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types (Plűcker, co-Plűcker, Dodgson identities and quasi-
commutation relations on flag and co-flag interval minors).
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1. Introduction

Let A be a K-algebra over a field K and let q ∈ K∗. We deal with an m ×n matrix X
whose entries xij belong to A and satisfy the following “quasi-commutation” relations 
(originally appeared in Manin’s work [9]): for i < � ≤ m and j < k ≤ n,

xijxik = qxikxij , xijx�j = qx�jxij , (1.1)
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xikx�j = x�jxik and xijx�k − x�kxij = (q − q−1)xikx�j .

We call such an X a fine q-matrix over A and are interested in relations in the 
corresponding quantized coordinate ring (the algebra of polynomials in the xij respecting 
the relations in A), which are viewed as quadratic identities on q-minors of X. Let us 
start with some terminology and notation.

• For a positive integer n′, the set {1, 2, . . . , n′} is denoted by [n′]. Let En,m denote 
the set of ordered pairs (I, J) such that I ⊆ [m], J ⊆ [n] and |I| = |J |; we will refer to 
such a pair as a cortege and may denote it as (I|J). The submatrix of X whose rows 
and columns are indexed by elements of I and J , respectively, is denoted by X(I|J). 
For (I, J) ∈ Em,n, where I = {i1 < i2 < · · · < ik} and J = {j1 < j2 < · · · < jk}, the 
q-determinant (called the q-minor, the quantum minor) of X(I|J) is defined as

ΔX,q(I|J) :=
∑

σ∈Sk

(−q)�(σ)
∏k

d=1
xidjσ(d) , (1.2)

where the factors in 
∏

are ordered from left to right by increasing d, and �(σ) denotes the 
length (number of inversions) of a permutation σ. The terms X and/or q in ΔX,q(I|J)
may be omitted when they are clear from the context. By definition Δ(∅|∅) is the unit 
of A.

• A quantum quadratic identity (QI) of our interest is viewed as∑
(signiq

δiΔq(Ii|Ji) Δq(I ′i|J ′
i) : i = 1, . . . , N) = 0, (1.3)

where for each i, δi ∈ Z, signi ∈ {+, −}, and (Ii|Ji), (I ′i|J ′
i) ∈ Em,n. Note that any 

pair (I|J), (I ′|J ′) may be repeated in (1.3) many times. We restrict ourselves to merely 
homogeneous QIs, which means that in expression (1.3),

(1.4) each of the sets Ii ∪ I ′i, Ii ∩ I ′i, Ji ∪ J ′
i , Ji ∩ J ′

i is invariant of i.

When, in addition, (1.3) is valid for all appropriate A, q, X (with m, n fixed), we say 
that (1.3) is universal.

In fact, there are plenty of universal QIs. For example, representative classes involving 
quantum flag minors were demonstrated by Lakshmibai and Reshetikhin [6] and Taft and 
Towber [11]. Extending earlier results, the authors obtained in [4] necessary and sufficient 
conditions characterizing all universal QIs. These conditions are given in combinatorial 
terms and admit an efficient verification.

Four special cases of universal QIs play a central role in this paper. They are exposed 
in (I)–(IV) below; for details, see [4, Sects. 6,8].

In what follows, for integers 1 ≤ a ≤ b ≤ n′, we call the set {a, a + 1, . . . , b} an 
interval in [n′] and denote it as [a..b] (in particular, [1..n′] = [n′]). For disjoint subsets 
A and {a, . . . , b}, we may abbreviate A ∪ {a, . . . , b} as Aa . . . b. Also for (I|J) ∈ Em,n, 
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Δ(I|J) = ΔX,q(I|J) is called a flag (co-flag) q-minor if J = [k] (resp. I = [k]), where 
k := |I| = |J |.

(I) Plűcker-type relations with triples. Let A ⊂ [m], B ⊂ [n], {i, j, k} ⊆ [m] − A, 
� ∈ [n] −B, and let |A| + 1 = |B| and i < j < k. There are several universal QIs on such 
elements (see a discussion in [4, Sect. 6.4]). One of them is viewed as

Δ(Aj|B)Δ(Aik|B�) = Δ(Aij|B�)Δ(Ak|B) + Δ(Ajk|B�)Δ(Ai|B). (1.5)

In the flag case (when B = [|B|] and � = |B| + 1) this turns into a quantum analog of 
the classical Plűcker relation with a triple i < j < k.

