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Then w(P) forms a Laurent monomial in elements of W. Note that when P begins
in R and ends in C, its weight can also be expressed in the following useful form: if
Uy, V1, U, V2, - .., Ug—1,V4—1, Uq 1S the sequence of vertices where P makes turns (from
“east” to “south” at each wu;, and from “south” to “east” at each v;), then, due to the
“telescopic effect” caused by (3.1)(ii), there holds

w(P) = uyvy tuguy L - - Ug—1v " Ug. (3.3)

We assume that the elements of W obey quasi-commutation laws which look somewhat
simpler than those in (1.1); namely, for distinct inner vertices u = (¢, 5) and v = (¢/, j'),

(3.4) (i) ifi =4 and j < j, then uv = quu;
(ii) if ¢ > 4’ and j = j’, then vu = quu;
(iii) otherwise uv = vu,

where, as before, ¢ € K*. (Note that G has a horizontal (directed) path from w to v
in (i), and a vertical path from w to v in (ii).)

Path matrix and flows. To be consistent with the vertex notation in extended grids, we
visualize matrices in the Cartesian form: for an m x n matrix A = (a;;), the row indexes
i =1,...,m are assumed to grow upwards, and the column indexes j = 1,...,n from
left to right.

Given an extended m x n grid G = Gy, = (V, E) with the corresponding partition
(R,C,W) of V as above, we form the path matriz Path = Pathg of G in a spirit of [2];
namely, Path is the m X n matrix whose entries are defined by

Path(ilj) == Y w(P),  (i,7) € [m] x [n], (3.5)

Pedq(ilf)
where ®¢(i|7) is the set of (directed) paths from the source r; to the sink ¢; in G. Thus,
the entries of Pathg belong to the K-algebra L of Laurent polynomials generated by
the set W if inner vertices of G subject to (3.4).

Definition. Let (I|J) € £™". Borrowing terminology from [5], by an (I|.J)-flow we mean
a set ¢ of pairwise disjoint directed paths from the source set Ry := {r;: i € I} to the
sink set Cj :={¢;: j € J} in G.

The set of (I|J)-flows ¢ in G is denoted by ®(I]J) = &g (I|J). We order the paths
forming ¢ by increasing the indexes of sources: if I consists of i(1) < i(2) < --- < i(k)
and J consists of j(1) < j(2) < --- < j(k) and if P, denotes the path in ¢ beginning
at 7i(g), then P is just {-th path in ¢, £ = 1,... k. Note that the planarity of G and
the fact that the paths in ¢ are pairwise disjoint imply that each P, ends at the sink

(o)
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Similar to the assignment of weights for path systems in [2], we define the weight of
¢ = (P1,Pa,...,P) to be the ordered product

w(¢) = w(P)w(Ps) - w(Py). (3.6)

Using a version of Lindstrém Lemma, Casteels showed a correspondence between path
systems and g-minors of path matrices.

Proposition 3.1 ([2]). For the extended grid G = Gy, and any (I|J) € E™™,

A(I|J)Path(;,q = Z¢E¢G(1\J) ’U)((b) (37)

(This is generalized to a larger set of graphs and their path matrices in [4, Theorem 3.1].)
The next property, surprisingly provided by (3.4), is of most importance to us.

Proposition 3.2 ([2]). The entries of Pathg obey Manin’s relations (similar to those

in (1.1)).

It follows that the g-minors of Pathg satisfy all universal Qls, and therefore, the
function g : £E™™ — L defined by g(I|J) := Pathg(I|J) is a QI-function.

4. Proof of Theorem 1.2

Let fo : Pint,, , — A* be a function as in the hypotheses of this theorem. Our goal
is to extend fy to a QI-function f on £™™. The idea of our construction is prompted by
Propositions 3.1 and 3.2; namely, we are going to obtain the desired f as the function
of g-minors of an appropriate path matrix Pathg for the extended m x n grid G =
Gmon-

For this purpose, we first have to determine the “generators” in W in terms of values
of fo (so as to provide that these values are consistent with the corresponding pressed
interval g-minors of the path matrix), and second, using the quasi-commutation relations
(as in (1.8)) on the values of fy, to verify validity of relations (3.4) on the generators.
Then Pathg will be indeed a fine g-matrix and its ¢g-minors will give the desired QI-
function f.

