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We consider three types of set-systems that have interesting applications in al-
gebraic combinatorics and representation theory: maximal collections of the so-
called strongly, weakly, and chord separated subsets of a set [n] = {1,2,...,n}.
These collections are known to admit nice geometric interpretations; namely,
they are respectively in bijection with rhombus tilings on the zonogon Z(n,2),
combined tilings on Z(n,2), and fine zonotopal tilings (or “cubillages”) on the
3-dimensional zonotope Z(n,3). We describe interrelations between these three
types of set-systems in 2", working in terms of their geometric models. In
particular, we characterize the sets of rhombus and combined tilings properly
embeddable in a fixed 3-dimensional cubillage, and give efficient methods of ex-
tending a given rhombus or combined tiling to a cubillage, etc.
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1 Introduction

For a positive integer n, the set {1,2,...,n} is denoted by [n]. We deal with three
types of binary relations on subsets of [n].

e Sets A, B C [n] are called strongly separated (from each other) if there are no
three elements i < j < k of [n] such that one of A — B and B — A contains i, k,
and the other contains j.

e Sets A, B C [n] are called chord separated if there are no elements i < j < k < ¢
of [n] such that one of A— B and B — A contains i, k, and the other contains j, ¢.
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e Sets A, B C [n] are called weakly separated if they are chord separated and, in
addition, if there are three elements i < j < k of [n] such that i,k € A — B and
j€B—A((resp. i,k € B—Aand j € A— B), then |A| < |B| (resp. |B| < |A]).

Accordingly, a collection A C 2" of subsets of [n] is called strongly (weakly, chord)
separated if any two members of A are strongly (resp. weakly, chord) separated.

Hereinafter, for sets A, B C [n], we write |A| for the size (the number of elements)
of A, A — B for the set difference {i: A>1i ¢ B}, and A < B if the maximal element
max(A) of A is smaller than the minimal element min(B) of B, letting min()) := oo
and max(()) := —oo. Also we say that A surrounds B if min(4A — B) < min(B — A)
and max(A — B) > max(B — A). (In particular, when A, B are weakly separated, A
surrounds B, and B — A # (), it follows that |[A| < |B|.)

Recall that the notions of strong and weak separations were introduced by Leclerc
and Zelevinsky in [8], and the notion of chord separation is due to Galashin [5] (who
justified this term by the observation that if n points labeled 1,2,...,n are disposed
on a circumference O, in this order cyclically, then O has a chord separating A — B
from B — A.)

For brevity, we refer to strongly, weakly, and chord separated collections as s-, w-,
and c-collections, respectively. In the hierarchy of these collections, any s-collection is
a w-collection, and any w-collection is a c-collection, but the converse need not hold.
Such collections are encountered in interesting applications. In particular, s-, and w-
collections appeared in [8] in connection with a characterization of quasi-commuting
flag minors of a quantum matrix. Weak separation for subsets of a fixed size also arises
in the study of the cluster structure on the Grassmannian coordinate ring [12]. Also
they admit impressive geometric representations, which will be discussed later.

An important fact is that these three sorts of collections possess the property of
purity. More precisely, let us say that a set-system (domain) D C 2" is s-pure (w-pure,
c-pure) if all inclusion-wise maximal s-collections (resp. w-collections, c-collections) in
D have the same cardinality, which in this case is called the s-rank (resp. w-rank,
c-rank) of D. We will rely on the following results on the full domain 2", where s,
denotes () + (1) + (7) (= sn(n+1) +1)).

(1.1) [8] 2 is s-pure and its s-rank is equal to s,,.
(1.2) [1] 2 is w-pure (and its w-rank is equal to s, as well, in view of a result in [8]).
(1.3) [5] 2" is c-pure and its c-rank is equal to (3) + (5) + (3) + (7).

(The phenomenon of w-purity has also been established for some other interesting
domains, see [2, 10, 11]; however, those results are beyond our paper.)

As is seen from (1.1)—(1.3), the c-rank of 2" is O(n) times larger that its s- and w-
ranks, and we address the following issue: given a maximal c-collection C' C 2", what
can one say about the sets S(C') and W(C') of inclusion-wise maximal s-collections and
w-collections, respectively, contained in C'7
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It turns out that a maximal c-collection C' need not be s-pure or w-pure in general,
as we show in Sect. 3.1. Nevertheless, the sets of s-collections and w-collections con-
tained in C' and having the maximal possible size s,, denoted as S*(C') and W*(C),
respectively, have nice structural properties, as is shown in this paper.

For this purpose and wider, we essentially use known geometric constructions for
s-, w-, and c-collections. From results in [8] it follows that each maximal s-collection
in 2" corresponds to the vertex set of a rhombus tiling on the n-zonogon in the plane,
and vice versa. A somewhat more sophisticated planar structure, namely, the so-called
combined tilings, or combies, on the n-zonogon are shown to represent the maximal
w-collections in 2" see [2]. As to the maximal c-collections, Galashin [5] recently
showed that they are in bijection with subdivisions of the 3-dimensional cyclic zonotope
Z(n, 3) into parallelotopes, the so-called fine zonotopal tilings. For brevity, we refer to
such subdivisions as cubillages (following terminology in [7]), and to the parallelotopes
forming cubillages as cubes.

In this paper, we first discuss interrelations between strongly and chord separated
set-systems. A brief outline is as follows. (Note that a theoretical ground of construc-
tions mentioned in (a),(b) below goes back to results on higher Bruhat orders in Manin
and Schechtman [9] and their geometric interpretations in Kapranov and Voevodsky [7]
and Ziegler [14]. See also [3] for a survey.)

(a) For a maximal c-collection C' C 2", let Q = Q(C) be its associated cubillage
(where the elements of C' correspond to the 0-dimensional cells, or vertices, of @ re-
garded as a complex). Then for each S € S*(C), its associated rhombus tiling 7°(5)
is viewed (up to a piecewise linear deformation) as a 2-dimensional subcomplex of @),
called an s-membrane in it. Furthermore, these membranes (and therefore the mem-
bers of S*(C')) constitute a distributive lattice with the minimal and maximal elements
formed by the “front side” Z™ and “rear side” Z™® of the boundary subcomplex of
Z(n,3), respectively. This lattice is “dense”, in the sense that any two s-collections
whose s-membranes are neighboring in the lattice are obtained from each other by a
standard flip, or mutation (which involves a hexagon, or, in terminology of Leclerc and
Zelevinsky [8], is performed “in the presence of six witnesses”).

(b) It is natural to raise a “converse” issue: given a maximal s-collection S C 2,
what can one say about the set C(S) of maximal c-collections containing S? One can
efficiently construct an instance of such c-collections, by embedding the tiling 7'(S), as
an s-membrane M, into the “empty” zonotope Z(n,3) and then by growing, step by
step (or cube by cube), a required cubillage containing M. In fact, the set of cubillages
for C(S) looks like a “direct product” of two sets Q™ (M) and Q* (M), where the
former (latter) is formed by partial cubillages consisting of “cubes” filling the volume
of Z(n,3) between the surfaces Z™ and M (resp. between M and Z ™).

A somewhat similar programme is fulfilled for w-collections, and on this way, we
obtain the main results of this paper. We consider a maximal c-collection C' C 20
and cut each cube of the cubillage ) associated with C' into two tetrahedra and one
octahedron, forming a subdivision of Z(n,3) into smaller pieces, denoted as )= and
called the fragmentation of (). We show that each combi K (W) associated with a



maximal by size w-collection W C W*(C') is related to one or more 2-dimensional
subcomplexes of Q=(C), called w-membranes. Like s-membranes, the set of all w-
membranes of Q= are shown to form a distributive lattice with the minimal element Z
and the maximal element Z'* and any two neighboring w-membranes in the lattice
are linked by either a tetrahedral flip or an octahedral flip (the latter corresponds to a
mutation of a w-collection “in the presence of four witnesses”, in terminology of [8]).
As to the “converse direction”, we consider a fixed maximal w-collection W < 2" and
develop an efficient geometric method to construct a cubillage on Z(n,3) containing
(as a 2-dimensional subcomplex) the combi K ().

This paper is organized as follows. Section 2 recalls definitions of rhombus and
combined tilings on a zonogon and cubillages on a 3-dimensional zonotope, and reviews
their relations to maximal s-, w-, and c-collections in 2[". Section 3 starts with an
example of a maximal c-collection in 20" that is neither s-pure nor w-pure. Then
it introduces s-membranes in a cubillage, discusses their relation to rhombus tilings,
and describes transformations of cubillages on Z(n,3) to ones on Z(n — 1,3) and
back that are needed for further purposes. Section 4 studies the structure of the
set of s-membranes in a fixed cubillage and, as a consequence, describes the lattice
S*(C). Section 5 discusses a method of constructing a cubillage containing one or two
prescribed rhombus tilings. Then we start studying interrelations between maximal
w- and c-collections. Section 6 introduces w-membranes in the fragmentation Q= of
a fixed cubillage @), explains that they form a lattice, demonstrates a relationship to
combined tilings, and more. The concluding Section 7 is devoted to the problem of
extending a given combi to a cubillage, which results in an efficient algorithm of finding
a maximal c-collection in 2/" containing a given maximal w-collection.

2 Background

In this section we recall the geometric representations for s-, w-, and c-collections that

we are going to use. For disjoint subsets A and {a, ..., b} of [n], we use the abbreviated
notation Aa...bfor AU{a,...,b}, and write A—c for A—{c} when c € A. An interval
in [n] is a set of the form {a,a +1,...,b} C [n], denoted as [a..b] (so [n] = [1..n]).