(II) Co-Plűcker-type relations with triples. They are “symmetric” to those in (I). 
Namely, we deal with A ⊂ [m], B ⊂ [n], � ∈ [m] − A and {i, j, k} ⊆ [n] − B such 
that |A| = |B| + 1 and i < j < k. Then there holds:

Δ(A|Bj)Δ(A�|Bik) = Δ(A�|Bij)Δ(A|Bk) + Δ(A�|Bjk)Δ(A|Bi). (1.6)

(III) Dodgson-type relations. Let i, k ∈ [m] and j, � ∈ [n] satisfy k − i = � − j ≥ 0. 
Form the intervals A := [i + 1..k − 1] and B := [j + 1..� − 1]. The universal QI which is 
a quantum analog of the classical Dodgson relation is viewed as (cf. [4, Sect. 6.5])

Δ(Ai|Bj)Δ(Ak|B�) = Δ(Aik|Bj�)Δ(A|B) + qΔ(Ai|B�)Δ(Ak|Bj). (1.7)

In particular, when A = B = ∅, we obtain the expression Δ(ik|j�) = Δ(i|j)Δ(k|�) −
qΔ(i|�)Δ(k|j) (with k = i + 1 and � = j + 1), taking into account that Δ(∅|∅) = 1. This 
matches formula (1.2) for the q-minor of a 2 × 2 submatrix.

(IV) Quasi-commutation relations on interval q-minors. The simplest possible kind of 
universal QIs involves two corteges (I|J), (I ′|J ′) ∈ Em,n and is viewed as

Δ(I|J)Δ(I ′|J ′) = qcΔ(I ′|J ′)Δ(I|J) (1.8)

for some c ∈ Z. When q-minors Δ(I|J) and Δ(I ′|J ′) satisfy (1.8), they are called quasi-
commuting. (For example, three relations in (1.1) are such.) Leclerc and Zelevinsky [7]
characterized such minors in the flag case, by showing that Δ(I|[|I|]) and Δ(I ′|[|I ′|])
quasi-commute if and only if the subsets I, I ′ of [m] are weakly separated (for a definition, 
see [7]). In a general case, a characterization of quasi-commuting q-minors is given in 
Scott [10] (see also [4, Sect. 8.3] for additional aspects).

For purposes of this paper, it suffices to consider only interval q-minors, i.e., assume 
that all I, J, I ′, J ′ are intervals. Let for definiteness |I| ≥ |I ′| and define
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α := |{i′ ∈ I ′ : i′ < min(I)}|, β := |{i′ ∈ I ′ : i′ > max(I)}|, (1.9)

γ := |{j′ ∈ J ′ : j′ < min(J)}|, δ := |{j′ ∈ J ′ : j′ > max(J)}|.

Then the facts that I, J, I ′, J ′ are intervals and that |I| ≥ |I ′| imply αβ = γδ = 0.
Specializing Proposition 8.2 from [4] to our case, we obtain that

(1.10) for |I| ≥ |I ′|, interval q-minors Δ(I|J) and Δ(I ′|J ′) quasi-commute (universally) 
if and only if αγ = βδ = 0; in this case, c as in (1.8) is equal to β + δ − α− γ.

In fact, we will use (1.10) only when Δ(I|J) is a flag or co-flag interval q-minor, and 
similarly for Δ(I ′|J ′) (including mixed cases with one flag and one co-flag q-minors).

In this paper we explore the issue when the special quadratic identities exhibited 
in (I)–(IV) determine all other universal QIs. More precisely, let P = Pm,n, P∗ = P∗

m,n, 
and D = Dm,n denote the sets of relations as in (1.5), (1.6), and (1.7), respectively 
(concerning the corresponding objects in (I)–(III)). Also let Q = Qm,n denote the set of 
quasi-commuting relations in (IV) concerning the flag and co-flag interval cases.

Definitions. For A, q, m, n as above, f : Em,n → A is called a QI-function if its values 
satisfy the quadratic relations similar to those in the universal QIs on q-minors (i.e., 
when we formally replace Δ(I|J) by f(I|J) in these relations). When f : Em,n → A is 
assumed to satisfy the relations as in P, P∗ and D, we say that f is an RQI-function
(abbreviating “a function obeying restricted quadratic identities”).

Note that if f : Em,n → A satisfies a quadratic relation Q, and a is an element of the 
center of A (i.e. ax = xa for any x ∈ A), then af satisfies Q as well. Hence if f is a QI-
or RQI-function, then so is af . Due to this, in what follows we will default assume that 
any function f on Em,n we deal with is normalized, i.e., satisfies f(∅|∅) = 1 (which is 
consistent with Δ(∅|∅) = 1).

Our goal is to prove two results on QI-functions. Let us say that a cortege (I|J) ∈ Em,n

is a double interval if both I, J are intervals. A double interval (I|J) is called pressed if 
at least one of I, J is an initial interval, i.e., either I = [|I|] or J = [|J |] or both (yielding 
a flag or co-flag case); the set of these is denoted as Pint = Pintm,n.

Theorem 1.1. Let RQI-functions f, g : Em,n → A − {0} coincide on Pintm,n. Let, in 
addition, for any (I|J) ∈ Em,n, the element f(I|J) be not a zero divisor in A. Then f
and g coincide on the entire Em,n.

It follows that any QI-function is uniquely determined by its values on Pint and 
relations as in P, P∗ and D.