(It should be emphasized that we may speak of a vertex of G in two ways: either as a
point in R?, or as a generator of the corresponding algebra. In the former case, we use
the coordinate notation (7,7) (where ¢ € {0} U [m] and j € {0} U [n]). And in the latter
case, we use notation w(i, j), referring to it as the weight of (i, j).)

To express the elements of W via values of fj, we associate each pair (Z,j) € [m] x [n]
with the pressed interval cortege 7 (i, 5) = (I|J), where

(41) I:=[i—k+1..i] and J := [j — k + 1..j], where k := min{3, j}.
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In other words, if ¢ < j (i.e., (i,5) lies “south-east” from the “diagonal” {a,a} in
R?), then (I|J) is the co-flag interval cortege with I = [i] and max(J) = j, and if i > j
(i.e., (4,7) is “north-west” from the diagonal), then (I]J) is the flag interval cortege with
max(I) =4 and J = [j]. Also it is useful to associate to (4, 7): the (almost rectangular)
subgrid induced by the vertices in ({0} U [i]) x ({0} U [j]) — {(0,0)}, and the diagonal
D(i|j) formed by the vertices (¢,7),(i—1,j—1),...,(i—k+1,5—k+1). See the picture
where the left (right) fragment illustrates the case ¢ < j (resp. ¢ > j), the subgrids are
indicated by thick lines, and the diagonals D(i, j) by bold circles.

(0]

@,

‘i G a v g

An important feature of a pressed interval cortege (I|J) € £™™ (which is easy to see)
is that

(4.2) ®(I|J) counsists of a unique flow ¢ and this flow is formed by paths Pi,..., P,
where for ¢ := max(I), 7 := max(J), k := min{s,j}, and £ = 1,...,k, the path Py
begins at 7;_p4¢, ends at ¢;_jy¢ and makes exactly one turn, namely, the east to
south turn at the vertex (i — k + ¢, j — k + £) of the diagonal D(i|j).

We denote this flow (Pi,...,Px) as ¢(i]j); it is illustrated in the picture (for both
cases 7 < j and i > j from the previous picture).

ri (i)

. P (i)

1

i@ L I ro 1
O 0

Cy ¢ Cy c
Therefore, for each (i,5) € [m] x [n], taking the cortege (I|J) = 7 (i,j) and the flow

¢(ilj) = (P1, ..., Py) with &k = min{4, j} and using expressions (3.3) and (3.6) for them,
we obtain that

S cay W0) = WO = wli—k+Lj—k+ 1) w(i=Lj - Du(if).  (43)
Now imposing the conditions

w((ilf)) == foI|J) for all (I]J) = (i, ) € Pintyn, (4.4)



V.I. Danilov, A.V. Karzanov / Journal of Algebra 578 (2021) 305-318 313

we come to the rule of defining appropriate weights of inner vertices of G. Namely, relying
on (4.3), we define w(s, j) for each (i,7) € [m] X [n] by

. i}{J if min{i,j} =1,
w(i,j) = R }HJ})_I . i, g} (4.5)
(fo(m(i = 1,5 — 1))~ fo(m(i, J)) otherwise.

Such a w(i, j) is well-defined since fo(m(i — 1,5 — 1)) is invertible.

The crucial step in our proof is to show that these weights satisfy the relations as

in (3.4), i.e., for (¢,7) and (¢, 5'),

(46) (i) ifi =4 and j < J', then w(i, (@, ') = qui@’, ' )w(i, j)
(if) if i > " and j = j', then w(@’, j")w(i, j) = qu(i, j)w(i’, j');
(iii) otherwise w(i, j)w(i’,j") = w(i’, j)w(i, j).

