

Basic quadratic identities on quantum minors

Vladimir I. Danilov, Alexander V. Karzanov*

Central Institute of Economics and Mathematics of RAS, 47, Nakhimovskii Prospect, 117418 Moscow, Russia

ARTICLE INFO

Article history:

Received 31 January 2020

Available online 18 March 2021

Communicated by David Hernandez

MSC:

16T99

05C75

05E99

ABSTRACT

This paper continues an earlier research of the authors on universal quadratic identities (QIs) on minors of quantum matrices. We demonstrate situations when the universal QIs are provided, in a sense, by the ones of four special types (Plücker, co-Plücker, Dodgson identities and quasi-commutation relations on flag and co-flag interval minors).

© 2021 Elsevier Inc. All rights reserved.

Keywords:

Quantum matrix

Plücker and Dodgson relations

Quasi-commuting minors

Cauchon graph

Path matrix

1. Introduction

Let \mathcal{A} be a \mathbb{K} -algebra over a field \mathbb{K} and let $q \in \mathbb{K}^*$. We deal with an $m \times n$ matrix X whose entries x_{ij} belong to \mathcal{A} and satisfy the following “quasi-commutation” relations (originally appeared in Manin’s work [9]): for $i < \ell \leq m$ and $j < k \leq n$,

$$x_{ij}x_{ik} = qx_{ik}x_{ij}, \quad x_{ij}x_{\ell j} = qx_{\ell j}x_{ij}, \quad (1.1)$$

* Corresponding author.

E-mail addresses: danilov@cemi.rssi.ru (V.I. Danilov), akarzanov7@gmail.com (A.V. Karzanov).

$$x_{ik}x_{\ell j} = x_{\ell j}x_{ik} \quad \text{and} \quad x_{ij}x_{\ell k} - x_{\ell k}x_{ij} = (q - q^{-1})x_{ik}x_{\ell j}.$$

We call such an X a *fine q -matrix* over \mathcal{A} and are interested in relations in the corresponding *quantized coordinate ring* (the algebra of polynomials in the x_{ij} respecting the relations in \mathcal{A}), which are viewed as quadratic identities on *q -minors* of X . Let us start with some terminology and notation.

- For a positive integer n' , the set $\{1, 2, \dots, n'\}$ is denoted by $[n']$. Let $\mathcal{E}^{n,m}$ denote the set of ordered pairs (I, J) such that $I \subseteq [m]$, $J \subseteq [n]$ and $|I| = |J|$; we will refer to such a pair as a *cortege* and may denote it as $(I|J)$. The submatrix of X whose rows and columns are indexed by elements of I and J , respectively, is denoted by $X(I|J)$. For $(I, J) \in \mathcal{E}^{m,n}$, where $I = \{i_1 < i_2 < \dots < i_k\}$ and $J = \{j_1 < j_2 < \dots < j_k\}$, the *q -determinant* (called the *q -minor*, the *quantum minor*) of $X(I|J)$ is defined as

$$\Delta_{X,q}(I|J) := \sum_{\sigma \in S_k} (-q)^{\ell(\sigma)} \prod_{d=1}^k x_{i_d j_{\sigma(d)}}, \quad (1.2)$$

where the factors in \prod are ordered from left to right by increasing d , and $\ell(\sigma)$ denotes the *length* (number of inversions) of a permutation σ . The terms X and/or q in $\Delta_{X,q}(I|J)$ may be omitted when they are clear from the context. By definition $\Delta(\emptyset|\emptyset)$ is the unit of \mathcal{A} .

- A quantum quadratic identity (QI) of our interest is viewed as

$$\sum (\text{sign}_i q^{\delta_i} \Delta_q(I_i|J_i) \Delta_q(I'_i|J'_i) : i = 1, \dots, N) = 0, \quad (1.3)$$

where for each i , $\delta_i \in \mathbb{Z}$, $\text{sign}_i \in \{+, -\}$, and $(I_i|J_i)$, $(I'_i|J'_i) \in \mathcal{E}^{m,n}$. Note that any pair $(I|J)$, $(I'|J')$ may be repeated in (1.3) many times. We restrict ourselves to merely *homogeneous* QIs, which means that in expression (1.3),

(1.4) each of the sets $I_i \cup I'_i$, $I_i \cap I'_i$, $J_i \cup J'_i$, $J_i \cap J'_i$ is invariant of i .

When, in addition, (1.3) is valid for all appropriate \mathcal{A}, q, X (with m, n fixed), we say that (1.3) is *universal*.

In fact, there are plenty of universal QIs. For example, representative classes involving quantum flag minors were demonstrated by Lakshmibai and Reshetikhin [6] and Taft and Towber [11]. Extending earlier results, the authors obtained in [4] necessary and sufficient conditions characterizing all universal QIs. These conditions are given in combinatorial terms and admit an efficient verification.

Four special cases of universal QIs play a central role in this paper. They are exposed in (I)–(IV) below; for details, see [4, Sects. 6,8].

In what follows, for integers $1 \leq a \leq b \leq n'$, we call the set $\{a, a+1, \dots, b\}$ an *interval* in $[n']$ and denote it as $[a..b]$ (in particular, $[1..n'] = [n']$). For disjoint subsets A and $\{a, \dots, b\}$, we may abbreviate $A \cup \{a, \dots, b\}$ as $Aa \dots b$. Also for $(I|J) \in \mathcal{E}^{m,n}$,

$\Delta(I|J) = \Delta_{X,q}(I|J)$ is called a *flag (co-flag) q-minor* if $J = [k]$ (resp. $I = [k]$), where $k := |I| = |J|$.

(I) *Plücker-type relations with triples.* Let $A \subset [m]$, $B \subset [n]$, $\{i, j, k\} \subseteq [m] - A$, $\ell \in [n] - B$, and let $|A| + 1 = |B|$ and $i < j < k$. There are several universal QIs on such elements (see a discussion in [4, Sect. 6.4]). One of them is viewed as

$$\Delta(Aj|B)\Delta(Aik|B\ell) = \Delta(Aij|B\ell)\Delta(Ak|B) + \Delta(Ajk|B\ell)\Delta(Ai|B). \quad (1.5)$$

In the flag case (when $B = [|B|]$ and $\ell = |B| + 1$) this turns into a quantum analog of the classical Plücker relation with a triple $i < j < k$.