2.1 Rhombus tilings

Let = = {&,...,&,} be a system of n non-collinear vectors in the upper hyperplane
R x R>¢ that follow in this order clockwise around (0,0). The zonogon generated by
= is the 2n-gon that is the Minkowski sum of segments [0,&;], ¢ = 1,...,n, i.e., the set

Z=ZE) ={ME+ . .+ A& MNER, 0N <1, i=1,....n}

we also may denote it as Z(n,2) (not fixing the choice of Z). A tiling that we deal with
is a subdivision 7" of Z into tiles, each being a parallelogram of the form ), _\ & +
{A& +NE -0 < A N <1} for some i < j and some subset X C [n] — {7, j}. In other
words, the tiles are not overlapping (have no common interior points) and their union
is Z. A tile determined by X, i, j as above is called an ij-tile and denoted as ¢(X]|ij).
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We identify each subset X C [n] with the point ). & in Z (assuming, w.lo.g.,
that the generators &; are Zs-independent, i.e., all 0,1-combinations of these are differ-
ent). Depending on the context, we also may think of 7" as a 2-dimensional complex
and associate to it the planar directed graph (Vr, Er) in which each vertex is labeled
by the corresponding subset of [n] and each edge that is a parallel translation of &; for
some i is called an i-edge, or an edge of type (or color) i. In particular, the left boundary
of the zonogon is the directed path (vg,e1,v1, ..., €,,v,) in which each vertex v; is the
interval [¢] (and e; is an i-edge), whereas the right boundary of Z is the directed path
(v, €4, 07, ... el vl) with vf = [n] — [i] (and €] being an (n — i + 1)-edge).

The vertex set Vi regarded as a set-system in 2" is called the spectrum of T. In
fact, the graphic structure of 7' (and therefore its spectrum) does not depend on the
choice of generating vectors & (by keeping their ordering clockwise). In the literature
one often takes vectors of the same euclidean length, in which case each tile becomes
a thombus and T is called a rhombus tiling. In what follows we will liberally use this
term whatever generators &; are chosen.

One easily shows that for any 1 < i < 7 < n, there exists a unique ij-tile, or 7j-
rhombus, in T'. The correspondence between maximal s-collections and commutation
classes of reduced words for permutations established by Leclerc and Zelevinsky in [8,
Th. 1.6] leads to the following central property of rhombus tilings:

(2.1) the correspondence T — Vi gives a bijection between the set RT,, of rhombus
tilings on Z(n,2) and the set S,, of maximal s-collections in 2.

Then each maximal s-collection S determines a unique rhombus tiling 7" with Vi =
S, and this T is constructed easily: each pair of vertices of the form X, X7 is connected
by (straight line) edge from X to X1i; the resulting graph is planar and all its faces are
just rhombi, giving 7. Two rhombus tilings play especial roles. The spectrum of one
of them, called the standard tiling and denoted as T=', is formed by all intervals in [n],
including the “empty interval” (). The other one, called the anti-standard tiling and
denoted as T2™, has the spectrum consisting of all co-intervals, i.e., the complements
[n] — I of intervals I. These two tilings for n = 4 are illustrated on the picture.

1234

134

Next, from results in [8] it follows that RT,, is endowed with a poset structure. In
this poset, T5% and 72" are the unique minimal and maximal elements, respectively,
and a tiling 7" immediately precedes a tiling 7" if 7" is obtained from 7" by one strong
(or hexagonal) raising flip (and in turn 7 is obtained from 7" by one strong lowering
flip). This means that



(2.2) there exist i < j < k and X C [n| — {4, 7, k} such that: T contains the vertices
X, X1, X7, Xk, Xij, Xjk, Xijk, and the set Vi is obtained from Vi by replacing
Xj by Xik.

(This transformation is called in [8] a “mutation in the presence of six witnesses”,
namely, X, X1, Xk, Xij, Xjk, Xijk.) See the picture.

Xijk
Xij Xjk raising flip
inT Xik | inT'
B P ——
Xi Xk lowering flip
X

We denote the corresponding hexagon in 7' as H = H(X|ijk) and say that H has
Y-configuration (A-configuration) if the three rhombi subdividing H are as illustrated
in the left (resp. right) fragment of the above picture.

2.2 Combined tilings

For tilings of this sort, the system = generating the zonogon is required to satisfy the
additional condition of strict concavity, namely: for any 1 <i < j < k <mn,

§ =N+ N&, where \, N € Rogand A+ X > 1. (2.3)

Besides, we use vectors €;; :=§; —&; for 1 <1 < j <n. A combined tiling, or simply
a combi, is a subdivision K of Z(Z) into certain polygons specified below. Like the
case of rhombus tilings, a combi K may be regarded as a complex and we associate to
it a planar directed graph (V, Ex) in which each vertex corresponds to some subset
of [n] and each edge is now a parallel translation of either ; or ¢;; for some 4, j. In the
latter case, we say that the edge has type ij. We call Vi the spectrum of K.

There are three sorts of tiles in 7: A-tiles, V-tiles, and lenses. A A-tile (V-
tile) is a triangle with vertices A, B,C C [n]| and edges (B, A), (C, A),(B,C) (resp.
(A,C), (A, B),(B,()) of types j, i and ij, respectively, where i < j. We denote this
tile as A(A[ji) (resp. V(Alij)), call (B,C) its base edge and call A its top (resp.
bottom) vertex. See the left and middle fragments of the picture.
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the right fragment of the above picture. The upper boundary Uy = (vg, €1, v1, ..., €y, V)
is such that vy = ¢y, v, = 7y, and v, = Xi; for k = 0,...,p, where p > 2, X C [n]
and ig < 43 < -+ < iy, (so k-th edge e is of type ix_17;). And the lower boundary
Ly = (ug, ey, us,...,e,uq) is such that ug = €y, uy = 7y, and u,, = Y — jy,, for
m=0,...,q, where ¢ > 2, Y C [n] and jo > j1 > --- > j, (so m-th edge €, is of type
JmJm—1). Then Y = Xigjo = Xi,j,, implying iy = j, and i, = jo, and we say that the
lens A\ has type 10jo. Note that X as well as Y need not be a vertex in K; we refer to
X and Y as the lower and upper root of A, respectively. Due to condition (2.3), each

lens A is a convex polygon of which vertices are exactly the vertices of Uy U L.

Remark 1. In the definition of a combi introduced in [2], the generators &; are as-
sumed to have equal euclidean lengths. However, taking arbitrary (cyclically ordered)
generators subject to (2.3) does not affect, in essence, the structure of the combi and
its spectrum, and in what follows we may vary the generators when needed. Next, to
simplify visualizations, it is convenient to think of edges of type ¢ as “almost vertical”,
and of edges of type 75 as “almost horizontal”; we refer to the former edges as V-edges,
and to the latter ones as H-edges (following terminology of [2]). Note that any rhombus
tiling turns into a combi without lenses in a natural way: each rhombus ¢ is subdivided
into two “semi-rhombi” A and V by drawing the “almost horizontal” diagonal in it.

The picture below illustrates a combi K having one lens A for n = 4; here the
V-edges and H-edges are drawn by thick and thin lines, respectively.

1234

V=19, 1,4, 12,14, 23, 24, 34, 123, 234, 1234}

We will rely on the following central result on combies shown in [2]:

(2.4) the correspondence K +— Vi gives a bijection between the set K,, of combined
tilings on Z(n,2) and the set W,, of maximal w-collections in 2[".

In particular, each maximal w-collection W determines a unique combi K with
Vi = W, and [2] explains how to construct this K efficiently.

By results in [1, 2], the set K,, forms a poset in which 75* and 73" are the unique
minimal and maximal elements, respectively, and a combi K immediately precedes a
combi K’ if K’ is obtained from K by one weak raising flip (and in turn K is obtained
from K’ by one weak lowering flip). This means that

(2.5) there are i < j < k and X C [n] — {4, j, k} such that: K contains the vertices
X1, Xj, Xk, Xij, Xjk, and Vi is obtained from Vi by replacing Xj by Xik.

(Using terminology of [8], one says that Vi and Vi are linked by a “mutation in the
presence of four witnesses”, namely, Xi, Xk, Xij, X jk.)
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2.3 Cubillages

Now we deal with the zonotope generated by a “cyclic configuration” © of vectors in the
space R? with coordinates (z,y, z). It consists of n vectors 0; = (1,4, 2;),i=1,...,n,
with the following strict convexity condition:

(2.6) y1 < Yo < - - <Ypn, and z; = f(yi), ¢ € [n], where f is a strictly convex function.

An example with n = 5 is illustrated in the picture (where z; = y? and y; = —yg_;).
Hereinafter, we think of x, y, z as “vertical”, “left-to-right”, and “to-depth” coordinates
in R?, respectively.

X A '/""""""'"""""""""":7

The zonotope Z generated by ©, also denoted as Z(n,3), is the Minkowski sum
of segments [0,6;], i = 1,...,n. A cubillage (also known as a fine zonotopal tiling in
the literature) is a subdivision @ of Z into parallelotopes of which any two are either
disjoint or share a face, and each face of the boundary of Z is contained in one of
these parallelotopes. This implies that each parallelotope is of the form Zpe <0y +
{A0; + NO; + X0, 0 < AN, N <1} for some ¢ < j < kand X C [n] —{i,7,k}. For
brevity, we liberally refer to parallelotopes as cubes. (For a survey on cubillages of any
dimensions generated by cyclic configurations, see [3].)

Depending on the context, we also may think of a cubillage ) as a polyhedral
complex or as a set of cubes. In particular, (in the former case) by a vertex, edge,
rhombus in () we mean, respectively, (the closure of) a 0-, 1-, 2-dimensional cell of this
complex, and (in the latter case) when writing ¢ € @), we mean that { is a cube of Q.