The second theorem describes a situation when taking values on Pint arbitrarily 
within a representative part of A, one can extend these values to a QI-function (so one 
may say that, Pint plays a role of “basis” for QI-functions, in a sense).
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Theorem 1.2. Let f0 : Pint → A∗ (where A∗ is the set of invertible elements of A). 
Suppose that f0 satisfies the quasi-commutation relations (as in (1.8) in (IV)) on Pint. 
Then f0 is extendable to a QI-function f on Em,n.

It should be noted that Theorems 1.1 and 1.2 can be regarded as quantum analogs of 
corresponding results in [5] devoted to universal quadratic identities on minors of matri-
ces over a commutative semiring (e.g. over R>0 or over the tropical semiring (R, +, max)); 
see Theorem 7.1 there.

This paper is organized as follows. Section 2 contains a proof of Theorem 1.1. Section 3
reviews a construction, due to Casteels [2], used in our approach to proving the second 
theorem. According to this construction (of which idea goes back to Cauchon diagrams 
in [3]), the minors of a generic q-matrix can be expressed as the ones of the so-called 
path matrix of a special planar graph Gm,n, viewed as an extended square grid of size 
m × n. There is a one-to-one correspondence between the pressed interval corteges in 
Em,n and the inner vertices of Gm,n. This enables us to assign each generator involved 
in the construction of entries of the path matrix (formed in Lindstrőm’s style via path 
systems, or “flows”, in Gm,n) as the ratio of two values of f0; this is just where we 
use that f0 takes values in A∗. Relying on this construction, we prove Theorem 1.2 in 
Section 4; here the crucial step is to show that the quasi-commutation relations on the 
values of f0 imply the relations on generators needed to obtain a correct path matrix. 
Finally, in Section 5 we describe a situation when a function f0 on Pintm,n exposed in 
Theorem 1.2 has a unique extension to Em,n that is a QI-function, or, roughly speaking, 
when the values on Pint and relations as in P, P∗, D and Q determine a QI-function on 
Em,n, thus yielding all other universal QIs.

2. Proof of Theorem 1.1

Let f, g : Em,n → A be as in the hypotheses of this theorem. To show that f(I|J) =
g(I|J) holds everywhere, we consider three possible cases for (I|J) ∈ Em,n. In the first 
and second cases, we use induction on the value

σ(I, J) := max(I) − min(I) + max(J) − min(J).

Case 1. Let (I|J) be such that: (i) f(I ′|J ′) = g(I ′|J ′) holds for all (I ′|J ′) ∈ Em,n with 
σ(I ′, J ′) < σ(I, J); and (ii) I is not an interval.

Define i := min(I), k := max(I) and A := I − {i, k}. Take � ∈ J and let B := J − �. 
Since I is not an interval, there is j ∈ [m] such that i < j < k and j /∈ I. Then j /∈ A

and (Aik|B�) = (I|J). Applying to f and g Plűcker-type relations as in (1.5), we have

f(Aj|B)f(Aik|B�) = f(Aij|B�)f(Ak|B) + f(Ajk|B�)f(Ai|B), and (2.1)

g(Aj|B)g(Aik|B�) = g(Aij|B�)g(Ak|B) + g(Ajk|B�)g(Ai|B). (2.2)
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The choice of i, j, k, � provides that in these relations, the number σ(A′, B′) for each of 
the five corteges (A′|B′) different from (Aik|B�) (= (I|J)) is strictly less than σ(I|J). So 
f and g coincide on these (A′|B′), by condition (i) on (I|J). Subtracting (2.2) from (2.1), 
we obtain

f(Aj|B) (f(I|J) − g(I|J)) = 0.

This implies f(I|J) = g(I|J) (since f(Aj|B) �= 0 and f(Aj|B) is not a zero divisor, by 
the hypotheses of the theorem).

Case 2. Let (I|J) be subject to condition (i) from the previous case and suppose that 
J is not an interval. Then taking i := min(J), k := max(J), B := J − {i, k}, � ∈ I, 
A := I − �, applying to f, g the corresponding co-Plűcker-type relations as in (1.6), and 
arguing as above, we again obtain f(I|J) = g(I|J).

Thus, it remains to examine double intervals (I|J). We rely on the equalities f(I|J) =
g(I|J) when (I|J) is pressed (belongs to Pint), and use induction on the value

η(I, J) := max(I) + min(I) + max(J) + min(J).

Case 3. Let (I|J) ∈ Em,n be a non-pressed double interval. Define i := min(I) − 1, k :=
max(I), j := min(J) − 1, � := max(J), A := I−k, B := J − �. Then i, j ≥ 1 (since (I|J)
is non-pressed). Also (I|J) = (Ak|B�). Suppose, by induction, that f(I ′|J ′) = g(I ′|J ′)
holds for all double intervals (I ′|J ′) ∈ Em,n such that η(I ′, J ′) < η(I, J).