(II) *Co-Plücker-type relations with triples.* They are “symmetric” to those in (I). Namely, we deal with $A \subset [m]$, $B \subset [n]$, $\ell \in [m] - A$ and $\{i, j, k\} \subseteq [n] - B$ such that $|A| = |B| + 1$ and $i < j < k$. Then there holds:

$$\Delta(A|Bj)\Delta(A\ell|Bik) = \Delta(A\ell|Bij)\Delta(A|Bk) + \Delta(A\ell|Bjk)\Delta(A|Bi). \quad (1.6)$$

(III) *Dodgson-type relations.* Let $i, k \in [m]$ and $j, \ell \in [n]$ satisfy $k - i = \ell - j \geq 0$. Form the intervals $A := [i + 1..k - 1]$ and $B := [j + 1.. \ell - 1]$. The universal QI which is a quantum analog of the classical Dodgson relation is viewed as (cf. [4, Sect. 6.5])

$$\Delta(Ai|Bj)\Delta(Ak|B\ell) = \Delta(Aik|Bj\ell)\Delta(A|B) + q\Delta(Ai|B\ell)\Delta(Ak|Bj). \quad (1.7)$$

In particular, when $A = B = \emptyset$, we obtain the expression $\Delta(ik|j\ell) = \Delta(i|j)\Delta(k|\ell) - q\Delta(i|\ell)\Delta(k|j)$ (with $k = i + 1$ and $\ell = j + 1$), taking into account that $\Delta(\emptyset|\emptyset) = 1$. This matches formula (1.2) for the q -minor of a 2×2 submatrix.

(IV) *Quasi-commutation relations on interval q -minors.* The simplest possible kind of universal QIs involves two corteges $(I|J), (I'|J') \in \mathcal{E}^{m,n}$ and is viewed as

$$\Delta(I|J)\Delta(I'|J') = q^c \Delta(I'|J')\Delta(I|J) \quad (1.8)$$

for some $c \in \mathbb{Z}$. When q -minors $\Delta(I|J)$ and $\Delta(I'|J')$ satisfy (1.8), they are called *quasi-commuting*. (For example, three relations in (1.1) are such.) Leclerc and Zelevinsky [7] characterized such minors in the *flag* case, by showing that $\Delta(I|[I|])$ and $\Delta(I'|[I'|])$ quasi-commute if and only if the subsets I, I' of $[m]$ are *weakly separated* (for a definition, see [7]). In a general case, a characterization of quasi-commuting q -minors is given in Scott [10] (see also [4, Sect. 8.3] for additional aspects).

For purposes of this paper, it suffices to consider only *interval q -minors*, i.e., assume that all I, J, I', J' are intervals. Let for definiteness $|I| \geq |I'|$ and define

$$\begin{aligned} \alpha &:= |\{i' \in I' : i' < \min(I)\}|, & \beta &:= |\{i' \in I' : i' > \max(I)\}|, \\ \gamma &:= |\{j' \in J' : j' < \min(J)\}|, & \delta &:= |\{j' \in J' : j' > \max(J)\}|. \end{aligned} \quad (1.9)$$

Then the facts that I, J, I', J' are intervals and that $|I| \geq |I'|$ imply $\alpha\beta = \gamma\delta = 0$.

Specializing Proposition 8.2 from [4] to our case, we obtain that

(1.10) for $|I| \geq |I'|$, interval q -minors $\Delta(I|J)$ and $\Delta(I'|J')$ quasi-commute (universally) if and only if $\alpha\gamma = \beta\delta = 0$; in this case, c as in (1.8) is equal to $\beta + \delta - \alpha - \gamma$.

In fact, we will use (1.10) only when $\Delta(I|J)$ is a flag or co-flag interval q -minor, and similarly for $\Delta(I'|J')$ (including mixed cases with one flag and one co-flag q -minors).

In this paper we explore the issue when the special quadratic identities exhibited in (I)–(IV) determine all other universal QIs. More precisely, let $\mathcal{P} = \mathcal{P}_{m,n}$, $\mathcal{P}^* = \mathcal{P}_{m,n}^*$, and $\mathcal{D} = \mathcal{D}_{m,n}$ denote the sets of relations as in (1.5), (1.6), and (1.7), respectively (concerning the corresponding objects in (I)–(III)). Also let $\mathcal{Q} = \mathcal{Q}_{m,n}$ denote the set of quasi-commuting relations in (IV) concerning the flag and co-flag interval cases.

Definitions. For \mathcal{A} , q, m, n as above, $f : \mathcal{E}^{m,n} \rightarrow \mathcal{A}$ is called a *QI-function* if its values satisfy the quadratic relations similar to those in the universal QIs on q -minors (i.e., when we formally replace $\Delta(I|J)$ by $f(I|J)$ in these relations). When $f : \mathcal{E}^{m,n} \rightarrow \mathcal{A}$ is assumed to satisfy the relations as in \mathcal{P} , \mathcal{P}^* and \mathcal{D} , we say that f is an *RQI-function* (abbreviating “a function obeying *restricted quadratic identities*”).

Note that if $f : \mathcal{E}^{m,n} \rightarrow \mathcal{A}$ satisfies a quadratic relation Q , and a is an element of the center of \mathcal{A} (i.e. $ax = xa$ for any $x \in \mathcal{A}$), then af satisfies Q as well. Hence if f is a QI- or RQI-function, then so is af . Due to this, in what follows we will default assume that any function f on $\mathcal{E}^{m,n}$ we deal with is *normalized*, i.e., satisfies $f(\emptyset|\emptyset) = 1$ (which is consistent with $\Delta(\emptyset|\emptyset) = 1$).

Our goal is to prove two results on QI-functions. Let us say that a cortege $(I|J) \in \mathcal{E}^{m,n}$ is a *double interval* if both I, J are intervals. A double interval $(I|J)$ is called *pressed* if at least one of I, J is an initial interval, i.e., either $I = [|I|]$ or $J = [|J|]$ or both (yielding a flag or co-flag case); the set of these is denoted as $Pint = Pint_{m,n}$.

Theorem 1.1. *Let RQI-functions $f, g : \mathcal{E}^{m,n} \rightarrow \mathcal{A} - \{0\}$ coincide on $Pint_{m,n}$. Let, in addition, for any $(I|J) \in \mathcal{E}^{m,n}$, the element $f(I|J)$ be not a zero divisor in \mathcal{A} . Then f and g coincide on the entire $\mathcal{E}^{m,n}$.*

It follows that any QI-function is uniquely determined by its values on $Pint$ and relations as in \mathcal{P} , \mathcal{P}^* and \mathcal{D} .