Like the case of zonogons and rhombus tilings, each subset X C [n] is identified with
the point ), 0; in Z (assuming, w.l.o.g., that the generators ¢; are Z,-independent).
Accordingly, we may refer to an edge, rhombus, and cube in @) as an i-edge, ij-rhombus,
ijk-cube (where i < j < k), or as an edge, rhombus, cube of type i, ij, ijk, respectively.
The edges are directed according to the generating vectors. An ij-rhombus (ijk-cube)
with the bottom vertex X is denoted as ¢(X|ij) (resp. ((X|ijk)). As a specialization
to d = 3 of a well-known property of cubillages on zonotopes Z(n, d), there holds:

(2.7) for any 1 <i < j < k < n, a cubillage () has exactly one ijk-cube.

The directed graph formed by the vertices and edges occurring in () is denoted
by Gg = (Vg, Eg) and we call the vertex set Vg regarded as a set-system in 2 the
spectrum of Q). The following property shown in [5] is of importance for us:

(2.8) the correspondence ) — Vg gives a bijection between the set Q,, of cubillages
on Z(n,3) and the set C,, of maximal c-collections in 20",
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Next, when studying interrelations of s- and c-collections, we will use the projection
7 : R3 — R? along the third coordinate vector, i.e., given by 7 (z,y, 2) := (z,y). Then
7(Z) is the zonogon generated by the vectors w(6,),...,m(0,) (which lie in the “upper
half-plane” and follow clockwise, in view of (2.6)).

For a compact set S C R3 let ST (S™) denote the subset of S “seen” in the
direction of the third coordinate vector ez (resp. —e3) of R3, i.e., formed by the points
(z,y,2) € S such that there is no (z,y,z') € S with 2/ < z (resp. 2’ > z). We call ST
(S™) the front (resp. rear) side of S.

In particular, the boundary bd(Z) of Z is the union Z *UZ ™ of the front (“seen”)
and rear (“unseen”) sides of the zonotope Z. Then Z™™ := Z N Z™ is the closed
piecewise linear curve, called the rim of Z, being the union of two directed paths
connecting the vertices () and [n] in Gg. Condition (2.6) provides that

(2.9) the maximal affine sets in Z™ and Z ™ are the thombi projected by 7 to elements
of the standard and antistandard tilings on the zonogon m(Z7), respectively (whose
spectra are formed by the intervals and co-intervals in [n], see Sect. 2.1).

3  S-membranes

This section starts with an example of cubillages whose spectra are neither s-pure
nor w-pure. Next we consider a fixed cubillage @ on Z(n,3), introduce a class of
2-dimensional subcomplexes in it, called s-membranes, explain that each of them is
isomorphic to a rhombus tiling 7" on Z(n,2) such that Vi C Vi, and vice versa (thus
obtaining a geometric description of S*(V)), and demonstrate some other properties.

3.1 An example of non-purity

Consider the zonotope Z = Z(4,3). The vertices of its boundary bd(Z) are the intervals
and co-intervals on the set [4] (cf. (2.9)), and there are exactly two subsets of [4] that
are neither intervals nor co-intervals, namely, 13 and 24. So 13 and 24 are exactly
those “points” in 2[4 that are contained in the interior of Z. Since they are not chord
separated, there are exactly two cubillages on Z: one containing 13 and the other
containing 24 (taking into account that the vertices of bd(Z) belong to any cubillage
and that each cubillage is determined by its spectrum, by (2.8)).

Lemma 3.1 For the cubillage ) on Z(4,3) that contains 13, the set Vi is neither
s-pure nor w-pure, i.e., there are S € S(Vg) and W € W (Vg) with |S|, W] < s4.

Proof Let R, Vi, Vs, be the vertices in the rim, front side, and rear side of Z(4,3),
respectively (for definitions, see the paragraph before (2.9)). Then R consists of the
eight intervals of the form [¢] or [4] — [7] (0 < ¢ < 4); V] is R plus the intervals 2, 3, 23;
and V5 is R plus the co-intervals 14,124, 134. Note that the vertices (intervals) of the
rim of a zonotope Z(n,3) are strongly separated from any subset of [n].

Consider the set S := RU{2,124}. It is a subset of
Vo =ViUVaU {13} = RU{2,3,23,14,124,134,13}.
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We observe that S is an s-collection (since 2 C 124) but not an s-collection of maximum
size in 214 (since | S| = 10 but |V;| = s4 = 11). At the same time, 124 surrounds both 3
and 23 but [124] > 3], |23|; and each of 14,134, 13 surrounds 2 but |14], |134], |13] > |2|.
This implies that S is simultaneously a maximal s-collection and a maximal w-collection
in Vp, yielding the result. 1

(In fact, using results on s- and w-membranes given later, one can strengthen the
above lemma by showing that for n > 4, the spectrum Vg of any cubillage Q) on Z(n, 3)
is neither s-pure nor w-pure; we omit a proof here.)

3.2 S-membranes

The definitions of the front and rear sides of a set given in Sect. 2.3 can be used when
we deal with a subcomplex of a cubillage on Z = Z(n, 3).

Example. In view of (2.6), for a cube ¢ = ((X|ijk) (where i < j < k),
(T is formed by the rhombi O(X|ij), O(X|jk), O(Xj|ik), while (™ is formed by
O(X|ik), O(Xi|jk), O(Xkl|ij). See the picture.

D -

X
Definition. A connected 2-dimensional subcomplex M of a cubillage @) is called an
s-membrane if 7 bijectively sends M to a rhombus tiling on the zonogon Z(n,2). In

other words, M = M = M ™ and M is a disk whose boundary is Z "™,

AXlijk):

In particular, both Z and Z™ are s-membranes. Therefore, up to a piecewise
linear deformation, we may think of M as a rhombus tiling whose spectrum is contained
in Vg. So the vertex set Vs of M belongs to S*(Vg). Moreover, the following sharper
property holds. It can be deduced from general results on higher Bruhat orders and
their geometric models in [9, 7, 14] (see also [3]), yet we prefer to give a direct proof,
which makes our description more self-contained.

Theorem 3.2 The correspondence M +— Vi gives a bijection between the s-
membranes M in a cubillage Q on Z(n,3) and the set S*(Vy) of mazimum by size
s-collections contained in Vy.

In light of explanations above, it suffices to prove the following

Proposition 3.3 For any rhombus tiling T on Z(n,2) with Vi C Vg, there exists an
s-membrane M in Q) isomorphic to T

This proposition will be proved in Sect. 3.4, based on a more detailed study of
structural features of cubillages and operations on them given in the next subsection.
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3.3 Pies in a cubillage

Given a cubillage Q on Z = Z(n,3) and ¢ € [n], let II; = II;(Q) be the part of Z
covered by cubes of ) having edges of color i, or, let us say, i-cubes. When it is not
confusing, we also think of II; as the set of i-cubes or as the corresponding subcomplex
of ). We refer to II; as the i-pie of ). When ¢ = n or 1, the pie structure becomes
rather transparent, which will enable us to apply some useful reductions. (Note that
the constructions involving pies that are described below can be generalized to higher
dimensions; for details, see [3].)

To clarify the structure of 1I,,, we first consider the set U of n-edges lying in the
boundary bd(Z). Since the tilings on the sides Z™ and Z™¥ of Z are isomorphic to
TE* and T2 respectively (cf. (2.9)), one can see that

(3.1) the beginning vertices of edges of U are precisely those contained in the cycle
C = P'UP", where P’ is the subpath of left path of Z™™ from the bottom vertex
0 to [n — 1], and P” is the path in Z™ passing the vertices () and [i..(n — 1)] for
i=n—1,n—2,...,1; in other words, C' is the rim of the zonotope Z(n — 1, 3)
generated by 61, ...,0, 1.

Accordingly, the end vertices of edges of U lie on the cycle C' := C + 0,,; this C’ is
viewed as the rim of the zonotope Z(n —1, 3) shifted by 6,,. The area of bd(Z) between
C and (" is subdivided into 2(n — 2) rhombi whose types include color n; we call this
the belt of 11,,. See the picture with n = 5.

[4]

Now fix an n-edge e = (X, Xn) not on bd(Z) and consider the set S of cubes in II,,
containing e. Each cube ¢ € S is the (Minkowski) sum of some rhombus ¢ = O(X'|ij)
and the segment [0,60,], and n > i,j implies that ¢ belongs to the front side ¢
of (. Gluing together such rhombi ¢, we obtain a disk § lying on the front side of
S = U(¢ € S) and containing X as an interior point; this S is just the sum of 4 and
[0,6,]. Based on this local behavior, one can realize that

(3.2) 11, is the Minkowski sum of a disk D and the segment [0, §,,]; this disk lies in II®
and its boundary is formed by the cycle C' as in (3.1).

Then D’ := D + 6, is the disk in I1'** whose boundary is the cycle C' = C + 6,,.

The facts that D¥ = D and C' = Z"™(n — 1,3) imply that D is subdivided into
rhombi which (being projected by 7) form a rhombus tiling on Z(n — 1,2). And
similarly for D’.
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In what follows we write: IT, for D; I for D’; Z. (Z1) for the (closed) region
of Z between the front side of Z' := Z(n — 1,3) and II, (resp. between I and the
rear side of Z' +6,,); and Q,, (Q;) for the portion (partial cubillage) of Q lying in Z~
(resp. Z). One can see that

(3.3) the edges (of the graph Gg) of @ connecting Z, and Z; are directed from the
former to the latter and are exactly the n-edges of (); each vertex of @) is in
[n — 1] and each vertex of @ is of the form Xn, where X C [n — 1].