Applying to f and g Dodgson-type relations as in (1.7), we have

f(Ai|Bj)f(Ak|B�) = f(Aik|Bj�)f(A|B) + qf(Ai|B�)f(Ak|Bj), and (2.3)

g(Ai|Bj)g(Ak|B�) = g(Aik|Bj�)g(A|B) + qg(Ai|B�)g(Ak|Bj). (2.4)

One can see that for all corteges (A′|B′) occurring in these relations, except for 
(Ak|B�), the value η(A′, B′) is strictly less than η(I, J). Therefore, subtracting (2.4)
from (2.3) and using induction on η, we obtain

f(Ai|Bj) (f(Ak|B�) − g(Ak|B�)) = 0,

whence f(I|J) = g(I|J), as required.
This completes the proof of the theorem. �

3. Flows in a planar grid

The proof of Theorem 1.2 essentially relies on a construction of quantum minors via 
certain path systems (“flows”) in a special planar graph. This construction is due to 
Casteels [2] and it was based on ideas in Cauchon [3] and Lindstrőm [8]. Below we 
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review details of the method needed to us, mostly following terminology, notation and 
conventions used for the corresponding special case in [4].

Extended grids. Let m, n ∈ Z>0. We construct a certain planar directed graph, called 
an extended m × n grid and denoted as Gm,n = G = (V, E), as follows.

(G1) The vertex set V is formed by the points (i, j) in the plane R2 such that i ∈
{0} ∪ [m], j ∈ {0} ∪ [n] and (i, j) �= (0, 0). Hereinafter, it is convenient to us to 
assume that the first coordinate i of a point (i, j) in the plane is the vertical one.

(G2) The edge set E consists of edges of two types: “horizontal” edges, or H-edges, and 
“vertical” edges, or V-edges.

(G3) The H-edges are directed from left to right and go from (i, j − 1) to (i, j) for all 
i = 1, . . . , m and j = 1, . . . , n.

(G4) The V-edges are directed downwards and go from (i, j) to (i − 1, j) for all i =
1, . . . , m and j = 1, . . . , n.

Two subsets of vertices in G are distinguished: the set R = {r1, . . . , rm} of sources, 
where ri := (i, 0), and the set C = {c1, . . . , cn} of sinks, where cj := (0, j). The other 
vertices are called inner and the set of these (i.e., [m] × [n]) is denoted by W = WG.

The picture illustrates the extended grid G3,4.

Each inner vertex v ∈ W of G = Gm,n is regarded as a generator. This gives rise to 
assigning the weight w(e) to each edge e = (u, v) ∈ E (going from a vertex u to a vertex 
v) in a way similar to that introduced for Cauchon graphs in [2], namely:

(3.1) (i) w(e) := v if e is an H-edge with u ∈ R;
(ii) w(e) := u−1v if e is an H-edge and u, v ∈ W ;
(iii) w(e) := 1 if e is a V-edge.

This in turn gives rise to defining the weight w(P ) of a directed path P =
(v0, e1, v1, . . . , ek, vk) (where ei is the edge from vi−1 to vi) to be the ordered (from 
left to right) product, namely:

w(P ) := w(e1)w(e2) · · ·w(ek). (3.2)
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Then w(P ) forms a Laurent monomial in elements of W . Note that when P begins 
in R and ends in C, its weight can also be expressed in the following useful form: if 
u1, v1, u2, v2, . . . , ud−1, vd−1, ud is the sequence of vertices where P makes turns (from 
“east” to “south” at each ui, and from “south” to “east” at each vi), then, due to the 
“telescopic effect” caused by (3.1)(ii), there holds

w(P ) = u1v
−1
1 u2v

−1
2 · · ·ud−1v

−1
d−1ud. (3.3)

We assume that the elements of W obey quasi-commutation laws which look somewhat 
simpler than those in (1.1); namely, for distinct inner vertices u = (i, j) and v = (i′, j′),

(3.4) (i) if i = i′ and j < j′, then uv = qvu;
(ii) if i > i′ and j = j′, then vu = quv;
(iii) otherwise uv = vu,

where, as before, q ∈ K∗. (Note that G has a horizontal (directed) path from u to v
in (i), and a vertical path from u to v in (ii).)

Path matrix and flows. To be consistent with the vertex notation in extended grids, we 
visualize matrices in the Cartesian form: for an m ×n matrix A = (aij), the row indexes 
i = 1, . . . , m are assumed to grow upwards, and the column indexes j = 1, . . . , n from 
left to right.

Given an extended m × n grid G = Gm,n = (V, E) with the corresponding partition 
(R, C, W ) of V as above, we form the path matrix Path = PathG of G in a spirit of [2]; 
namely, Path is the m × n matrix whose entries are defined by

Path(i|j) :=
∑

P∈ΦG(i|j)
w(P ), (i, j) ∈ [m] × [n], (3.5)

where ΦG(i|j) is the set of (directed) paths from the source ri to the sink cj in G. Thus, 
the entries of PathG belong to the K-algebra LG of Laurent polynomials generated by 
the set W if inner vertices of G subject to (3.4).