The second theorem describes a situation when taking values on $Pint$ arbitrarily within a representative part of \mathcal{A} , one can extend these values to a QI-function (so one may say that, $Pint$ plays a role of “basis” for QI-functions, in a sense).

Theorem 1.2. *Let $f_0 : Pint \rightarrow \mathcal{A}^*$ (where \mathcal{A}^* is the set of invertible elements of \mathcal{A}). Suppose that f_0 satisfies the quasi-commutation relations (as in (1.8) in (IV)) on $Pint$. Then f_0 is extendable to a QI-function f on $\mathcal{E}^{m,n}$.*

It should be noted that Theorems 1.1 and 1.2 can be regarded as quantum analogs of corresponding results in [5] devoted to universal quadratic identities on minors of matrices over a commutative semiring (e.g. over $\mathbb{R}_{>0}$ or over the tropical semiring $(\mathbb{R}, +, \max)$); see Theorem 7.1 there.

This paper is organized as follows. Section 2 contains a proof of Theorem 1.1. Section 3 reviews a construction, due to Casteels [2], used in our approach to proving the second theorem. According to this construction (of which idea goes back to Cauchon diagrams in [3]), the minors of a generic q -matrix can be expressed as the ones of the so-called *path matrix* of a special planar graph $G_{m,n}$, viewed as an extended square grid of size $m \times n$. There is a one-to-one correspondence between the pressed interval corteges in $\mathcal{E}^{m,n}$ and the inner vertices of $G_{m,n}$. This enables us to assign each generator involved in the construction of entries of the path matrix (formed in Lindström's style via path systems, or “flows”, in $G_{m,n}$) as the ratio of two values of f_0 ; this is just where we use that f_0 takes values in \mathcal{A}^* . Relying on this construction, we prove Theorem 1.2 in Section 4; here the crucial step is to show that the quasi-commutation relations on the values of f_0 imply the relations on generators needed to obtain a correct path matrix. Finally, in Section 5 we describe a situation when a function f_0 on $Pint_{m,n}$ exposed in Theorem 1.2 has a unique extension to $\mathcal{E}^{m,n}$ that is a QI-function, or, roughly speaking, when the values on $Pint$ and relations as in $\mathcal{P}, \mathcal{P}^*, \mathcal{D}$ and \mathcal{Q} determine a QI-function on $\mathcal{E}^{m,n}$, thus yielding all other universal QIs.

2. Proof of Theorem 1.1

Let $f, g : \mathcal{E}^{m,n} \rightarrow \mathcal{A}$ be as in the hypotheses of this theorem. To show that $f(I|J) = g(I|J)$ holds everywhere, we consider three possible cases for $(I|J) \in \mathcal{E}^{m,n}$. In the first and second cases, we use induction on the value

$$\sigma(I, J) := \max(I) - \min(I) + \max(J) - \min(J).$$

Case 1. Let $(I|J)$ be such that: (i) $f(I'|J') = g(I'|J')$ holds for all $(I'|J') \in \mathcal{E}^{m,n}$ with $\sigma(I', J') < \sigma(I, J)$; and (ii) I is not an interval.

Define $i := \min(I)$, $k := \max(I)$ and $A := I - \{i, k\}$. Take $\ell \in J$ and let $B := J - \ell$. Since I is not an interval, there is $j \in [m]$ such that $i < j < k$ and $j \notin I$. Then $j \notin A$ and $(Aik|B\ell) = (I|J)$. Applying to f and g Plücker-type relations as in (1.5), we have

$$f(Aj|B)f(Aik|B\ell) = f(Aij|B\ell)f(Ak|B) + f(Ajk|B\ell)f(Ai|B), \quad \text{and} \quad (2.1)$$

$$g(Aj|B)g(Aik|B\ell) = g(Aij|B\ell)g(Ak|B) + g(Ajk|B\ell)g(Ai|B). \quad (2.2)$$

The choice of i, j, k, ℓ provides that in these relations, the number $\sigma(A', B')$ for each of the five corteges $(A'|B')$ different from $(Aik|B\ell)$ ($= (I|J)$) is strictly less than $\sigma(I|J)$. So f and g coincide on these $(A'|B')$, by condition (i) on $(I|J)$. Subtracting (2.2) from (2.1), we obtain

$$f(Aj|B)(f(I|J) - g(I|J)) = 0.$$

This implies $f(I|J) = g(I|J)$ (since $f(Aj|B) \neq 0$ and $f(Aj|B)$ is not a zero divisor, by the hypotheses of the theorem).

Case 2. Let $(I|J)$ be subject to condition (i) from the previous case and suppose that J is not an interval. Then taking $i := \min(J)$, $k := \max(J)$, $B := J - \{i, k\}$, $\ell \in I$, $A := I - \ell$, applying to f, g the corresponding co-Plücker-type relations as in (1.6), and arguing as above, we again obtain $f(I|J) = g(I|J)$.

Thus, it remains to examine double intervals $(I|J)$. We rely on the equalities $f(I|J) = g(I|J)$ when $(I|J)$ is pressed (belongs to *Pint*), and use induction on the value

$$\eta(I, J) := \max(I) + \min(I) + \max(J) + \min(J).$$

Case 3. Let $(I|J) \in \mathcal{E}^{m,n}$ be a non-pressed double interval. Define $i := \min(I) - 1$, $k := \max(I)$, $j := \min(J) - 1$, $\ell := \max(J)$, $A := I - k$, $B := J - \ell$. Then $i, j \geq 1$ (since $(I|J)$ is non-pressed). Also $(I|J) = (Ak|B\ell)$. Suppose, by induction, that $f(I'|J') = g(I'|J')$ holds for all double intervals $(I'|J') \in \mathcal{E}^{m,n}$ such that $\eta(I', J') < \eta(I, J)$.