The following two operations (converse to each other) are of importance.

n-Contraction. Shrink I, into the disc IT,,, and accordingly shift the region Z
together with the cubillage @ filling it by the vector —#6,. As a result, the disks IT
and IT} merge and we obtain a cubillage on the zonotope Z(n — 1,3); it is denoted as
Q" and called the contraction of @ by (the color) n, or the n-contraction.

Note that II; becomes an s-membrane of ();:°". Also the following is obvious:

(3.4) each cube ¢ = ((X|ijk) of @ with k& < n (i.e. not contained in II,) one-to-one
corresponds to a cube ¢’ of Q°"; this ¢’ is of the form ((X|ijk) if ( € @,,, and
(X —nligk) if ¢ € Q;t.

n-Expansion. Let M be an s-membrane in a cubillage " on the zonotope Z' =
Z(n —1,3). Define Z=(M) (Z*(M)) to be the region of Z’ between (Z')" and M
(resp. between M and (Z')™) and define Q= (M) (QT(M)) to be the subcubillage of @’
contained in Z~ (M) (resp. Z1T(M)). The n-expansion operation for (Q, M) consists
in shifting Z* (M) together with @ (M) by 6,, and filling the “region between” M and
M + 0,, by the corresponding set of n-cubes, denoted as Q°(M). More precisely, each
rhombus ¢(X|ij) in M generates the cube ((X|ijn) of Q%(M). A fragment of the
operation is illustrated in the picture.

, 0 é

Since M ™ = M and the boundary cycle of M is the rim of Z’, we obtain that

(3.5) taken together, the cubes in Q= (M), Q°(M) and {¢ + 0, : ¢ € QT (M)} form a
cubillage on Z = Z(n, 3).

We denote this cubillage as @, (Q’, M) and call it the n-expansion of Q" using M.
There is a natural relation between the n-contraction and n-expansion operations, as
follows (a proof is straightforward and left to the reader)
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Proposition 3.4 The correspondence (Q', M) — Q,(Q', M), where Q' is a cubillage
on Z(n—1,3) and M is an s-membrane in @', gives a bijection between the set of such
pairs (Q', M) and the set of cubillages on Z(n,3). Under this correspondence, Q' is
the n-contraction of Q = Q,(Q', M) and M 1is the image of the n-pie in Q) under the
n-contraction operation. |1

We will also take advantage of handling the 1-pie of a cubillage @ on Z(n,3) and
applying the corresponding I-contraction and I-expansion operations, which are sym-
metric to those concerning the color n as above. More precisely, if we make a mirror
reflection of © by replacing each generator ¢; = (1,;, z;) by 0,1, := (1, —v;, %), then
the 1-edges of @ turn into n-edges of the corresponding cubillage Q" on Z(0},...,0.),
and the 1-pie of ) turns into the n-pie of (). This leads to the corresponding counter-
parts of (3.1)—(3.5) and Proposition 3.4. (Note that in this paper we do not need to
consider i-pies, i-contractions and i-expansions when 1 < i < n.)

3.4 Applications of the contraction and expansion operations

One useful application of such operations is as follows.

Proposition 3.5 Let Q be a cubillage on Z = Z(n, 3).

(i) If Q contains vertices X and Xi, then it has the edge (X, Xi).
(ii) If Q contains vertices X, Xi, Xj, Xij (i < j), then it has the rhombus O(X|ij).

(iii) If @ contains a set S of eight vertices X, Xi, X j, Xk, X1ij, Xik, Xjk, Xijk (i <
Jj < k), then it has the cube (X |ijk).

Proof We use induction on n. Let us prove (iii), denoting by @’ the cubillage on
Z(n — 1,3) that is the n-contraction of ). Three cases are possible.

(a) Let k <nand n ¢ X. Then S belongs to the vertex set of the subcubillage Q;,
(cf. (3.3)) and, therefore, to the vertex set of Q. By induction, @)’ contains the cube
on S, namely, ¢ = ((X|ijk). From (3.5) and Proposition 3.4 it follows that under the
n-expansion operation for @' using the s-membrane M :=II., { becomes a cube in @,
as required.

(b) Let n € X. Then k < n and S belongs to the vertex set of ;. Therefore,
S":={Y —n:Y € S} is included in Vi and, moreover, in the vertex set of the
subcubillage QT (M) of Q" (where M is as in (a)). By induction, Q1 (M) contains the
cube (' = ((X — nlijk). The n-expansion operation for " using M transfers (' to the
desired cube ((X|ijk) in Q.

(¢) Now let n ¢ X and k = n. Then the set S~ := {X, Xi, Xj, Xij} belongs to I,
and the set ST := {Xn, Xin, Xjn, Xijn} to IL}. The n-contraction operation shifts
ST by —6,, and merges it with S~ (which lies in M). By induction, @’ contains the
rhombus ¢ = O(X|ij). The n-expansion operation for ' using M transforms ¢ into
the cube ((X|ijn) in Q%(M) C Q (cf. (3.5)), as required.
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Assertions in (i) and (ii) are shown in a similar fashion (even easier). 1

Based on this proposition, we now prove Proposition 3.3.

Let @ be a cubillage on Z(n,3), and T a rhombus tiling on Z(n,2) with Vy C Vg
(regarding vertices as subsets of [n]). For each rhombus ¢ = (X |ij) in T, the vertices
of the form X, Xi, Xj, Xij are contained in @) as well, and by (ii) in Proposition 3.5,
@ has rhombus ¢’ on these vertices. Then { = 7(¢’). Combining such rhombi ¢’ in
() determined by the rhombi { on T', we obtain a 2-dimensional subcomplex M in @)
which is bijectively mapped by 7w onto T'. Hence M is an s-membrane in () isomorphic
to T, yielding Proposition 3.3 and Theorem 3.2.

4 The lattice of ssmembranes

As mentioned in the Introduction, the set S*(C') of maximal by size strongly separated
collections S C 2" that are contained in a fixed maximal chord separated collection
C C 2" has nice structural properties. Due to (2.1),(2.8) and Theorem 3.2, it is
preferable to deal with equivalent geometric objects, by considering a cubillage () on
the zonotope Z = Z(n,3) and the set M(Q) of s-membranes in Q.

Using notation as in Sect. 3.3, for an s-membrane M € M(Q), we write Z~ (M)
(Z*(M)) for the region of Z bounded by the front side Z% of Z and M (resp. by M
and the rear side Z ™)) and write Q~ (M) (Q*(M)) for the set of cubes of ) contained
in Z7 (M) (resp. Zt(M)). The sets Q@ (M) and QT (M) are important in our analysis
and we call them the front heap and the rear heap of M, respectively.

Consider two s-membranes M, M’ € M(Q) and form the sets N := (M U M’)" and
N':= (M UM’")**. Then both N, N are in bijection with Z(n,2) via 7. Also one can
see that for any rhombus ¢ in M, if some interior point of ¢ belongs to N (N'), then
the entire ¢ lies in N (resp. N'), and similarly for M’. These observations imply that:

(4.1) (i) both N and N’ are s-membranes in Q;

(ii) the front heap @~ (N) of N is equal to Q~(M)NQ~(M’), and the front heap
Q= (N') of N'is equal to Q= (M) U Q™ (M').

(Accordingly, the rear heaps of N and N’ are Q1 (N) = QT(M)UQt(M') and Q*(N') =
QT (M)NQT(M').) By (4.1), the front heaps of s-membranes constitute a distributive
lattice, which gives rise to a similar property for the s-membranes themselves.

Proposition 4.1 The set M(Q) of s-membranes in Q is endowed with the structure
of distributive lattice in which the meet and join operations for M, M’ € M(Q) produce
the s-membranes M A M' and M~ M' such that Q= (M AM') = Q~(M)NQ~(M') and
Q~ (M v M) = Q~(M) UQ~(M'). l

It is useful to give an alternative description for this lattice, which reveals an intrin-
sic structure and a connection with flips in rhombus tilings. It is based on a natural
partial order on ) defined below. Recall that for a cube ¢, the front side ¢ and the
rear side (" are formed by the rhombi as indicated in the Example in Sect. 3.2.
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Definition. For ¢, (' € Q, we say that ¢ immediately precedes ¢’ if (™ and (¢')T
share a rhombus.

The following property is of importance:

(4.2) the directed graph I'g whose vertices are the cubes of () and whose edges are the
pairs (¢, (") such that the cube ¢ immediately precedes (' is acyclic.

This (as well as the corollary below) follows from properties of higher Bruhat orders
established in [9, Th. 3]; cf. also [13, Prop. 2.1]. A far generalization of (4.2), involving
all cubes within a cyclic zonotope, is given in [3, Th. D.1].

Corollary 4.2 The graph I'g induces a partial order < on the cubes of ). Moreover,
the ideals of (Q, <) (i.e., the subsets Q' C Q satisfying ( € Q', ( < (= € Q') are
exactly the front heaps Q= (M) of s-membranes M € M(Q). |

Using this, we now explain a relation to strong flips in rhombus tilings. For con-
venience we identify an s-membrane M € M(Q) with the rhombus tiling 7 (M) on
Z(n,2). In particular, the minimal s-membrane Z is identified with the standard
tiling 75, and the maximal s-membrane Z™* with the antistandard tiling 77"

Let M € M(Q) be different from T5*. Then the heap J := Q~ (M) is nonempty.
Since I'g is acyclic, J has a maximal element ( = ((X|ijk) (i.e., there is no ¢’ € J with
¢ < (). Then M contains all rear rhombi of ¢, namely, O(X|ik), O(Xi|jk), O(XE|ij).
They span the hexagon H(X|ijk) having A-configuration and we observe that

(4.3) for M, J, ¢ as above, the set J' := J — {C} is an ideal of (Q, <) as well,
and the s-membrane (rhombus tiling) M’ with Q= (M’') = J' is obtained
from M by replacing the rhombi of (™ by the rhombi forming ¢* (namely,
O(Xlig), O(X|jk), O(Xj|ik)), or, in other words, by the lowering flip involving
the hexagon H(X|ijk) (see the picture in the end of Sect. 2.1).