Definition. Let (I|J) ∈ Em,n. Borrowing terminology from [5], by an (I|J)-flow we mean 
a set φ of pairwise disjoint directed paths from the source set RI := {ri : i ∈ I} to the 
sink set CJ := {cj : j ∈ J} in G.

The set of (I|J)-flows φ in G is denoted by Φ(I|J) = ΦG(I|J). We order the paths 
forming φ by increasing the indexes of sources: if I consists of i(1) < i(2) < · · · < i(k)
and J consists of j(1) < j(2) < · · · < j(k) and if P� denotes the path in φ beginning 
at ri(�), then P� is just �-th path in φ, � = 1, . . . , k. Note that the planarity of G and 
the fact that the paths in φ are pairwise disjoint imply that each P� ends at the sink 
cj(�).
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Similar to the assignment of weights for path systems in [2], we define the weight of 
φ = (P1, P2, . . . , Pk) to be the ordered product

w(φ) := w(P1)w(P2) · · ·w(Pk). (3.6)

Using a version of Lindström Lemma, Casteels showed a correspondence between path 
systems and q-minors of path matrices.

Proposition 3.1 ( [2]). For the extended grid G = Gm,n and any (I|J) ∈ Em,n,

Δ(I|J)PathG,q =
∑

φ∈ΦG(I|J)
w(φ). (3.7)

(This is generalized to a larger set of graphs and their path matrices in [4, Theorem 3.1].)
The next property, surprisingly provided by (3.4), is of most importance to us.

Proposition 3.2 ( [2]). The entries of PathG obey Manin’s relations (similar to those 
in (1.1)).

It follows that the q-minors of PathG satisfy all universal QIs, and therefore, the 
function g : Em,n → LG defined by g(I|J) := PathG(I|J) is a QI-function.

4. Proof of Theorem 1.2

Let f0 : Pintm,n → A∗ be a function as in the hypotheses of this theorem. Our goal 
is to extend f0 to a QI-function f on Em,n. The idea of our construction is prompted by 
Propositions 3.1 and 3.2; namely, we are going to obtain the desired f as the function 
of q-minors of an appropriate path matrix PathG for the extended m × n grid G =
Gm,n.

For this purpose, we first have to determine the “generators” in W in terms of values 
of f0 (so as to provide that these values are consistent with the corresponding pressed 
interval q-minors of the path matrix), and second, using the quasi-commutation relations 
(as in (1.8)) on the values of f0, to verify validity of relations (3.4) on the generators. 
Then PathG will be indeed a fine q-matrix and its q-minors will give the desired QI-
function f .

(It should be emphasized that we may speak of a vertex of G in two ways: either as a 
point in R2, or as a generator of the corresponding algebra. In the former case, we use 
the coordinate notation (i, j) (where i ∈ {0} ∪ [m] and j ∈ {0} ∪ [n]). And in the latter 
case, we use notation w(i, j), referring to it as the weight of (i, j).)

To express the elements of W via values of f0, we associate each pair (i, j) ∈ [m] × [n]
with the pressed interval cortege π(i, j) = (I|J), where

(4.1) I := [i − k + 1..i] and J := [j − k + 1..j], where k := min{i, j}.
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In other words, if i ≤ j (i.e., (i, j) lies “south-east” from the “diagonal” {α, α} in 
R2), then (I|J) is the co-flag interval cortege with I = [i] and max(J) = j, and if i ≥ j

(i.e., (i, j) is “north-west” from the diagonal), then (I|J) is the flag interval cortege with 
max(I) = i and J = [j]. Also it is useful to associate to (i, j): the (almost rectangular) 
subgrid induced by the vertices in ({0} ∪ [i]) × ({0} ∪ [j]) − {(0, 0)}, and the diagonal
D(i|j) formed by the vertices (i, j), (i −1, j−1), . . . , (i −k+1, j−k+1). See the picture 
where the left (right) fragment illustrates the case i < j (resp. i > j), the subgrids are 
indicated by thick lines, and the diagonals D(i, j) by bold circles.

An important feature of a pressed interval cortege (I|J) ∈ Em,n (which is easy to see) 
is that

(4.2) Φ(I|J) consists of a unique flow φ and this flow is formed by paths P1, . . . , Pk, 
where for i := max(I), j := max(J), k := min{i, j}, and � = 1, . . . , k, the path P�

begins at ri−k+�, ends at cj−k+� and makes exactly one turn, namely, the east to 
south turn at the vertex (i − k + �, j − k + �) of the diagonal D(i|j).

We denote this flow (P1, . . . , Pk) as φ(i|j); it is illustrated in the picture (for both 
cases i < j and i > j from the previous picture).