Applying to f and g Dodgson-type relations as in (1.7), we have

$$f(Ai|Bj)f(Ak|B\ell) = f(Aik|Bj\ell)f(A|B) + qf(Ai|B\ell)f(Ak|Bj), \quad \text{and} \quad (2.3)$$

$$g(Ai|Bj)g(Ak|B\ell) = g(Aik|Bj\ell)g(A|B) + qg(Ai|B\ell)g(Ak|Bj). \quad (2.4)$$

One can see that for all corteges $(A'|B')$ occurring in these relations, except for $(Ak|B\ell)$, the value $\eta(A', B')$ is strictly less than $\eta(I, J)$. Therefore, subtracting (2.4) from (2.3) and using induction on η , we obtain

$$f(Ai|Bj)(f(Ak|B\ell) - g(Ak|B\ell)) = 0,$$

whence $f(I|J) = g(I|J)$, as required.

This completes the proof of the theorem. \square

3. Flows in a planar grid

The proof of Theorem 1.2 essentially relies on a construction of quantum minors via certain path systems (“flows”) in a special planar graph. This construction is due to Casteels [2] and it was based on ideas in Cauchon [3] and Lindström [8]. Below we

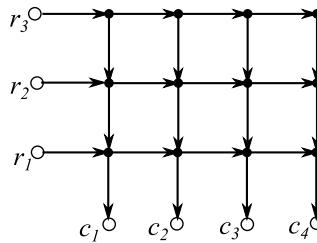
review details of the method needed to us, mostly following terminology, notation and conventions used for the corresponding special case in [4].

Extended grids. Let $m, n \in \mathbb{Z}_{>0}$. We construct a certain planar directed graph, called an *extended $m \times n$ grid* and denoted as $G_{m,n} = G = (V, E)$, as follows.

- (G1) The vertex set V is formed by the points (i, j) in the plane \mathbb{R}^2 such that $i \in \{0\} \cup [m]$, $j \in \{0\} \cup [n]$ and $(i, j) \neq (0, 0)$. Hereinafter, it is convenient to us to assume that the first coordinate i of a point (i, j) in the plane is the *vertical* one.
- (G2) The edge set E consists of edges of two types: “horizontal” edges, or *H-edges*, and “vertical” edges, or *V-edges*.
- (G3) The H-edges are directed from left to right and go from $(i, j - 1)$ to (i, j) for all $i = 1, \dots, m$ and $j = 1, \dots, n$.
- (G4) The V-edges are directed downwards and go from (i, j) to $(i - 1, j)$ for all $i = 1, \dots, m$ and $j = 1, \dots, n$.

Two subsets of vertices in G are distinguished: the set $R = \{r_1, \dots, r_m\}$ of *sources*, where $r_i := (i, 0)$, and the set $C = \{c_1, \dots, c_n\}$ of *sinks*, where $c_j := (0, j)$. The other vertices are called *inner* and the set of these (i.e., $[m] \times [n]$) is denoted by $W = W_G$.

The picture illustrates the extended grid $G_{3,4}$.



Each inner vertex $v \in W$ of $G = G_{m,n}$ is regarded as a *generator*. This gives rise to assigning the *weight* $w(e)$ to each edge $e = (u, v) \in E$ (going from a vertex u to a vertex v) in a way similar to that introduced for Cauchon graphs in [2], namely:

- (3.1) (i) $w(e) := v$ if e is an H-edge with $u \in R$;
- (ii) $w(e) := u^{-1}v$ if e is an H-edge and $u, v \in W$;
- (iii) $w(e) := 1$ if e is a V-edge.

This in turn gives rise to defining the weight $w(P)$ of a directed path $P = (v_0, e_1, v_1, \dots, e_k, v_k)$ (where e_i is the edge from v_{i-1} to v_i) to be the ordered (from left to right) product, namely:

$$w(P) := w(e_1)w(e_2) \cdots w(e_k). \quad (3.2)$$

Then $w(P)$ forms a Laurent monomial in elements of W . Note that when P begins in R and ends in C , its weight can also be expressed in the following useful form: if $u_1, v_1, u_2, v_2, \dots, u_{d-1}, v_{d-1}, u_d$ is the sequence of vertices where P makes turns (from “east” to “south” at each u_i , and from “south” to “east” at each v_i), then, due to the “telescopic effect” caused by (3.1)(ii), there holds

$$w(P) = u_1 v_1^{-1} u_2 v_2^{-1} \cdots u_{d-1} v_{d-1}^{-1} u_d. \quad (3.3)$$

We assume that the elements of W obey quasi-commutation laws which look somewhat simpler than those in (1.1); namely, for distinct inner vertices $u = (i, j)$ and $v = (i', j')$,

- (3.4) (i) if $i = i'$ and $j < j'$, then $uv = qvu$;
- (ii) if $i > i'$ and $j = j'$, then $vu = quv$;
- (iii) otherwise $uv = vu$,

where, as before, $q \in \mathbb{K}^*$. (Note that G has a horizontal (directed) path from u to v in (i), and a vertical path from u to v in (ii).)

Path matrix and flows. To be consistent with the vertex notation in extended grids, we visualize matrices in the Cartesian form: for an $m \times n$ matrix $A = (a_{ij})$, the row indexes $i = 1, \dots, m$ are assumed to grow upwards, and the column indexes $j = 1, \dots, n$ from left to right.

Given an extended $m \times n$ grid $G = G_{m,n} = (V, E)$ with the corresponding partition (R, C, W) of V as above, we form the *path matrix* $\text{Path} = \text{Path}_G$ of G in a spirit of [2]; namely, Path is the $m \times n$ matrix whose entries are defined by

$$\text{Path}(i|j) := \sum_{P \in \Phi_G(i|j)} w(P), \quad (i, j) \in [m] \times [n], \quad (3.5)$$

where $\Phi_G(i|j)$ is the set of (directed) paths from the source r_i to the sink c_j in G . Thus, the entries of Path_G belong to the \mathbb{K} -algebra \mathcal{L}_G of Laurent polynomials generated by the set W if inner vertices of G subject to (3.4).

Definition. Let $(I|J) \in \mathcal{E}^{m,n}$. Borrowing terminology from [5], by an $(I|J)$ -flow we mean a set ϕ of *pairwise disjoint* directed paths from the source set $R_I := \{r_i : i \in I\}$ to the sink set $C_J := \{c_j : j \in J\}$ in G .