(Of an especial interest are principal ideals of (Q, <); each of them is determined
by a cube ( € @ and consists of all (' € @ from which ( is reachable by a directed
path in I'g. The s-membrane corresponding to such an ideal admits only one lowering
flip within @), namely, that determined by the rhombi of (. Symmetrically: considering
M e M(Q) different from 72" and its rear heap R := Q* (M), and choosing an element
¢ € R that admits no ¢’ € R with (’ < (, we can make the raising flip by replacing in
M the rhombi of ¢ by the ones of (™*. When R is formed by some ¢ € @ and all
(' € @ reachable from ¢ by a directed path in I'g, then M admits only one raising flip
within @, namely, that determined by the rhombi of (.)

In terms of maximal s-collections, (4.3) together with Proposition 4.1 implies the
following.

Corollary 4.3 Let C be a mazimal chord separated collection in 2", The set S*(CO)
of maximal by size s-collections in C' is a distributive lattice with the minimal element
Z,, and the maximal element co-Z,, (being the set of intervals and the set of co-intervals
in [n], respectively) in which S € S*(C) immediately precedes S" € S*(C) if and only if
S" is obtained from S by one raising flip (“in the presence of siz witnesses”).
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Remark 2. The set of all maximal s-collections in 2" forms a poset, which is exactly
the higher Bruhat order B(n,2), in terminology of [9]. However, in contrast to S*(C'),
this poset is not a lattice for n > 6, as is shown in Ziegler [14].

Note also that a triple 7 of rhombi in an s-membrane M € M(Q) that spans a
hexagon need not belong to one cube of @ (in contrast to (iii) in Proposition 3.5 where
() contains a cube if all eight vertices of this cube belong to V). In this case, (M, 1)
determines a flip in the set of all rhombus tilings on Z(n,2) but not within M(Q).

5 Embedding rhombus tilings in cubillages

In this section we study cubillages on Z(n, 3) containing one or more fixed s-membranes.

5.1 Extending an s-membrane to a cubillage

We start with the following issue. Given a maximal strongly separated collection
S c 2l let C(S) be the set of maximal chord separated collections containing S. How
to construct explicitly one instance of such c-collections? A naive method consists in
growing, step by step, a c-collection C' including S, by enumerating subsets X C [n]
and adding a new X to a current C' whenever { X} U C' is chord separated. However,
this method is expensive as it may take exponentially many (w.r.t. n) steps.

An efficient approach, which is relatively simple logically, is based on geometric
interpretations as above and uses flips in s-membranes. More precisely, in the “empty”
zonotope Z = Z(n,3), we build the abstract s-membrane M with V), = S, by embed-
ding S (as the corresponding set of points) in Z and forming the rhombus {(X|:j) for
each quadruple of the form {X, X4, Xj, Xij} in S; this gives the desired M. Next we
construct a cubillage () containing M (thus obtaining S C Vi € C(5), as required).

This is performed in two stages. At the first stage, assuming that M is different
from Z ¥ (equivalently, m(M) # T5), we grow, step by step, a partial cubillage Q' filling
the region Z~ (M) between Z T and M, starting with Q" := (). At each step, the current
Q' is such that (@)™ = M and (Q")" forms an s-membrane M'. If M’ = Z¥ we are
done. Otherwise m(M') # T5* implies that M’ contains at least one triple of rhombi
spanning a hexagon having A-configuration (see the end of Sect. 2.1). We choose one
hexagon H = H(X|ijk) of this sort, add to Q" the cube ¢ = ((X|ijk) determined
by H, and update M’ accordingly, by replacing the rhombi of H by the other three
rhombi in ¢ (forming ¢¥); we say that the updated M’ is obtained from the previous
membrane by the lowering flip using (. And so on until we reach Z .

At the second stage, acting in a similar way, we construct a partial cubillage Q"
filling the region Z (M) between M and Z™. Namely, a current Q" is such that
(Q"F = M, and (Q")™* forms an s-membrane M”. Unless M" = Z™¥ we choose in
M" a hexagon H having Y -configuration, add to )" the cube ¢ determined by H and
update M" accordingly, thus making the raising flip using (. And so on.

The resulting @ := Q' U Q" becomes a complete cubillage in Z containing M, as
required. Since ' and Q" are constructed independently, we obtain that
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(5.1) the set Q(M) of cubillages on Z = Z(n,3) containing a fixed s-membrane M is
represented as the “direct product” of the sets Q= (M) and QF(M) of partial
cubillages filling Z~ (M) and Z* (M), respectively, i.e., QM) ={Q UQ" : Q' €
Q (M), Q" e QT (M)}.

Remark 3. When M = Z% (M = Z™) QT (M) (resp. Q~(M)) becomes the set
Q,, of all cubillages on Z(n,3). The latter set is connected via local transformations
(flips) changing subcubillages within sub-zonotopes of the form Z(4,3). A similar con-
nectedness takes place for cubillages on zonotopes of any dimension, as a consequence
of results in [9] (for details, see also [3, Sec. §8]).

5.2 Cubillages for two s-membranes

One can address the following issue. Suppose we are given two abstract s-membranes
M, M' properly embedded in Z = Z(n,3). When does there exist a cubillage ) on Z
containing both M and M’? The answer is clear: if and only if the set Vy, UV is
chord separated. However, one can ask: how to construct such a @ efficiently?

For simplicity, consider the case of “non-crossing” s-membranes, assuming that M
is situated in Z before M’, i.e., M lies in Z~(M’).

A partial cubillage @' filling Z~ (M) and a partial cubillage Q" filling Z*(M’) always
exist and can be constructed by the method as in Sect. 5.1. So the only problem is to
construct a partial cubillage Q filling the space between M and M’, ie., Z(M,M') :=
ZH(M)YNZ~(M'); then Q := Q" U @ U Q" is as required. Conditions when a required
@ does exist are expounded in the proposition below.

We need some definitions. Consider a rhombus tiling 7" on the zonogon Z’ = Z(n, 2)
and a color i € [n]. For each i-edge e in T, let m(e) be the middle point on e, and for
each j € [n] — {i}, let ¢(0) be the central point of the rhombus ¢ with edges of colors
i,7 in T (it is the ij-rhombus when ¢ < j, and the ji-rhombus when j < ). For such a
¢ and the i-edges in it, say, e and €', connect ¢({) by straight-line segments with both
points m(e) and m(e’). One easily shows that the concatenation of these segments
over all j produces a non-self-intersecting piecewise linear curve connecting the middle
points of the two i-edges on the left and right boundaries of Z’; denote it as D; and
call i-th (undirected) dual path for T. (The set {D, ..., D,} matches a pseudo-line
arrangement, in a sense.)

Definitions. Let 1 < i < j < k < n and let { be the ik-rhombus in 7. The triple
ijk is called normal if ¢ lies above D;, and an inversion if ¢ lies below D;. The set of
inversions for 7" is denoted by Inv (7). Also we say that a triple ijk in T is elementary
if the rhombi of types ij, ik and jk in it span a hexagon (which has Y-configuration if
ijk is normal, and A-configuration if ijk is an inversion).

See the picture where a normal triple (an inversion) ijk is illustrated in the left
(resp. right) fragment, the corresponding dual paths are drawn by dotted lines, and
the 7k-rhombus is marked by a circle.
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Proposition 5.1 Let M, M’ be two s-membranes in Z = Z(n,3) such that M C
Z=(M"). Then a partial cubillage Q filling Z(M, M) (and therefore a cubillage on Z
containing both M, M) ezists if and only if Inv(M) C Inv(M’). Such a Q consists of
|Inv(M")| — |Inv(M)| cubes and can be constructed efficiently.

One direction in this proposition is easy. Indeed, suppose that a partial cubillage
Q filling Z(M, M') does exist. Take a minimal (w.r.t. the order < as in Sect. 4)
cube ¢ = ((X|ijk) in (). Then the front side ¢ lies in M and forms the hexagon
H = H(X|ijk) having Y-configuration. Hence the triple ijk in M is normal and
elementary. By making the flip in M using (, we obtain an s-membrane in which 75k
becomes an inversion, and the fact that ijk is elementary implies that no other triple
i'j'k’ changes its status under the flip. Also the new s-membrane becomes closer to
M'. Applying the procedure |@| times, we reach M’. This shows “only if” part.

As to “if” part in Proposition 5.1, its proof is less trivial and relies on a result by
Felsner and Weil. Answering an open question raised by Ziegler in [14], they proved
the following assertion (stated in [4] in equivalent terms of pseudo-line arrangements).

Theorem 5.2 [4] Let T,T" be rhombus tilings on Z(n,2) and let Inv(T) C Inv(1").
Then T has an elementary triple occurring in Inv(T") — Inv(T).

(This is a 2-dimensional analog of the well-known fact that for two permutations o, 0’ €
S, with Inv(c) C Inv(o’), o has a transposition in Inv(¢’) —Inv(c). Ziegler [14] showed
that the corresponding assertion in dimension 3 or more is false.)

Now Theorem 5.2 implies that if M, M’ are s-membranes with Inv(M) C Inv(M'),
then there exists a cube ¢ = ((X|ijk) such that ¢ € M and ijk € Inv(M') — Inv(M).
The flip in M using ¢ produces an s-membrane closer to M’ and having the set of
inversions Inv(M) U {ijk}. This enables us to recursively construct a partial cubillage
filling Z(M, M") starting with ¢, and “if” part of Proposition 5.1 follows.