Therefore, for each (i, j) ∈ [m] × [n], taking the cortege (I|J) = π(i, j) and the flow 
φ(i|j) = (P1, . . . , Pk) with k = min{i, j} and using expressions (3.3) and (3.6) for them, 
we obtain that∑

φ∈ΦG(I|J)
w(φ) = w(φ(i|j)) = w(i− k+1, j− k+1) · · ·w(i− 1, j− 1)w(i, j). (4.3)

Now imposing the conditions

w(φ(i|j)) := f0(I|J) for all (I|J) = π(i, j) ∈ Pintm,n, (4.4)
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we come to the rule of defining appropriate weights of inner vertices of G. Namely, relying 
on (4.3), we define w(i, j) for each (i, j) ∈ [m] × [n] by

w(i, j) :=
{

f0({i}|{j}) if min{i, j} = 1,
(f0(π(i− 1, j − 1)))−1f0(π(i, j)) otherwise.

(4.5)

Such a w(i, j) is well-defined since f0(π(i − 1, j − 1)) is invertible.
The crucial step in our proof is to show that these weights satisfy the relations as 

in (3.4), i.e., for (i, j) and (i′, j′),

(4.6) (i) if i = i′ and j < j′, then w(i, j)w(i′, j′) = qw(i′, j′)w(i, j);
(ii) if i > i′ and j = j′, then w(i′, j′)w(i, j) = qw(i, j)w(i′, j′);
(iii) otherwise w(i, j)w(i′, j′) = w(i′, j′)w(i, j).

This would provide that PathG is indeed a fine q-matrix, due to (3.7) and Proposition 3.2, 
and setting f(I|J) := Δ(I|J)PathG

for all (I|J) ∈ Em,n, we would obtain the desired 
function, thus completing the proof of the theorem.

First of all we have to explain that

(4.7) f0 satisfies the quasi-commutation relation for any two pressed interval corteges 
(I|J), (I ′|J ′) ∈ Pint, i.e., f0(I|J)f0(I ′|J ′) = qcf0(I ′|J ′)f0(I|J) holds for some c ∈ Z.

This is equivalent to saying that such corteges determine a universal QI of the 
form (1.8) on associated q-minors. To see the latter, assume that |I| ≥ |I ′| and de-
fine α, β, γ, δ as in (1.9). One can check that: γ = δ = 0 if both interval corteges are flag 
ones; α = β = 0 if they are co-flag ones; and either β = γ = 0 or α = δ = 0 (or both) 
if one of these is a flag, and the other a co-flag interval cortege. So in all cases, we have 
αγ = βδ = 0, and (4.7) follows from (1.10).

Next we start proving (4.6). Given (i, j), (i′, j′) ∈ [m] × [n], let (I|J) := π(i, j) and 
(I ′|J ′) := π(i′, j′), and define

A := f0(I|J), B := f0(I − i|J − j), C := f0(I ′|J ′), D := f0(I ′ − i′|J ′ − j′),

letting by definition B := 1 (D := 1) if |I| = 1 (resp. |I ′| = 1). (Here for an element 
p ∈ P , we write P − p for P − {p}.)

Then w(i, j) is rewritten as B−1A, and w(i′, j′) as D−1C (by (4.5)), and our goal is 
to show that

B−1AD−1C = qdD−1CB−1A, (4.8)

where d is as required in (4.6) (i.e., equal to 1, -1, 0 in cases (i), (ii), (iii), respectively).
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Define c1, c2, c3, c4 from the quasi-commutation relations (as in (1.8))

AC = qc1CA, AD = qc2DA, BC = qc3CB, BD = qc4DB. (4.9)

One can see that

d = c1 − c2 − c3 + c4. (4.10)

Indeed, in order to transform the string B−1AD−1C into D−1CB−1A, one should swap 
each of A, B−1 with each of C, D−1. The second equality in (4.9) implies AD−1 =
q−c2D−1A, and for similar reasons, B−1C = q−c3CB−1 and B−1D−1 = qc4D−1B−1.

Now we are ready to examine possible combinations for (i, j) and (i′, j′) and compute 
d in these cases by using (4.10). We will denote the intervals I−i, J−j, I ′−i′, J ′−j′ in 
question by Ĩ , J̃ , Ĩ ′, J̃ ′, respectively. Also for an ordered pair ((P |Q), (P ′|Q′)) of double 
intervals in Em,n (where |P ′| = |Q′| may exceed |P | = |Q|), we define

α(P, P ′) := min{|{p′ ∈ P ′ : p′ < min(P )}|, |{p ∈ P : p > max(P ′)}|};
β(P, P ′) := min{|{p′ ∈ P ′ : p′ > max(P )}|, |{p ∈ P : p < min(P ′)}|}, (4.11)

and define γ(Q, Q′) and δ(Q, Q′) in a similar way (this matches the definition of α, β, γ, δ
in (1.9) when |P | ≥ |P ′|). Using (1.10), we observe that the sum β(I, I ′) + δ(J, J ′) −
α(I, I ′) − γ(J, J ′) is equal to c1, and similarly for the pairs concerning c2, c3, c4.