The set of $(I|J)$ -flows ϕ in G is denoted by $\Phi(I|J) = \Phi_G(I|J)$. We order the paths forming ϕ by increasing the indexes of sources: if I consists of $i(1) < i(2) < \dots < i(k)$ and J consists of $j(1) < j(2) < \dots < j(k)$ and if P_ℓ denotes the path in ϕ beginning at $r_{i(\ell)}$, then P_ℓ is just ℓ -th path in ϕ , $\ell = 1, \dots, k$. Note that the planarity of G and the fact that the paths in ϕ are pairwise disjoint imply that each P_ℓ ends at the sink $c_{j(\ell)}$.

Similar to the assignment of weights for path systems in [2], we define the weight of $\phi = (P_1, P_2, \dots, P_k)$ to be the ordered product

$$w(\phi) := w(P_1)w(P_2) \cdots w(P_k). \quad (3.6)$$

Using a version of Lindström Lemma, Casteels showed a correspondence between path systems and q -minors of path matrices.

Proposition 3.1 ([2]). *For the extended grid $G = G_{m,n}$ and any $(I|J) \in \mathcal{E}^{m,n}$,*

$$\Delta(I|J)_{\text{Path}_G, q} = \sum_{\phi \in \Phi_G(I|J)} w(\phi). \quad (3.7)$$

(This is generalized to a larger set of graphs and their path matrices in [4, Theorem 3.1].)

The next property, surprisingly provided by (3.4), is of most importance to us.

Proposition 3.2 ([2]). *The entries of Path_G obey Manin's relations (similar to those in (1.1)).*

It follows that the q -minors of Path_G satisfy all universal QIs, and therefore, the function $g : \mathcal{E}^{m,n} \rightarrow \mathcal{L}_G$ defined by $g(I|J) := \text{Path}_G(I|J)$ is a QI-function.

4. Proof of Theorem 1.2

Let $f_0 : \text{Pint}_{m,n} \rightarrow \mathcal{A}^*$ be a function as in the hypotheses of this theorem. Our goal is to extend f_0 to a QI-function f on $\mathcal{E}^{m,n}$. The idea of our construction is prompted by Propositions 3.1 and 3.2; namely, we are going to obtain the desired f as the function of q -minors of an appropriate path matrix Path_G for the extended $m \times n$ grid $G = G_{m,n}$.

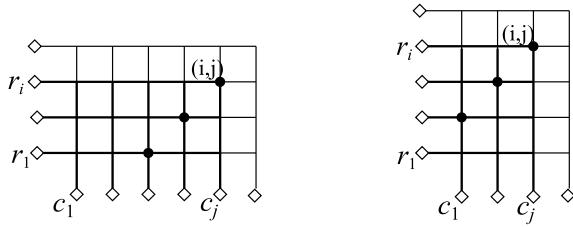
For this purpose, we first have to determine the “generators” in W in terms of values of f_0 (so as to provide that these values are consistent with the corresponding pressed interval q -minors of the path matrix), and second, using the quasi-commutation relations (as in (1.8)) on the values of f_0 , to verify validity of relations (3.4) on the generators. Then Path_G will be indeed a fine q -matrix and its q -minors will give the desired QI-function f .

(It should be emphasized that we may speak of a vertex of G in two ways: either as a point in \mathbb{R}^2 , or as a generator of the corresponding algebra. In the former case, we use the coordinate notation (i, j) (where $i \in \{0\} \cup [m]$ and $j \in \{0\} \cup [n]$). And in the latter case, we use notation $w(i, j)$, referring to it as the *weight* of (i, j) .)

To express the elements of W via values of f_0 , we associate each pair $(i, j) \in [m] \times [n]$ with the pressed interval cortege $\pi(i, j) = (I|J)$, where

$$(4.1) \quad I := [i - k + 1..i] \text{ and } J := [j - k + 1..j], \text{ where } k := \min\{i, j\}.$$

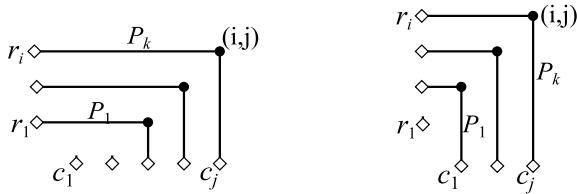
In other words, if $i \leq j$ (i.e., (i, j) lies “south-east” from the “diagonal” $\{\alpha, \alpha\}$ in \mathbb{R}^2), then $(I|J)$ is the co-flag interval cortege with $I = [i]$ and $\max(J) = j$, and if $i \geq j$ (i.e., (i, j) is “north-west” from the diagonal), then $(I|J)$ is the flag interval cortege with $\max(I) = i$ and $J = [j]$. Also it is useful to associate to (i, j) : the (almost rectangular) subgrid induced by the vertices in $(\{0\} \cup [i]) \times (\{0\} \cup [j]) - \{(0, 0)\}$, and the *diagonal* $D(i|j)$ formed by the vertices $(i, j), (i-1, j-1), \dots, (i-k+1, j-k+1)$. See the picture where the left (right) fragment illustrates the case $i < j$ (resp. $i > j$), the subgrids are indicated by thick lines, and the diagonals $D(i|j)$ by bold circles.



An important feature of a pressed interval cortege $(I|J) \in \mathcal{E}^{m,n}$ (which is easy to see) is that

(4.2) $\Phi(I|J)$ consists of a unique flow ϕ and this flow is formed by paths P_1, \dots, P_k , where for $i := \max(I)$, $j := \max(J)$, $k := \min\{i, j\}$, and $\ell = 1, \dots, k$, the path P_ℓ begins at $r_{i-k+\ell}$, ends at $c_{j-k+\ell}$ and makes exactly one turn, namely, the east to south turn at the vertex $(i-k+\ell, j-k+\ell)$ of the diagonal $D(i|j)$.

We denote this flow (P_1, \dots, P_k) as $\phi(i|j)$; it is illustrated in the picture (for both cases $i < j$ and $i > j$ from the previous picture).



