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For an odd integer r > 0 and an integer n > r, we introduce 
a notion of weakly r-separated collections of subsets of [n] =
{1, 2, . . . , n}. When r = 1, this corresponds to the concept 
of weak separation introduced by Leclerc and Zelevinsky. 
In this paper, extending results due to Leclerc-Zelevinsky, 
we develop a geometric approach to establish a number of 
nice combinatorial properties of maximal weakly r-separated 
collections (such as an exact upper bound on the maximal size 
of weakly r-separated collections, mutations rules, relations to 
the so-called weak membranes in zonotopes of dimension r+2, 
and etc.) A possible analog with r even is briefly discussed as 
well.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Let n be a positive integer and let [n] denote the set {1, 2, . . . , n}. For subsets X, Y ⊆
[n], we write X < Y if the maximal element max(X) of X is smaller than the minimal 
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element min(Y ) of Y , letting max(∅) := 0 and min(∅) := n + 1. An interval in [n] is a 
subset of the form {a, a + 1, . . . , b} in it, denoted as [a..b] (so [n] = [1..n]).

The well-known concept of strongly separated sets introduced by Leclerc and Zelevin-
sky [10] is extended as follows.

Definition. For r ∈ Z≥0, sets A, B ⊆ [n] are called (strongly) r-separated if there is no 
sequence i1 < i2 < · · · < ir+2 of elements of [n] such that the elements with odd indices 
(namely, i1, i3, . . .) belong to one of A − B and B − A, while the elements with even 
indices (i2, i4, . . .) belong to the other of these two sets (where A′ − B′ denotes the set 
difference {i : A′ � i /∈ B′}). Accordingly, a set-system S ⊆ 2[n] (a collection of subsets 
of [n]) is called r-separated if any two members of S are such.

Equivalently, A, B ⊆ [n] are r-separated if there are intervals I1 < I2 < · · · < Ir′ in 
[n] with 0 ≤ r′ ≤ r + 1 such that one of A − B and B − A is included in I1 ∪ I3 ∪ . . ., 
and the other in I2 ∪ I4 ∪ . . .. If, in addition, (a) r′ is minimal, and (b) |I1| + · · · + |Ir′ |
is minimal subject to (a), we say that (I1, . . . , Ir′) is the interval cortege associated with 
A, B.

In particular, A, B are 0-separated if A ⊆ B or B ⊆ A, and 1-separated if either 
max(A − B) < min(B − A) or max(B − A) < min(A − B). The 1-separation relation 
is just what is called the strong separation one in [10]. The case r = 2 was studied by 
Galashin [6]. A study for a general r is conducted in Galashin and Postnikov [7].

When A, B are r-separated but not (r − 1)-separated, they are called (r + 1)-
intertwined. In other words, the interval cortege associated with A, B consists of r + 1
intervals. When A, B are such that min(A − B) < min(B − A) and max(A − B) >
max(B −A), we say that A surrounds B.

For example, A = {1, 2, 5, 6, 7, 10, 11} and B = {1, 3, 4, 6, 9, 11} are 5-intertwined 
(with the interval cortege ({2}, [3..4], [5..7], {9}, {10})) and A surrounds B.

Another kind of set separation introduced by Leclerc and Zelevinsky is known under 
the name of weak separation (which appeared in [10] in connection with the problem 
of characterizing quasi-commuting flag minors of a quantum matrix; for a discussion on 
this and wider relations between the weak separation and quantum minors, see also [1, 
Sect. 8]). We generalize that notion to “higher dimensions” in the following way (where 
the term “higher dimensions” is justified by appealing to a geometric interpretation 
explained later).

Definition. Let r be odd. Sets A, B ⊆ [n] are called weakly r-separated if they are r′-
intertwined with r′ ≤ r + 2, and if r′ = r + 2 takes place, then either (a) A surrounds B
and |A| ≤ |B|, or (b) B surrounds A and |B| ≤ |A|. Accordingly, a set-system W ⊆ 2[n]

is called weakly r-separated if any two members of W are such.

In other words, A and B are weakly r-separated if they are either (strongly) 
r-separated or (r + 2)-intertwined, and in the latter case, for the interval cortege 
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(I1, . . . , Ir+2) associated with A, B, if the cardinalities of A and B are different, say, 
|A| < |B|, then I1 ∪ I3 ∪ . . . ∪ Ir+2 contains A − B (while I2 ∪ I4 ∪ . . . ∪ Ir+1 contains 
B−A). For example, {1, 2, 6} and {2, 3, 4, 5} are weakly 1-separated, whereas {1, 2, 5, 6, 7}
and {1, 3, 4, 5} are 3-intertwined but not weakly 1-separated.

When r = 1, the above definition turns into the classical notion of weak separation 
due to Leclerc and Zelevinsky [10] (where sets A, B ⊆ [n] are called weakly separated 
if either (a) |A| ≤ |B| and there is a partition of A − B into subsets A′, A′′ (admitting 
empty ones) such that A′ < B − A < A′′, or (b) |B| ≤ |A| and there is a partition of 
B −A into subsets B′, B′′ such that B′ < A −B < B′′, or both).

In this paper we generalize, to an arbitrary odd r ≥ 1, two results on weakly separated 
collections obtained in [10]. One of those (Theorem 1.2 in [10]) says that

(1.1) the maximal possible sizes (numbers of members) of strongly and weakly separated 
collections in 2[n] are the same and equal to 1

2n(n + 1) + 1 (=
(
n
2
)

+
(
n
1
)

+
(
n
0
)
).