In our analysis we also will use the values

ϕ := (β(I, I ′)−α(I, I ′))−(β(I, Ĩ ′)−α(I, Ĩ ′))−(β(Ĩ , I ′)−α(Ĩ , I ′))+(β(Ĩ , Ĩ ′)−α(Ĩ , Ĩ ′));

ψ := (δ(J, J ′)−γ(J, J ′))−(δ(J, J̃ ′)−γ(J, J̃ ′))−(δ(J̃ , J ′)−γ(J̃ , J ′))+(δ(J̃ , J̃ ′)−γ(J̃ , J̃ ′)).

In view of (4.10) and (4.11),

ϕ + ψ = c1 − c2 − c3 + c4 = d. (4.12)

The lemmas below compute ϕ using (4.11). Let r := min(I) (= min(Ĩ)) and r′ :=
min(I ′) (= min(Ĩ ′)).

Lemma 4.1. Suppose that |I| �= |I ′| and i �= i′. Then ϕ = 0.

Proof. Assume that |I| > |I ′|. Then |I| > |Ĩ| ≥ |I ′| > |Ĩ ′|. Consider possible cases.

Case 1 : r ≤ r′ and i′ < i. Then I ′, Ĩ ′ ⊆ I, Ĩ. Therefore, both α and β are zero everywhere, 
implying ϕ = 0.

Case 2 : I ∩ I ′ = ∅. If i′ < r, then β is zero. Also α(I, I ′) = |I ′| = α(Ĩ , I ′) and α(I, Ĩ ′) =
|Ĩ ′| = α(Ĩ , Ĩ ′).
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And if i < r′, then α is zero. Also β(I, I ′) = |I ′| = β(Ĩ , I ′) and β(I, Ĩ ′) = |Ĩ ′| =
β(Ĩ , Ĩ ′). So in both situations, ϕ = 0.

Case 3 : r′ < r ≤ i′ < i. Then β is zero. Also α(P, P ′) = r − r′ holds for all P ∈ {I, Ĩ)
and P ′ ∈ {I ′, Ĩ ′}, implying ϕ = 0.

Case 4 : r < r′ ≤ i < i′. Then α is zero, and

β(I, I ′) = i′ − i = β(Ĩ , Ĩ ′), β(I, Ĩ ′) = i′ − 1 − i and β(Ĩ , I ′) = i′ − (i− 1),

again implying ϕ = 0.

When |I| < |I ′|, the argument follows by swapping I, Ĩ by I ′, Ĩ ′. �
Lemma 4.2. Let |I| = |I ′|. (a) If i < i′ then ϕ = 1. (b) If i > i′ then ϕ = −1. (c) If i = i′

then ϕ = 0.

Proof. We have |I ′|, |Ĩ ′| ≤ |I| and |Ĩ ′| = |Ĩ| but |I ′| = |Ĩ| + 1. Let i > i′. Then, 
using (4.11)), one can check that β is zero. Also if I ∩ I ′ = ∅, then

α(I, I ′) = |I|, α(I, Ĩ ′) = |Ĩ ′| = α(Ĩ , Ĩ ′), α(Ĩ , I ′) = |Ĩ| = |I| − 1.

And if I ∩ I ′ �= ∅, then

α(I, I ′) = α(I, Ĩ ′) = α(Ĩ , Ĩ ′) = r − r′ = i− i′ and α(Ĩ , I ′) = |Ĩ − I ′| = (i− 1) − i′.

Therefore, in both situations

ϕ = −α(I, I ′) + α(I, Ĩ ′) + α(Ĩ , I ′) − α(Ĩ , Ĩ ′) = α(Ĩ , I ′) − α(I, I ′) = −1,

as required in (b).
Case (a) reduces to (b). And if i = i′ then r = r′, implying that both α, β are zero 

(since for any two intervals among I, Ĩ, I ′, Ĩ ′, one is included in the other). �
Lemma 4.3. Let i = i′. (a) If |I| > |I ′| then ϕ = −1. (b) If |I| < |I ′| then ϕ = 1.

Proof. Let |I| > |I ′|. Then I ′, Ĩ ⊂ I and Ĩ ′ ⊂ Ĩ. Hence α and β are zero on each 
of (I|I ′), (I|Ĩ ′), (Ĩ|Ĩ ′). Also |Ĩ| ≥ |I ′| and r < r′ imply α(Ĩ , I ′) = 0 and β(Ĩ , I ′) =
i′ − (i − 1) = 1 (since max(Ĩ) = i − 1). This gives ϕ = −β(Ĩ , I ′) = −1.

Case (b) reduces to (a). �
Replacing i, i′ by j, j′, and I, I ′ by J, J ′ in Lemmas 4.1–4.3, we obtain the correspond-

ing statements concerning ψ.
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(4.13) (i) If |J | = |J ′| and j < j′, or if |J | < |J ′| and j = j′, then ψ = 1.
(ii) Symmetrically, if |J | = |J ′| and j > j′, or if |J | > |J ′| and j = j′, then 

ψ = −1.
(iii) Otherwise ψ = 0.