This would provide that Pathg is indeed a fine g-matrix, due to (3.7) and Proposition 3.2,
and setting f(I|J) := AI|J)patn, for all (I|J) € E™™, we would obtain the desired
function, thus completing the proof of the theorem.

First of all we have to explain that

(4.7) fo satisfies the quasi-commutation relation for any two pressed interval corteges
(I|J), (') € Pint, i.e., fo(I|J)fo(I'|J) = q° fo(I'|J") fo(I]J) holds for some ¢ € Z.

This is equivalent to saying that such corteges determine a universal QI of the
form (1.8) on associated ¢-minors. To see the latter, assume that |I| > |I’| and de-
fine «, 8,7, as in (1.9). One can check that: v = ¢ = 0 if both interval corteges are flag
ones; a« = f§ = 0 if they are co-flag ones; and either 8 =~ =0 or « = 4 = 0 (or both)
if one of these is a flag, and the other a co-flag interval cortege. So in all cases, we have
ay = 5§ =0, and (4.7) follows from (1.10).

Next we start proving (4.6). Given (i,7), (¢',7') € [m] x [n], let (I|J) := =(4,7) and
(I'|J") :=mn(i,7"), and define

A= fo(I|J), B .= fo([—i|J—j)7 C:= fo(II|J/), D := fo([’—i/|J/—jl),
letting by definition B := 1 (D := 1) if |I| = 1 (resp. |I'| = 1). (Here for an element
p € P, we write P — p for P — {p}.)

Then w(i, ) is rewritten as B~ A, and w(i’, j') as D71C (by (4.5)), and our goal is
to show that

B7'AD™'C = ¢'D"'CB7 A4, (4.8)

where d is as required in (4.6) (i.e., equal to 1, -1, 0 in cases (i), (ii), (iii), respectively).
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Define ¢y, ¢a, ¢3, ¢4 from the quasi-commutation relations (as in (1.8))
AC =¢*CA, AD =q*DA, BC =¢*CB, BD=¢“DB. (4.9)
One can see that
d=c, —cy—cC3+ca. (4.10)

Indeed, in order to transform the string B~*AD~'C into D~*CB~'A, one should swap
each of A, B~! with each of C, D~!. The second equality in (4.9) implies AD™! =
¢~ 2D~ ' A, and for similar reasons, B~'C = ¢~CB~! and B~'D~! = ¢»D~'B~ 1

Now we are ready to examine possible combinations for (i, 7) and (', /) and compute
d in these cases by using (4.10). We will denote the intervals I —i, J—j, I'—=¢, J' —j" in
question by IN, J, , Vi , J , respectively. Also for an ordered pair ((P|Q), (P’|Q")) of double
intervals in ™™ (where |P’| = |Q'| may exceed |P| = |Q|), we define

a(P,P") = min{[{p’ € P': p' <min(P)}|, {p € P: p > max(P')}|}; (4.11)
B(P,P") = min{|{p’ € P': p’ > max(P)}|, {p € P: p < min(P’)}|}, '
and define v(Q, Q') and 6(Q, Q') in a similar way (this matches the definition of «, 8,7, §
in (1.9) when |P| > |P’|). Using (1.10), we observe that the sum S(I,I') + 6(J,J') —
a(l,I') —~(J,J') is equal to ¢y, and similarly for the pairs concerning co, c3, ¢4.

In our analysis we also will use the values

~
=
SN—
|
Q
—~
~
=
SN~—
:_/

o= (B I) =L, 1) =(B(, T")=a(1,T)= (BT, I')~a(I, I'))+(5(
1= (601, )=, I~ (6, ) =L, ) =(8(T, I") =T, T+, T )= (T, T).

In view of (4.10) and (4.11),

o+ =c —ca—c3+cy=d. (4.12)

The lemmas below compute ¢ using (4.11). Let r := min(I) (= min(J)) and 7’ :=
min(I’) (= min(I")).