Remark 4. One can check that the above definition of inversions of an (abstract)
s-membrane M in Z = Z(n,3) (equivalently, of the rhombus tiling m(M)) is consis-
tent with the notion of inversions in higher Bruhat orders introduced by Manin and
Schechtman [9], and its geometric interpretation given in [7, 14]. According to the
latter, the set Inv(M) consists of the types ijk of cubes of a partial cubillage @’ filling
Z~ (M) (which does not depend on ).
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6  W-membranes and quasi-combies

In this section we deal with a maximal c-collection C' in 2" and its associated cubillage
Q on the zonotope Z = Z(n,3) (i.e., with Vi = C), and consider the class W*(C)
of maximal by size weakly separated collections contained in C. (Recall that C' need
not be w-pure, by Lemma 3.1.) Since each W € W*((') is the spectrum of a combi
on the zonogon 7' = Z(n,2) (cf. (2.4)), a reasonable question is how a combi K with
Vi C Vg (regarding vertices as subsets of [n]) relates to the structure of . We have
seen that maximal by size s-collections in C' and their associated rhombus tilings on
Z' are represented by s-membranes, which are special 2-dimensional subcomplexes in
Q). In case of weak separation, we will represent combies via w-membranes, which
are subcomplexes of a certain subdivision, or fragmentation, of (). Also, along with a
combi K with Vi C Vi, we will be forced to deal with the set of so-called quasi-combies
accompanying K, which were introduced in [2] and have a nice geometric interpretation
in terms of ) as well.

6.1 Fragmentation of a cubillage and quasi-combies

The fragmentation Q= of a cubillage Q on Z = Z(n,3) is the complex obtained by
cutting ) by the horizontal planes through the vertices of @, i.e., the planes x = h for
h=1,...,n—1 (where z is the “vertical” coordinate in R?). This subdivides each cube
¢ = ((X|ijk) into three pieces: the lower tetrahedron ¢V, the middle octahedron (",
and the upper tetrahedron (2, called the V-, (-, and A-fragments of ¢, respectively.
Depending on the context, we also may think of Q= as the set of such fragments over
all cubes of (). We say that a fragment has height h + % if it lies between the planes
r=hand x=h+1.

It is convenient to visualize faces of Q= as though looking at them from the front
and slightly from below, i.e., along a vector (€, 0, 1), and accordingly use the projection
7€ : R? — R? defined by 7¢(x, y, 2) = (z—ez,y) for a sufficiently small ¢ > 0. (Compare
7€ with 7 defined in Sect. 2.3.) One can see that 7¢ transforms the generators 6y, ..., 6,
for Z as in (2.6) into generators for Z' = Z(n,2)) which are adapted for combies, i.e.,
satisfy the strict concavity condition (2.3).

For a closed set S C Z, let S (S<*ar) denote the set of points of S seen from the
front (from the rear) in the direction related to 7€, i.e., the points (x,y,z) € S such
that there is no (2, v/, 2’) € S with 7¢(2', ¢/, 2') = 7¢(z,y,2) and 2’ < z (resp. 2/ > 2).
We call it the e-front (resp. e-rear) side of S. Note that when replacing the projection
7 by 7€, all facets (triangles) of the fragments of a cube become fully seen from the
front or rear; see the picture.

nt CD
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Thus, all 2-dimensional faces in ()= are triangles, and we conditionally refer to those
of them that lie in horizontal sections x = h as horizontal triangles, and to the other
ones (halves of rhombi in ) as vertical ones. Horizontal triangles 7 are divided into
two groups. Namely, 7 is called upper (lower) if it has vertices of the form X1, X j, Xk
(resp. Y —k,Y — 3, Y —i) for i < j < k, and therefore its “obtuse” vertex Xj (resp.
Y — j) is situated above the edge (X4, Xk) (resp. below the edge (Y —k,Y —1)), called
the longest edge of 7 (which is not confusing when e is small). Equivalently, an upper
(lower) horizontal 7 belongs to an V-fragment (resp. A-fragment) of Q=.

Accordingly, we refer to the edges in horizontal sections as horizontal ones, or H-
edges, and to the other edges as vertical ones, or V-edges (adapting terminology for
combies from Sect. 2.2).

For h € [n], let S,(Q) denote the section of @ at height h, regarded as a triangula-
tion consisting of horizontal triangles which are partitioned into upper and lower ones.
(A nice property of S, (Q) pointed out in [5] is that its spectrum (the set of vertices re-
garded as subsets of [n]) constitutes a maximal w-collection in ([Z}) .) For example, if @)
is the cubillage on Z(4, 3) formed by four cubes ¢(0]123), ¢((0|134), (1|234), {(3|124),
then the triangulations S1(Q), S2(Q), 55(Q) are as illustrated in the picture, where the
sections of these cubes are labeled by a, b, ¢, d, respectively.
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6.2 W-membranes

Definition. A 2-dimensional subcomplex M of the fragmentation ()= is called a w-
membrane if M is bijectively projected by 7€ onto Z(n,2). Equivalently, M = M & =
M e and the boundary of M is the rim Z™™ of Z = Z(n,3) and .

Arguing as in Sect. 4 for s-membranes, one shows that the set M(Q=) of w-
membranes in ()= constitutes a distributive lattice.

More precisely, associate with a w-membrane M: (a) the part Z— (M) (ZT(M)) of
Z between Z™ and M (resp. between M and Z™); and (b) the subcomplex Q= (M)
(QT(M)) of Q= contained in Z~ (M) (resp. ZT(M)), called the front heap (resp. rear
heap) of M when it is regarded as the corresponding set of V-, (-, and A-fragments.

Then for any two w-membranes M, M' € M(Q=), we have (cf. (4.1)):
(6.1) (i) both N := (M U M')" and N’ := (M U M') 4™ are w-membranes;
(i) @~(N) =@~ (M)NQ™(M') and Q~(N') = @~ (M) U Q™ (M),

Proposition 6.1 M(Q7) is a distributive lattice in which operations A\ and V applied
to M, M'" € M(Q7) produce w-membranes MAM'" and MV M' such that @~ (MAM') =
Q- (M)NQ~(M’) and Q~(M v M') = Q- (M)UQ~(M’). !
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Next, for fragments ¢, ¢’ in =, we say that ¢ immediately precedes ¢’ if ¢<™* N
(¢') ¢ consists of a (vertical or horizontal) triangle. Accordingly, we define the directed
graph I'g= whose vertices are the fragments in = and whose edges are the pairs (¢, ¢')
such that ¢ immediately precedes ¢'.

Lemma 6.2 The graph I'g= is acyclic.

Proof Consider a directed path P = (¢g, €1, ¢1,...,€p, ¢,) in I'g=. We show that P
is not a cycle as follows.

If consecutive fragments ¢ = ¢;_1 and ¢’ = ¢; share a horizontal triangle o of height
h (i.e., lying in the plane x = h), then the construction of 7€ together with the equality
o = ¢ N (¢') ST implies that ¢ lies below and ¢’ lies above the plane x = h. On the
other hand, if ¢ and ¢’ share a vertical triangle, then both ¢, ¢’ have the same height.

Thus, it suffices to show that P is not a cycle if all fragments ¢; in P have the same
height. This assertion follows from (4.2) and the observation that if fragments ¢, ¢ of
()= share a vertical triangle o, and ¢ immediately precedes ¢’, then the cubes (, (" of

@ containing these fragments (respectively) share the rhombus ¢ including o and such
that <> — grear N (C/)fr‘ |

Corollary 6.3 The graph I'g= induces a partial order < on the fragments of Q=. The
ideals of (Q=, <) are exactly the front heaps Q~ (M) of w-membranes M € M(Q=). 1

When a w-membrane M is different from the minimal membrane Z, the ideal
F :=(@Q~ (M) has at least one maximal element, i.e., a fragment ¢ € F' such that there
isno ¢ € F—{¢} with ¢ < ¢'. Equivalently, the e-rear side ¢ ™" is entirely contained
in M. The lowering flip in M using ¢ replaces the triangles of ¢ ™ by the ones of ¢,
producing a w-membrane M’ closer to Z ™, namely, such that Q~(M’) = F —{¢}. Note
that this flip preserves the set of vertices (i.e., Vi = Vi) if ¢ is a V- or A-fragment,
in which case we refer to this as a tetrahedral (lowering) flip. See the picture.

Xj

_raising
Xi ra1s1ng
lowerlng
X lowerlng

In contrast, if ¢ is a [-fragment, then the set of vertices does change, namely,
Vi = (Vi — {Xiik}) U{Xj}, where ¢ is contained in the cube ((X|ijk); we refer to
such a flip as octahedral or essential. See the picture.

Xy Xjk raising -
- )(l
lowering

Xi Xk
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Symmetrically, when M # Z*its rear heap R := QT (M) has at least one minimal
fragment ¢, i.e., such that there is no ¢’ € R — {¢} with ¢/ < ¢. Equivalently, ¢ is
entirely contained in M. The raising flip in M using ¢ produces a w-membrane M’
closer to Z™. Such flips, referred to as tetrahedral and octahedral (or essential) as
before, are illustrated in the above two pictures as well.

Making all possible lowering or raising tetrahedral flips starting with a given w-
membrane M, we obtain a set of w-membranes with the same spectrum V), denoted
as (M) and called the escort of M. Of an especial interest is a w-membrane L € E(M)
that has the maximum number of V-edges. Such an L admits neither a V-fragment
¢ with g™ C L, nor a A-fragment ¢/ with (¢')¢"™ C L, since a lowering flip in the
former case and a raising flip in the latter case would increase the number of V-edges.
We call L a fine w-membrane.