Now we finish the proof with showing (4.6) in the corresponding three cases.

Case A: i = i′ and j < j′. First suppose that i ≤ j. Then both (I|J) and (I ′|J ′) are 
co-flag corteges, and |I| = |I ′| = i. We have ϕ = 0 (by Lemma 4.2(c)) and ψ = 1
(by (4.13)(i)).

Next suppose that j < i < j′. Then (I|J) is flag, (I ′|J ′) is co-flag, and |I| = j < i =
|I ′|. This gives ϕ = 1 (by Lemma 4.3(b)) and ψ = 0 (by (4.13)(iii)).

Finally, suppose that j′ ≤ i. Then both (I|J), (I ′|J ′) are flag, and |I| = j < j′ = |I ′|. 
This gives ϕ = 1 (by Lemma 4.3(b)) and ψ = 0 (by (4.13)(iii)).

Thus, in all situations, d = ϕ + ψ = 1, as required in (4.6)(i).

Case B: i < i′ and j = j′. This is symmetric to the previous case, yielding d = 1. This 
matches assertion (ii) in (4.6) (since replacing i < i′ by i > i′ changes d = 1 to d = −1).

Case C : i �= i and j �= j′. When ϕ = ψ = 0, (4.6)(iii) is immediate. The situation with 
ϕ �= 0 arises only when |I| = |I ′|; then (a) i < i′ implies ϕ = 1, and (b) i > i′ implies 
ϕ = −1 (see Lemma 4.2). Similarly, ψ �= 0 happens only if |J | = |J ′|; then (c) j < j′

implies ψ = 1, and (d) j > j′ implies ψ = −1 (by (4.13)(i),(ii))
In subcase (a), i < i′ and |I| = |I ′| =: k imply i′ > k (in view of i ≥ |I|). Therefore, 

j′ = k must hold (i.e., (I ′|J ′) is flag). Then j �= j′ implies j > j′, and we obtain ψ = −1, 
by (4.13)(ii).

In subcase (b), i > i′ and |I| = |I ′| =: k imply i > k. Therefore, j = k. Then j′ > j, 
yielding ψ = 1, by (4.13)(i).

So in both (a) and (b), we obtain ϕ + ψ = 0. In their turn, subcases (c) and (d) 
are symmetric to (a) and (b), respectively. Thus, in all situations, d = 0 takes place, as 
required in (4.6)(iii).

This completes the proof of Theorem 1.2.

5. Uniqueness

Let f0 : Pintm,n → A∗ be a function in the hypotheses of Theorem 1.2, i.e., f0 satisfies 
quasi-commutation relations for all pairs of pressed interval corteges in Em,n (cf. (4.7)). 
A priori, f0 may have many extensions to Em,n that are QI-functions. One of them is the 
function f whose values f(I|J) are q-minors Δ(I|J) of the corresponding path matrix 
constructed in the proof in Sect. 4.

In light of Theorems 1.1 and 1.2, it is tempting to ask when f0 has a unique QI-
extension. Since any QI-extension is an RQI-function (i.e., satisfies the corresponding 
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relations of Plűcker, co-Plűcker and Dodgson types) and in view of Theorem 1.1, we 
may address an equivalent question: when an RQI-extension g of f0 is a QI-function 
(and therefore g = f). We give sufficient conditions below (which is, in fact, a corollary 
of Theorems 1.1 and 1.2).

To this aim, let us associate to each (I|J) ∈ Pintm,n an indeterminate yI|J and form 
the K-algebra LY of quantized Laurent polynomials generated by these yI|J (where the 
quantization is agreeable with that for f0). The values of f0 are said to be algebraically 
independent if the map yI|J �→ f0(I|J), (I|J) ∈ Pintm,n, gives an isomorphism between 
LY and the K-subalgebra Af0 of A generated by these values.

Corollary 5.1. Let f0 and f be as above. Let the following additional conditions hold:

(i) the values of f0 are algebraically independent;
(ii) if an element a ∈ Af0 is a zero divisor in A, then a is a zero divisor in Af0 .

Suppose that g is an RQI-function on Em,n coinciding with f0 on Pintm,n. Then g is 
a QI-function (and therefore g = f).

Proof (a sketch). Considering the construction of q-minors of the path matrix related 
to f0 (cf. (3.5), (3.7), (4.3)–(4.5)), one can deduce that for each cortege (I|J) ∈ Em,n, 
yI|J is a nonzero polynomial in LY . Then condition (i) implies that f(I|J) is a nonzero 
element of Af0 . Furthermore, since LY is free of zero divisors (by a known fact on Laurent 
polynomials; see, e.g. [1], ch. II, $11.4, Prop. 8), so is Af0 . Therefore, by condition (ii), 
f(I|J) is not a zero divisor in A. Now applying Theorem 1.1, we obtain g = f , as 
required. �
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