Lemma 4.1. Suppose that |I| # |I'| and i #i'. Then ¢ = 0.
Proof. Assume that |I| > |[I’|. Then |I| > |I| > |I’| > |[I'|. Consider possible cases.

Case 1:r < 1" and i’ < i. Then I’, I’ C I, I. Therefore, both a and /3 are zero everywhere,
implying ¢ = 0.

Case 2: INT' = 0. If i’ < r, then B is zero. Also (I, I') = |[I'| = a(I,I’) and a(I,1') =
|[I'| = (I, 1").
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And if i < 7/, then « is zero. Also B(I,I') = |I'| = B(I,I') and B(I,T') = |I'| =
B(I,I'). So in both situations, ¢ = 0.

Case 3: 1" < r <4’ < i. Then S is zero. Also a(P, P') = r — r/ holds for all P € {I,I)
and P’ € {I',I'}, implying ¢ = 0.

Case 4:r <71’ <i <4 Then « is zero, and
B, I =i —i=pI1T), BUIIT)=i—-1—i and BII')=1i —(i—1),

again implying ¢ = 0.

When |I| < |I’], the argument follows by swapping IIby I''T. O

Lemma 4.2. Let |I| = |I'|. (a) Ifi < i’ then o =1. (b) Ifi >4 then o = —1. (¢c) Ifi =17’
then ¢ = 0.

Proof. We have |I'|,|I'| < |I| and |I'| = |I| but |[I’| = |I| + 1. Let i > 4. Then,
using (4.11)), one can check that 3 is zero. Also if I NI’ = (), then

ALT)=I|, a,I)=|I'|=al,I), oII')=II]=I]-1.
And if INT' # 0, then
ao,I'"N=al,I')=a(I,T)=r—1" =i—i and o(l,I')=|-TI|=(i—1)-7.
Therefore, in both situations
o=—a(l,I')+a(,T)+a,I')—aI,I') = a(,I') — a(l,I') = -1,

as required in (b).

Case (a) reduces to (b). And if ¢ = ¢’ then r = 7/, implying that both «, 5 are zero
(since for any two intervals among I,I,I',I’| one is included in the other). O
Lemma 4.3. Let i =4'. (a) If |I| > |I'| then o = —1. (b) If |I| < |I'| then ¢ = 1.
Proof. Let |[I| > |I’|. Then I’,] C I and I’ C I. Hence o and 8 are zero on each
of (I|I"),(I|I"),(I|I"). Also |I| > |I'| and r < ' imply a(I,I') = 0 and B(I,I') =
i’ — (i —1) =1 (since max([) = ¢ — 1). This gives ¢ = —(I,I") = —1.

Case (b) reduces to (a). O

Replacing 4,4’ by j,j’, and I, I’ by J, J' in Lemmas 4.1-4.3, we obtain the correspond-
ing statements concerning .
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(4.13) (1) If |J|=|J'| and j < j', or if |J| < |J'| and j = j/, then ¢ = 1.
(ii) Symmetrically, if |J| = |J'| and j > j/, or if |J| > |J/| and j = j’, then
= —1.
(iii) Otherwise 9 = 0.

Now we finish the proof with showing (4.6) in the corresponding three cases.

Case A: i =i and j < j'. First suppose that ¢ < j. Then both (I|J) and (I'|.J") are
co-flag corteges, and |[I| = |I'| = i. We have ¢ = 0 (by Lemma 4.2(c)) and ¢p = 1
(by (4.13)(i)).

Next suppose that j < i < j/. Then (I|J) is flag, (I'|J’) is co-flag, and |I| = j < i =
|I’|. This gives ¢ =1 (by Lemma 4.3(b)) and ¢ = 0 (by (4.13)(iii)).

Finally, suppose that j <. Then both (I|J), (I'|J’) are flag, and |I| = j < j' = |I'|.
This gives ¢ = 1 (by Lemma 4.3(b)) and ¢ = 0 (by (4.13)(iii)).