Therefore, for each $(i, j) \in [m] \times [n]$, taking the cortege $(I|J) = \pi(i, j)$ and the flow $\phi(i|j) = (P_1, \dots, P_k)$ with $k = \min\{i, j\}$ and using expressions (3.3) and (3.6) for them, we obtain that

$$\sum_{\phi \in \Phi_G(I|J)} w(\phi) = w(\phi(i|j)) = w(i-k+1, j-k+1) \cdots w(i-1, j-1) w(i, j). \quad (4.3)$$

Now imposing the conditions

$$w(\phi(i|j)) := f_0(I|J) \quad \text{for all } (I|J) = \pi(i, j) \in \text{Pint}_{m,n}, \quad (4.4)$$

we come to the rule of defining appropriate weights of inner vertices of G . Namely, relying on (4.3), we define $w(i, j)$ for each $(i, j) \in [m] \times [n]$ by

$$w(i, j) := \begin{cases} f_0(\{i\} \setminus \{j\}) & \text{if } \min\{i, j\} = 1, \\ (f_0(\pi(i-1, j-1)))^{-1} f_0(\pi(i, j)) & \text{otherwise.} \end{cases} \quad (4.5)$$

Such a $w(i, j)$ is well-defined since $f_0(\pi(i-1, j-1))$ is invertible.

The crucial step in our proof is to show that these weights satisfy the relations as in (3.4), i.e., for (i, j) and (i', j') ,

$$(4.6) \quad \begin{aligned} \text{(i)} & \text{ if } i = i' \text{ and } j < j', \text{ then } w(i, j)w(i', j') = qw(i', j')w(i, j); \\ \text{(ii)} & \text{ if } i > i' \text{ and } j = j', \text{ then } w(i', j')w(i, j) = qw(i, j)w(i', j'); \\ \text{(iii)} & \text{ otherwise } w(i, j)w(i', j') = w(i', j')w(i, j). \end{aligned}$$

This would provide that $Path_G$ is indeed a fine q -matrix, due to (3.7) and Proposition 3.2, and setting $f(I|J) := \Delta(I|J)_{Path_G}$ for all $(I|J) \in \mathcal{E}^{m,n}$, we would obtain the desired function, thus completing the proof of the theorem.

First of all we have to explain that

$$(4.7) \quad f_0 \text{ satisfies the quasi-commutation relation for any two pressed interval corteges } (I|J), (I'|J') \in Pint, \text{ i.e., } f_0(I|J)f_0(I'|J') = q^c f_0(I'|J')f_0(I|J) \text{ holds for some } c \in \mathbb{Z}.$$

This is equivalent to saying that such corteges determine a universal QI of the form (1.8) on associated q -minors. To see the latter, assume that $|I| \geq |I'|$ and define $\alpha, \beta, \gamma, \delta$ as in (1.9). One can check that: $\gamma = \delta = 0$ if both interval corteges are flag ones; $\alpha = \beta = 0$ if they are co-flag ones; and either $\beta = \gamma = 0$ or $\alpha = \delta = 0$ (or both) if one of these is a flag, and the other a co-flag interval corteges. So in all cases, we have $\alpha\gamma = \beta\delta = 0$, and (4.7) follows from (1.10).

Next we start proving (4.6). Given $(i, j), (i', j') \in [m] \times [n]$, let $(I|J) := \pi(i, j)$ and $(I'|J') := \pi(i', j')$, and define

$$A := f_0(I|J), \quad B := f_0(I - i|J - j), \quad C := f_0(I'|J'), \quad D := f_0(I' - i'|J' - j'),$$

letting by definition $B := 1$ ($D := 1$) if $|I| = 1$ (resp. $|I'| = 1$). (Here for an element $p \in P$, we write $P - p$ for $P - \{p\}$.)

Then $w(i, j)$ is rewritten as $B^{-1}A$, and $w(i', j')$ as $D^{-1}C$ (by (4.5)), and our goal is to show that

$$B^{-1}AD^{-1}C = q^d D^{-1}CB^{-1}A, \quad (4.8)$$

where d is as required in (4.6) (i.e., equal to 1, -1, 0 in cases (i), (ii), (iii), respectively).

Define c_1, c_2, c_3, c_4 from the quasi-commutation relations (as in (1.8))

$$AC = q^{c_1} CA, \quad AD = q^{c_2} DA, \quad BC = q^{c_3} CB, \quad BD = q^{c_4} DB. \quad (4.9)$$

One can see that

$$d = c_1 - c_2 - c_3 + c_4. \quad (4.10)$$

Indeed, in order to transform the string $B^{-1}AD^{-1}C$ into $D^{-1}CB^{-1}A$, one should swap each of A, B^{-1} with each of C, D^{-1} . The second equality in (4.9) implies $AD^{-1} = q^{-c_2}D^{-1}A$, and for similar reasons, $B^{-1}C = q^{-c_3}CB^{-1}$ and $B^{-1}D^{-1} = q^{c_4}D^{-1}B^{-1}$.

Now we are ready to examine possible combinations for (i, j) and (i', j') and compute d in these cases by using (4.10). We will denote the intervals $I - i$, $J - j$, $I' - i'$, $J' - j'$ in question by \tilde{I} , \tilde{J} , \tilde{I}' , \tilde{J}' , respectively. Also for an ordered pair $((P|Q), (P'|Q'))$ of double intervals in $\mathcal{E}^{m,n}$ (where $|P'| = |Q'|$ may exceed $|P| = |Q|$), we define

$$\begin{aligned} \alpha(P, P') &:= \min\{|\{p' \in P' : p' < \min(P)\}|, |\{p \in P : p > \max(P')\}|\}; \\ \beta(P, P') &:= \min\{|\{p' \in P' : p' > \max(P)\}|, |\{p \in P : p < \min(P')\}|\}, \end{aligned} \quad (4.11)$$

and define $\gamma(Q, Q')$ and $\delta(Q, Q')$ in a similar way (this matches the definition of $\alpha, \beta, \gamma, \delta$ in (1.9) when $|P| \geq |P'|$). Using (1.10), we observe that the sum $\beta(I, I') + \delta(J, J') - \alpha(I, I') - \gamma(J, J')$ is equal to c_1 , and similarly for the pairs concerning c_2, c_3, c_4 .

In our analysis we also will use the values

$$\begin{aligned} \varphi &:= (\beta(I, I') - \alpha(I, I')) - (\beta(I, \tilde{I}') - \alpha(I, \tilde{I}')) - (\beta(\tilde{I}, I') - \alpha(\tilde{I}, I')) + (\beta(\tilde{I}, \tilde{I}') - \alpha(\tilde{I}, \tilde{I}')); \\ \psi &:= (\delta(J, J') - \gamma(J, J')) - (\delta(J, \tilde{J}') - \gamma(J, \tilde{J}')) - (\delta(\tilde{J}, J') - \gamma(\tilde{J}, J')) + (\delta(\tilde{J}, \tilde{J}') - \gamma(\tilde{J}, \tilde{J}')). \end{aligned}$$

In view of (4.10) and (4.11),

$$\varphi + \psi = c_1 - c_2 - c_3 + c_4 = d. \quad (4.12)$$

The lemmas below compute φ using (4.11). Let $r := \min(I)$ ($= \min(\tilde{I})$) and $r' := \min(I')$ ($= \min(\tilde{I}')$).