We shall see later that the w-membranes one-to-one correspond to the so-called non-
expensive quasi-combies, and the fine w-membranes to the combies which are compatible
with @=. The following auxiliary statement will be of use.

(6.2) (i) Let @= contain a vertical A-triangle 7 and a lower horizontal triangle o
sharing an edge e that is the longest edge of o (and the base edge of 7).
Then 7 and o belong to the same A-fragment ¢ of Q= (thus forming ¢ ).

(ii) Symmetrically, if a vertical V-triangle 7 and an upper horizontal triangle o
share an edge that is the longest edge of o, then 7 U o = ¢“™* for some
V-fragment ¢ of Q=.

Indeed, let ¢ be the rhombus in @) containing the triangle A as in (i). This ¢ is a
facet of one or two cubes of () and o lies in the section of one of them, { say, by the
horizontal plane containing e. Since o is lower, the only possible case is when A and
o form the e-front side of the A-fragment of (, as required. The case (ii) is symmetric.

A useful consequence of (6.2) is that

(6.3) for any horizontal triangle o of a fine w-membrane L, the longest edge of o
belongs to one more (lower or upper) horizontal triangle of L.

Indeed, if o is lower, then its longest edge belongs to neither a vertical V-triangle
(since 7€ is injective on L), nor a vertical A-triangle (otherwise o U A would be as
in (6.2)(i) and one could make a lowering flip increasing the number of V-edges).
When o is upper, the argument is similar (using (6.2)(ii)).

6.3 Quasi-combies and w-membranes

We assume that the zonogon Z' := Z(n,2) is generated by the vectors & = 7(0;),
i =1,...,n, where the 6; are as in (2.6); then the &; satisfy (2.3). Speaking of combies
and etc., we use terminology and notation as in Sect 2.2.

A quasi-combi on Z' is defined in the same way as a combi, with the only difference
that the requirement that for any lens A, the lower boundary L,, as well as the upper
boundary Uy, has at least two edges is now withdrawn; so one of L) and U, is allowed

22



to have only one edge. When all vertices of A\ are contained in Ly, and therefore U)
has a unique edge, namely, (¢),r)), we say that \ is a lower semi-lens. Symmetrically,
when all vertices of A belong to Uy, A is called an upper semi-lens. An important
special case of a semi-lens \ is a (lower of upper) triangle.

We refer to the A- and V-tiles of a quasi-combi K as vertical ones, and to the lenses
and semi-lenses in it as horizontal tiles. This is justified by the fact that all vertices A
of a horizontal tile have the same size, or lie in the same level h = |A].

A quasi-combi is called fully triangulated if all its tiles are triangles. An immediate
observation is that

(6.4) 7 maps any w-membrane M of Q= to a fully triangulated quasi-combi (regarding
M as a 2-dimensional complex).

In what follows we liberally identify M with 7¢(M) and may speak of a w-membrane
as a quasi-combi. A property converse to (6.4), in a sense, is valid in a more general
situation. Before stating it, we introduce four simple operations on a quasi-combi K.

(S) Splitting a horizontal tile. For a lens A of K and non-adjacent vertices u, v in
Ly or in U,, the operation cuts A into two pieces (either one lens and one semi-lens
or two semi-lenses) by connecting u,v by the line-segment [u,v]. When A is a lower
(upper) semi-lens and u,v is a pair of non-adjacent vertices in Ly (resp. U,), the
operation acts similarly.

(M) Merging two horizontal tiles. Suppose that A" and A", which are either two
semi-lenses or one lens and one semi-lens, have a common edge e that is the longest
edge of at least one of them, X say, i.e., e = (¢y,7)). The operation merges X', \" into
one piece A := XN U\,

One can see that both operations result in correct quasi-combies. Two examples
are illustrated in the picture.

(S) PN

— (S) o
T N <<

The next two operations involve semi-lenses and vertical triangles and resemble,
to some extent, tetrahedral flips in w-membranes. Here by a lower (upper) fan in
a quasi-combi K we mean a sequence of V-tiles V, = V(X|i,_1i,) (resp. A-tiles
A, = A(Y|iy_1i,), r = 1,...,p, where ig < --- < i, (resp. ig > --- > i,); i.e., these
triangles have the same bottom vertex X (resp. the same top vertex Y') and two
consecutive triangles share a vertical edge.

(E) Eliminating a semi-lens. Suppose that the longest edge e = (f),7)) of a
lower semi-lens A belongs to a A-tile A = A(Y[ji) (j > 7). Then e is the base edge
(Y —4,Y —i) of A, and A has the upper root just at Y. The operation of eliminating
A replaces A and A by the corresponding upper fan (A, : r =1,...,p), where each A,
has the top vertex Y and its base edge is r-th edge in L). Symmetrically, if an upper
semi-lens A and a V-tile V share an edge e (which is the longest edge of A and the
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base edge of V), then the operation replaces A and V by the corresponding lower fan
(V,.:r=1,...,p), where the base edge of V, is r-th edge in U,.

(C) Creating a semi-lens. This operation is converse to (E). It deals with a lower or
upper fan of vertical triangles and replaces them by the corresponding pair consisting
of either an upper semi-lens and a V-tile, or a lower semi-lens and a A-tile.

Again, it is easy to check that (E) and (C) result in correct quasi-combies. These
operations are illustrated in the picture (where p = 3).

® ®
SO “©

Definition. For a quasi-combi K, the set Q(K) of all quasi-combies K’ on Z’ with
the same spectrum Vi is called the escort of K.

(Compare with the definition of the escort £(M) of a w-membrane M.)

Lemma 6.4 (i) Q(K) contains ezxactly one combi. (ii) Q(K) is the set of quasi-
combies that can be obtained from K by use of operations (S),(M),(E),(C). In partic-
ular, Vi is a mazimal w-collection in 2.

Proof Choosing an arbitrary quasi-combi K’ € Q(K) and applying to K’ a series
of operations (M) and (E), one can produce K* having no semi-lenses at all (since
each application of (M) or (E) decreases the number of semi-lenses). Therefore, K*
is a combi with Vg« = Vx =: §. Moreover, K* is the unique combi with the given
spectrum S, by (2.4) (see also [2, Th. 3.5]). This gives (i). In its turn, (i) implies (ii)
(since any K’ € Q(K) can be obtained from K* using (S) and (C), which are converse
to (M) and (E)). I

As a consequence of (6.4) and Lemma 6.4, we obtain
Corollary 6.5 The spectrum of any w-membrane is a mazimal w-collection in 2.

Definition. A quasi-combi K is called compatible with a cubillage @) if each edge of
K is (the image by 7 of) an edge of Q=. (In particular, Vi C Vj.)

Proposition 6.6 Let K be a quasi-combi on Z' = Z(n,2) compatible with a cubil-
lage Q on Z(n,3). Then the horizontal tiles (lenses and semi-lenses) of K can be
triangulated so as to turn K into (the image by ©¢ of ) a w-membrane in Q=.

Proof Let 7 be a A- or V-tile in K; then the edges of 7 belong to =. Arguing as in
the proof of Proposition 3.5 (using induction on n and considering the n-contraction
of @ and its fragmentation), one can show that 7 is a facet (a vertical triangle) of Q<.
Now consider a lens or semi-lens A of K lying in level h, say. Since all edges of A belong
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to =, the polygon A must be subdivided into a set of triangles in the section S,(Q)
of @= by the plane x = h. Combining such sets and vertical triangles 7 as above, we
obtain a disk bijective to Z’ by 7€, yielding a w-membrane M in Q= with Vi C V).
Now the fact that both V,; and Vi are maximal w-collections implies Vi = V), and
the result follows. I

Definition. A quasi-combi K is called non-expensive if all semi-lenses in it are triangles
(while admitting arbitrary lenses) and there is no semi-lens A whose longest edge (£, 7))
is simultaneously either an edge of a lens or the longest edge of another semi-lens.

A special case of non-expensive quasi-combies is a combi. Proposition 6.6 and (6.4)
imply that each w-membrane M one-to-one corresponds (via 7€) to a fully triangu-
lated quasi-combi compatible with () and having the same spectrum V;;. One more
correspondence following from Proposition 6.6 concerns non-expensive quasi-combies.

Corollary 6.7 Any w-membrane M of a cubillage QQ one-to-one corresponds to a
non-expensive quasi-combi K compatible with Q and such that Vi = Vi, Two non-
expensive quasi-combies with the same escort have the same set of lenses.

Indeed, for a non-expensive quasi-combi K, the corresponding w-membrane M is
obtained by subdividing each lens of K into triangles of Q=. We also use the fact
that each application of operation (E) matches a tetrahedral flip in the corresponding
w-membrane (since each semi-lens is a triangle), and a series of such operations results
in a combi with the same set of lenses.

A sharper version of above results is stated by weakening the requirement of com-
patibility.

Theorem 6.8 For any maximal by size w-collection W contained in the spectrum Vg
of a cubillage Q, there exists a w-membrane M in Q= with Vy; = W.

Proof Let K be the combi with Vi = W. In light of the reasonings in the proof of
Proposition 6.6, it suffices to show that

(6.5) each vertical triangle 7 of K can be extended to a rhombus of @) (and therefore
7 is a face of Q7).

To see this, we rely on the following fact (which is interesting in its own right).

Claim. Let a set Y C [n] be chord separated from each of X, X1, Xn for some X C
n] — {1,n}. ThenY is chord separated from the set X1n as well.

Proof of the Claim. Let 1,...,n be disposed in this order on a circumference O.
Let Y :=Y — X and X' := X — Y. One may assume that 1,n ¢ Y’ (otherwise the
chord separation of Y and X 1n immediately follows from that of Y, X, X1, Xn).