Thus, in all situations, d = ¢ + 1 = 1, as required in (4.6)(i).

Case B: i < i’ and j = j'. This is symmetric to the previous case, yielding d = 1. This
matches assertion (ii) in (4.6) (since replacing ¢ < ¢’ by 7 > i’ changes d =1 to d = —1).

Case C: i # i and j # j'. When ¢ = ¢ = 0, (4.6)(iii) is immediate. The situation with
¢ # 0 arises only when |I| = |I’|; then (a) ¢ < ¢’ implies ¢ = 1, and (b) ¢ > i’ implies
¢ = —1 (see Lemma 4.2). Similarly, ¢ # 0 happens only if |J| = |J'|; then (c) j < j
implies ¢y = 1, and (d) j > j/ implies ¥ = —1 (by (4.13)(i),(ii))

In subcase (a), ¢ < ¢ and |I| = |I'| =: k imply ¢’ > k (in view of ¢ > |I]). Therefore,
j' = k must hold (i.e., (I’|J') is flag). Then j # j' implies j > j/, and we obtain ) = —1,
by (4.13)(ii).

In subcase (b), ¢ > ¢’ and |I| = |I'| =: k imply i > k. Therefore, j = k. Then j' > j,
yielding ¢ = 1, by (4.13)(i).

So in both (a) and (b), we obtain ¢ + ¢ = 0. In their turn, subcases (c) and (d)
are symmetric to (a) and (b), respectively. Thus, in all situations, d = 0 takes place, as
required in (4.6)(iii).

This completes the proof of Theorem 1.2.
5. Uniqueness

Let fo : Pint,, , — A" be a function in the hypotheses of Theorem 1.2, i.e., fq satisfies
quasi-commutation relations for all pairs of pressed interval corteges in £™™ (cf. (4.7)).
A priori, fy may have many extensions to £™"™ that are QI-functions. One of them is the
function f whose values f(I|.J) are g-minors A(I|J) of the corresponding path matrix
constructed in the proof in Sect. 4.

In light of Theorems 1.1 and 1.2, it is tempting to ask when fy has a unique QI-
extension. Since any Ql-extension is an RQI-function (i.e., satisfies the corresponding



V.I. Danilov, A.V. Karzanov / Journal of Algebra 578 (2021) 305-318 317

relations of Pliicker, co-Pliicker and Dodgson types) and in view of Theorem 1.1, we
may address an equivalent question: when an RQI-extension g of f; is a QI-function
(and therefore g = f). We give sufficient conditions below (which is, in fact, a corollary
of Theorems 1.1 and 1.2).

To this aim, let us associate to each (I|.J) € Pinty,, an indeterminate y;; and form
the K-algebra Ly of quantized Laurent polynomials generated by these y;|; (where the
quantization is agreeable with that for fy). The values of fj are said to be algebraically
independent if the map yr); — fo(I|J), (I|J) € Pinty, , gives an isomorphism between
Ly and the K-subalgebra A0 of A generated by these values.

Corollary 5.1. Let fy and f be as above. Let the following additional conditions hold:

(i) the values of fo are algebraically independent;
(i) if an element a € Afo is a zero divisor in A, then a is a zero divisor in Afo.

Suppose that g is an RQI-function on £™" coinciding with fo on Pint,, . Then g is
a QI-function (and therefore g = f).

Proof (a sketch). Considering the construction of g-minors of the path matrix related
to fo (cf. (3.5), (3.7), (4.3)—(4.5)), one can deduce that for each cortege (I|J) € E™™,
Y1) is a nonzero polynomial in Ly . Then condition (i) implies that f(I].J) is a nonzero
element of A’ Furthermore, since Ly is free of zero divisors (by a known fact on Laurent
polynomials; see, e.g. [1], ch. II, $11.4, Prop. 8), so is .Af. Therefore, by condition (ii),
f(I|J) is not a zero divisor in A. Now applying Theorem 1.1, we obtain g = f, as
required. O
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