Lemma 4.1. *Suppose that $|I| \neq |I'|$ and $i \neq i'$. Then $\varphi = 0$.*

Proof. Assume that $|I| > |I'|$. Then $|I| > |\tilde{I}| \geq |I'| > |\tilde{I}'|$. Consider possible cases.

Case 1: $r \leq r'$ and $i' < i$. Then $I', \tilde{I}' \subseteq I, \tilde{I}$. Therefore, both α and β are zero everywhere, implying $\varphi = 0$.

Case 2: $I \cap I' = \emptyset$. If $i' < r$, then β is zero. Also $\alpha(I, I') = |I'| = \alpha(\tilde{I}, I')$ and $\alpha(I, \tilde{I}') = |\tilde{I}'| = \alpha(\tilde{I}, \tilde{I}')$.

And if $i < r'$, then α is zero. Also $\beta(I, I') = |I'| = \beta(\tilde{I}, I')$ and $\beta(I, \tilde{I}') = |\tilde{I}'| = \beta(\tilde{I}, \tilde{I}')$. So in both situations, $\varphi = 0$.

Case 3: $r' < r \leq i' < i$. Then β is zero. Also $\alpha(P, P') = r - r'$ holds for all $P \in \{I, \tilde{I}\}$ and $P' \in \{I', \tilde{I}'\}$, implying $\varphi = 0$.

Case 4: $r < r' \leq i < i'$. Then α is zero, and

$$\beta(I, I') = i' - i = \beta(\tilde{I}, \tilde{I}'), \quad \beta(I, \tilde{I}') = i' - 1 - i \quad \text{and} \quad \beta(\tilde{I}, I') = i' - (i - 1),$$

again implying $\varphi = 0$.

When $|I| < |I'|$, the argument follows by swapping I, \tilde{I} by I', \tilde{I}' . \square

Lemma 4.2. *Let $|I| = |I'|$. (a) If $i < i'$ then $\varphi = 1$. (b) If $i > i'$ then $\varphi = -1$. (c) If $i = i'$ then $\varphi = 0$.*

Proof. We have $|I'|, |\tilde{I}'| \leq |I|$ and $|\tilde{I}'| = |\tilde{I}|$ but $|I'| = |\tilde{I}| + 1$. Let $i > i'$. Then, using (4.11)), one can check that β is zero. Also if $I \cap I' = \emptyset$, then

$$\alpha(I, I') = |I|, \quad \alpha(I, \tilde{I}') = |\tilde{I}'| = \alpha(\tilde{I}, \tilde{I}'), \quad \alpha(\tilde{I}, I') = |\tilde{I}| = |I| - 1.$$

And if $I \cap I' \neq \emptyset$, then

$$\alpha(I, I') = \alpha(I, \tilde{I}') = \alpha(\tilde{I}, \tilde{I}') = r - r' = i - i' \quad \text{and} \quad \alpha(\tilde{I}, I') = |\tilde{I} - I'| = (i - 1) - i'.$$

Therefore, in both situations

$$\varphi = -\alpha(I, I') + \alpha(I, \tilde{I}') + \alpha(\tilde{I}, I') - \alpha(\tilde{I}, \tilde{I}') = \alpha(\tilde{I}, I') - \alpha(I, I') = -1,$$

as required in (b).

Case (a) reduces to (b). And if $i = i'$ then $r = r'$, implying that both α, β are zero (since for any two intervals among $I, \tilde{I}, I', \tilde{I}'$, one is included in the other). \square

Lemma 4.3. *Let $i = i'$. (a) If $|I| > |I'|$ then $\varphi = -1$. (b) If $|I| < |I'|$ then $\varphi = 1$.*

Proof. Let $|I| > |I'|$. Then $I', \tilde{I} \subset I$ and $\tilde{I}' \subset \tilde{I}$. Hence α and β are zero on each of $(I|I'), (I|\tilde{I}'), (\tilde{I}|\tilde{I}')$. Also $|\tilde{I}| \geq |I'|$ and $r < r'$ imply $\alpha(\tilde{I}, I') = 0$ and $\beta(\tilde{I}, I') = i' - (i - 1) = 1$ (since $\max(\tilde{I}) = i - 1$). This gives $\varphi = -\beta(\tilde{I}, I') = -1$.

Case (b) reduces to (a). \square

Replacing i, i' by j, j' , and I, I' by J, J' in Lemmas 4.1–4.3, we obtain the corresponding statements concerning ψ .

(4.13) (i) If $|J| = |J'|$ and $j < j'$, or if $|J| < |J'|$ and $j = j'$, then $\psi = 1$.
(ii) Symmetrically, if $|J| = |J'|$ and $j > j'$, or if $|J| > |J'|$ and $j = j'$, then $\psi = -1$.
(iii) Otherwise $\psi = 0$.

Now we finish the proof with showing (4.6) in the corresponding three cases.

Case A: $i = i'$ and $j < j'$. First suppose that $i \leq j$. Then both $(I|J)$ and $(I'|J')$ are co-flag corteges, and $|I| = |I'| = i$. We have $\varphi = 0$ (by Lemma 4.2(c)) and $\psi = 1$ (by (4.13)(i)).

Next suppose that $j < i < j'$. Then $(I|J)$ is flag, $(I'|J')$ is co-flag, and $|I| = j < i = |I'|$. This gives $\varphi = 1$ (by Lemma 4.3(b)) and $\psi = 0$ (by (4.13)(iii)).

Finally, suppose that $j' \leq i$. Then both $(I|J)$, $(I'|J')$ are flag, and $|I| = j < j' = |I'|$. This gives $\varphi = 1$ (by Lemma 4.3(b)) and $\psi = 0$ (by (4.13)(iii)).

Thus, in all situations, $d = \varphi + \psi = 1$, as required in (4.6)(i).

Case B: $i < i'$ and $j = j'$. This is symmetric to the previous case, yielding $d = 1$. This matches assertion (ii) in (4.6) (since replacing $i < i'$ by $i > i'$ changes $d = 1$ to $d = -1$).