If Y and X1n are not chord separated, then there are elements z,z’ € X'ln and
y,y" € Y’ such that the corresponding chords e = [z, 2] and € = [y,y'] “cross” each
other. Then {z,2'} # {1,n} (since 1,n are neighboring in O). So one may assume
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that x € X’ (and 2’ € X'1n). But in each possible case (z/ € X’ or 2’ =1 or 2’ = n),
the chord e crossing €’ connects two elements of either X’ or X'l or X'n, yielding a
contradiction. |

Next consider a V-tile V(X|ij) of K (having the vertices X, X4, Xj with ¢ < j). If
{i,j} = {1,n}, then, by the Claim (and (2.8)), Xij is chord separated from all vertices
of ), and the maximality of V, implies that Xij is a vertex of ) as well. Hence, by
Proposition 3.5(ii), @ contains the rhombus ¢(X|ij), as required.

So we may assume that at least one of j < n and 1 < ¢ takes place. Assuming the
former, we use induction on n and argue as follows.

Let Q" be the n-contraction of (), and M the s-membrane in ()’ that is the image
of the n-pie in @ (for definitions, see Sect. 3.3). Besides @), we need to consider the
reduced set W’ := {A C [n—1] : A or An or both belong to W}. Then W’ is a maximal
w-collection in 2("~Y and as is shown in [2],

(6.6) if 7 is a vertical triangle of K having type ij with j < n and vertices A, B, C', and
if K’ is the combi on Z(n — 1,2) with Vx» = W’ then K’ has a vertical triangle
with the vertices either A, B,C or A —n, B—n, C —n.

Now consider two cases: n ¢ X and n € X.

If n ¢ X, then X, Xi, Xj are vertices of () and simultaneously vertices of the
reduced combi K’. By (6.6), K’ has the tile V' = V(X|ij). By induction, the vertices
of V' are extended to a rhombus ¢’ of @)'. This ¢’ is lifted to @, as required.

If n € X, then @' and K’ contain the vertices X', X'i, X'j for X’ := X —n, K’ has
the triangle V' = V(X'|ij) (by (6.6)), the vertices of V' are extended to a rhombus ¢’
of @', and ¢’ is lifted to the desired rhombus ¢(X|ij) in Q.

The case of a A-tile A = A(Y'|ji) of K with i < j < n is symmetric.

Finally, if 1 < ¢ < 7 = n, we act in a similar fashion, but applying to () the I-
contraction operation, rather than the n-contraction one (this is just the point where
we use the 1-contraction mentioned in Sect. 3.3); the details are left to the reader.

This completes the proof of the theorem. | |

7 Extending a combi to a cubillage

The purpose of this section is to explain how to efficiently extend a fixed maximal
w-collection in 2" to a maximal c-collection, by working with their geometric inter-
pretations: combies and cubillages. Our construction will imply the following

Theorem 7.1 Given a mazimal weakly separated collection W C 2™ one can find,
by applying O(n?) flips, a mazimal chord separated collection C' C 2" including W .

Proof It is convenient to work with an arbitrary fully triangulated quasi-combi K
with Vx = W. The goal is to construct a cubillage Q on Z = Z(n,3) whose frag-
mentation ()= contains K as a w-membrane. (Note that it is routine to construct the
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(unique) combi with the spectrum W (see [2] for details), and in order to form K we
subdivide each lens of the combi into the pair of upper and lower semi-lenses and then
triangulate them arbitrarily. The resulting cubillage ) will depend on the choice of
such triangulations.)

We start with properly embedding K (as an abstract w-membrane) into the
“empty” zonotope Z, and our method consists of two phases. At the first (second)
phase, we construct a partial fragmentation F~ (resp. F'") consisting of V-, O-, and
A-fragments of some cubes ((X|ijk) (where, as usual, i < j < kand X C [n|—{1,7,k})
filling the region Z~(K) of Z between Z% and K (resp. the region Z*(K) between K
and Z™). For definitions, see Sect. 6.1. Then F := F* U F~ is a subdivision of Z
into such fragments, and it is not difficult to realize that F' is just the fragmentation
= of some cubillage @Q); so = is as required for the given K.

Next we describe the first phase. At each step in it, we deal with an additional
w-membrane M such that

(*) M lies in Z~(K), and there is a partial fragmentation F” filling the region
Z(M, K) between M and K (i.e., F' is a subdivision of Z(M, K) into V-, -
, and A-fragments).

If M (regarded as a fully triangulated quasi-combi) has no horizontal triangle (semi-
lens), then M is, in essence, a rhombus tiling in which each rhombus ¢(X|ij) is cut
into two vertical triangles, namely, V(X|ij) and A(Xij|ji). So M can be identified
with the corresponding s-membrane, and we can construct a partial cubillage @’ filling
the region Z~ (M) (between Z and M) by acting as in Sect. 5.1. Combining Q" and
F’, we obtain the desired fragmentation F'~ filling Z~ (K).

Now assume that M has at least one semi-lens, and let A be the minimum level
such that the set £ of semi-lenses in this level is nonempty. Choose A € L such that
no edge in its lower boundary L, belongs to another semi-lens. (The existence of such
a A is provided by the acyclicity of the directed graph whose vertices are the elements
of £ and whose edges are the pairs (A, \') such that Uy and L) share an edge, which
can be shown, e.g., by use of (4.2).) Two cases are possible.

Case 1: X is an upper triangle, i.e., L, consists of a single edge, namely, e =
(£x, 7). Let Uy have vertices Xi, Xj, Xk (where i < j < k, Xi = ) and Xk = r)).
Then e belongs to a V-tile in M, namely, V = V(X|ik). Form the V-fragment ¢ =
¢V (X|ijk) (the lower tetrahedron with the vertices X, X4, Xj, Xk). We add ¢ to F’
and accordingly make the lowering flip in M using ¢, which replaces the triangles A
and V (forming ¢ ™) by V(X|ij) and V(X|jk) (forming ¢“T); see an illustration in
Sect. 6.2. The updated M is a correct fully triangulated quasi-combi (embedded as a
w-membrane in Z), which is closer to Z .

Case 2: \is alower triangle. Then L) consists of two edges: e = ({\ =Y —k, Y —j)
and ¢ = (Y —7,Y —i =r,), where i < j < k. Also by the choice of h and A, the edges
e, € belong to V-tiles of M, namely, ones of the form V = V(X|jk) and V' = V(X'|ij),
respectively, where X :=Y — {j,k} and X' :=Y — {i,j}. See the left fragment of the
picture.
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Let A:=Y — j (= Xk = X'i). Note that the “angle” between the edges (X, A)
and (X', A) is filled by an upper fan (Ay,...,A,), where A, = A(A|i,_13,) and k =
ip > 11 > - >4, =1 (cf. Sect 6.2). Consider two possibilities.

Subcase 2a: p = 1, i.e., the fan consists of only one tile, namely, A = A(A|ki).
Form the octahedron containing the vertices X, X', Xj, X’j, A, namely, ¢ = (" (X]zgk),
where X is X —i = X’ — k. Observe that the triangles A\, V, V', A form the e-rear side
of . We add ¢ to F’ and accordingly make the octahedral flip in M using ¢, which
replaces ¢ ™% by the e-front side ¢ % (formed by four triangles shared the new vertex
A =X 4). See the middle fragment of the above picture where ¢ is indicated by
solid lines. The updated M is a correct w-membrane, which is closer to Z%. (Note
that under the flip, the semi-lens A is replaced by an upper semi-lens A’ in level h — 1;
this A’ has the longest edge (X, X’) and the top A’.)

Subcase 2b: p > 1. Then X and X’ are connected in M by the path P that passes
the vertices X = A —ig, A —1q,..., A —i, = X'. We make two transformations. First
we connect X and X' by line-segment e. Note that ¢ lies in the region Z~ (M) (by the
convexity condition (2.6)). Form the truncated polyhedral cone ¥ with the top vertex
A and the base polygon B bounded by P Ue. See the right fragment of the above
picture (where p = 3). We arbitrarily subdivide B into p — 1 triangles oy,...,0,1
(having vertices on P) and extend each o, to tetrahedron ¢, with the top A. These
¢1, ..., Pp_1 subdivide ¥ into A-fragments (each being of the form ¢2(Aliyigi,) for
some 0 < o < B <y < p). Observe that the e-rear side ¥ of ¥ is formed by the
fan (Ay,...,A,), whereas ¢ consists of the lower horizontal triangles oy, ...,0, 1
plus one vertical triangle with the top A and the base €, denoted as A.

We add the fragments ¢y, ..., ¢,_1 to F’ and accordingly update M by replacing the
triangles of ¥ <% by the ones of ¥ (as though making p—1 lowering tetrahedral flips).
The new w-membrane has the upper fan at A consisting of a single A-tile, namely, A,
and now we make the second transformation, by applying the octahedral flip as in
Subcase 2a (involving the triangles A\, V, V', A on the vertices X, X', Xj,X'j, A).

Doing so, we eventually get rid of semi-lenses in the current M; then M becomes
an s-membrane in essence, which enables us to extend the current F’ to the desired

fragmentation F'~ filling Z~(K) (as mentioned above).

At the second phase, we act “symmetrically”, starting with M := K and moving
toward Z'" in order to obtain a fragmentation F'* filling Z*(K).

Note that each tetrahedral or octahedral fragment ¢ uniquely determines the cube
within Z to which ¢ belongs. Moreover, one can see that each triple of vertices in a
section (at height 1 or 2) of a cube determines this cube. Using this, one can conclude
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that F' := F~UF is the fragmentation of a cubillage Q on Z, and M is a w-membrane
in (). The number of fragments in F is 3(2), implying the theorem. (In fact, one can

see that the algorithm behind the above proof takes polynomial time.) |
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