Case C: $i \neq i'$ and $j \neq j'$. When $\varphi = \psi = 0$, (4.6)(iii) is immediate. The situation with $\varphi \neq 0$ arises only when $|I| = |I'|$; then (a) $i < i'$ implies $\varphi = 1$, and (b) $i > i'$ implies $\varphi = -1$ (see Lemma 4.2). Similarly, $\psi \neq 0$ happens only if $|J| = |J'|$; then (c) $j < j'$ implies $\psi = 1$, and (d) $j > j'$ implies $\psi = -1$ (by (4.13)(i),(ii))

In subcase (a), $i < i'$ and $|I| = |I'| =: k$ imply $i' > k$ (in view of $i \geq |I|$). Therefore, $j' = k$ must hold (i.e., $(I'|J')$ is flag). Then $j \neq j'$ implies $j > j'$, and we obtain $\psi = -1$, by (4.13)(ii).

In subcase (b), $i > i'$ and $|I| = |I'| =: k$ imply $i > k$. Therefore, $j = k$. Then $j' > j$, yielding $\psi = 1$, by (4.13)(i).

So in both (a) and (b), we obtain $\varphi + \psi = 0$. In their turn, subcases (c) and (d) are symmetric to (a) and (b), respectively. Thus, in all situations, $d = 0$ takes place, as required in (4.6)(iii).

This completes the proof of Theorem 1.2.

5. Uniqueness

Let $f_0 : \text{Pint}_{m,n} \rightarrow \mathcal{A}^*$ be a function in the hypotheses of Theorem 1.2, i.e., f_0 satisfies quasi-commutation relations for all pairs of pressed interval corteges in $\mathcal{E}^{m,n}$ (cf. (4.7)). A priori, f_0 may have many extensions to $\mathcal{E}^{m,n}$ that are QI-functions. One of them is the function f whose values $f(I|J)$ are q -minors $\Delta(I|J)$ of the corresponding path matrix constructed in the proof in Sect. 4.

In light of Theorems 1.1 and 1.2, it is tempting to ask when f_0 has a unique QI-extension. Since any QI-extension is an RQI-function (i.e., satisfies the corresponding

relations of Plücker, co-Plücker and Dodgson types) and in view of Theorem 1.1, we may address an equivalent question: when an RQI-extension g of f_0 is a QI-function (and therefore $g = f$). We give sufficient conditions below (which is, in fact, a corollary of Theorems 1.1 and 1.2).

To this aim, let us associate to each $(I|J) \in \text{Pint}_{m,n}$ an indeterminate $y_{I|J}$ and form the \mathbb{K} -algebra \mathcal{L}_Y of quantized Laurent polynomials generated by these $y_{I|J}$ (where the quantization is agreeable with that for f_0). The values of f_0 are said to be *algebraically independent* if the map $y_{I|J} \mapsto f_0(I|J)$, $(I|J) \in \text{Pint}_{m,n}$, gives an isomorphism between \mathcal{L}_Y and the \mathbb{K} -subalgebra \mathcal{A}^{f_0} of \mathcal{A} generated by these values.

Corollary 5.1. *Let f_0 and f be as above. Let the following additional conditions hold:*

- (i) *the values of f_0 are algebraically independent;*
- (ii) *if an element $a \in \mathcal{A}^{f_0}$ is a zero divisor in \mathcal{A} , then a is a zero divisor in \mathcal{A}^{f_0} .*

Suppose that g is an RQI-function on $\mathcal{E}^{m,n}$ coinciding with f_0 on $\text{Pint}_{m,n}$. Then g is a QI-function (and therefore $g = f$).

Proof (a sketch). Considering the construction of q -minors of the path matrix related to f_0 (cf. (3.5), (3.7), (4.3)–(4.5)), one can deduce that for each cortege $(I|J) \in \mathcal{E}^{m,n}$, $y_{I|J}$ is a nonzero polynomial in \mathcal{L}_Y . Then condition (i) implies that $f(I|J)$ is a nonzero element of \mathcal{A}^{f_0} . Furthermore, since \mathcal{L}_Y is free of zero divisors (by a known fact on Laurent polynomials; see, e.g. [1], ch. II, §11.4, Prop. 8), so is \mathcal{A}^{f_0} . Therefore, by condition (ii), $f(I|J)$ is not a zero divisor in \mathcal{A} . Now applying Theorem 1.1, we obtain $g = f$, as required. \square

Acknowledgment

We thank the anonymous referees for pointing out to us inaccuracies and typos in the original version of this paper.

References

- [1] N. Bourbaki, *Algèbre*, Hermann, Paris, 2007.
- [2] K. Casteels, A graph theoretic method for determining generating sets of prime ideals in quantum matrices, *J. Algebra* 330 (2011) 188–205.
- [3] G. Cauchon, Spectre premier de $\mathcal{O}_q(M_n(k))$: image canonique et séparation normale, *J. Algebra* 260 (2) (2003) 519–569.
- [4] V. Danilov, A. Karzanov, On universal quadratic identities for minors of quantum matrices, *J. Algebra* 488 (2017) 145–200.
- [5] V. Danilov, A. Karzanov, G. Koshevoy, Planar flows and quadratic relations over semirings, *J. Algebraic Comb.* 36 (2012) 441–474.
- [6] V. Lakshmibai, N. Reshetikhin, Quantum flag and Schubert schemes, *Contemp. Math.* 134 (1992) 145–181.
- [7] B. Leclerc, A. Zelevinsky, Quasicommuting families of quantum Plücker coordinates, *Amer. Math. Soc. Transl. Ser. 2* 181 (1998) 85–108.

- [8] B. Lindström, On the vector representations of induced matroids, *Bull. Lond. Math. Soc.* 5 (1973) 85–90.
- [9] Yu.I. Manin, *Quantum Groups and Non-commutative Geometry*, vol. 49, Centre de Recherches Mathématiques Montréal, 1988.
- [10] J.S. Scott, Quasi-commuting families of quantum minors, *J. Algebra* 290 (1) (2005) 204–220.
- [11] E. Taft, J. Towber, Quantum deformation of flag schemes and Grassmann schemes. I. q-deformation of the shape-algebra for $GL(n)$, *J. Algebra* 142 (1991) 1–36.