To formulate a generalization of (1.1), let r < n and denote the maximal possible size | S |
of an r-separated collection S in 2[n] by sn,r. Also when r is odd, denote the maximal 
possible size of a weakly r-separated collection W ⊆ 2[n] by wn,r. Extending results 
in [10] (for r = 1) and [6] (for r = 2), it is shown in [7] that

sn,r =
(

n
≤r+1

) (
=

(
n

r+1
)

+
(
n
r

)
+ · · · +

(
n
0
))

. (1.2)

We prove the following

Theorem 1.1. Let r be odd. Then wn,r = sn,r.

Example. In case (n, r) = (4, 1), one can easily construct a maximal by size weakly 
separated collection W which is not strongly separated. It has s4,1 =

(4
2
)
+
(4
1
)
+
(4
0
)

= 11
sets of which eight are the intervals containing 1 or/and 4 plus the empty interval ∅ (each 
of them is necessary since it is separated from any set in [4]). The other three sets in W
are 14, 23, 24 (where we write a · · · b for {a, . . . , b}). Here 23 and 14 are weakly but not 
strongly separated. Also one can check that any of the five sets in 2[4]−W (namely, 2, 3, 
13, 124, 134) is not weakly separated from some of {14, 23, 24}; so W is maximal indeed.

Another impressive result in [10] says that a weakly separated collection can be trans-
formed into another one by making a flip (a sort of mutation) “in the presence of four 
witnesses”. This relies on the following property (Theorem 1.7 in [10]):

(1.3) let W ⊂ 2[n] be weakly separated, and suppose that there are elements i < j < k

of [n] and a set X ⊆ [n] − {i, j, k} such that W contains four sets (“witnesses”) 
Xi, Xk, Xij, Xjk and a set U ∈ {Xj, Xik}; then the collection obtained from W
by replacing U by the other member of {Xj, Xik} is again weakly separated.
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Hereinafter, for disjoint subsets A and {a, . . . , b} of [n], we write Aa . . . b for A ∪{a, . . . , b}. 
Also for a ∈ A, we will abbreviate A − {a} as A − a.

We generalize (1.3) as follows.

Theorem 1.2. For an odd r, let r′ := (r + 1)/2. Let P = {p1, . . . , pr′} and Q =
{q0, . . . , qr′} consist of elements of [n] such that q0 < p1 < q1 < p2 < . . . < pr′ < qr′ , and 
let X ⊆ [n] − (P ∪Q). Define the sets of “upper” and “lower” neighbors (or “witnesses”) 
of P, Q to be

N ↑(P,Q) := {Pq : q ∈ Q} ∪ {(P − p)q : p ∈ P, q ∈ Q}; and (1.4)

N ↓(P,Q) := {Q− q : q ∈ Q} ∪ {(Q− q)p : p ∈ P, q ∈ Q}. (1.5)

Suppose that a weakly r-separated collection W ⊂ 2[n] contains the set X ∪ P (resp. 
X ∪ Q) and the sets X ∪ S for all S ∈ N ↓(P, Q) (resp. S ∈ N ↑(P, Q)). Then the 
collection obtained from W by replacing X ∪ P by X ∪ Q (resp. by replacing X ∪ Q by 
X ∪ P ) is weakly r-separated as well.

(Note that since Q surrounds P but |Q| > |P |, the sets P and Q are not weakly 
r-separated. Also |P ∪ Q| = r + 2 implies that any two sets in {P, Q} ∪ N ↑(P, Q) ∪
N ↓(P, Q) except for P, Q are weakly r-separated. If r = 1 then, denoting q0, p1, q1 as 
i, j, k, respectively, we obtain N ↑(P, Q) = N ↓(P, Q) = {i, k, ij, jk}, and the theorem 
turns into (1.3). When r > 1, the sets N ↑(P, Q) and N ↓(P, Q) become different.)

In general, for two weakly r-separated collections W and W ′, if there are P, Q, X as 
above such that W ′ = (W−{X ∪ P}) ∪ {X ∪Q} and W = (W ′ −{X ∪Q}) ∪ {X ∪ P}, 
then we say that W ′ is obtained from W by a raising (combinatorial) flip, while W is 
obtained from W ′ by a lowering flip.

Our method of proof of the above theorems and subsequent results essentially use a 
geometric approach and some facts on fine zonotopal tilings, or cubillages, on a cyclic 
zonotope in a space Rd. (The term “cubillage” was introduced by Kapranov and Voevod-
sky in paper [9] containing, in particular, a geometric interpretation of higher Bruhat 
orders.)

An important fact is that the maximal by size (strongly) (d −1)-separated collections S
in 2[n] one-to-one correspond to the cubillages Q in a cyclic zonotope Z(n, d) (generated 
by a cyclic configuration of n vectors in Rd); moreover, the set of vertices of Q “encodes” 
S. (When d = 2, a cubillage becomes a rhombus tiling on a planar n-zonogon; a bijection 
between these tilings and the maximal strongly separated collections in 2[n] is due to [10, 
Theorem 1.6] (where the language of pseudo-line arrangements, dual to rhombus tilings, 
is used). For d = 3, a bijection between the corresponding cubillages and maximal 
2-separated sets was originally established in [6]. For a general d, the corresponding 
bijection was shown by Galashin and Postnikov [7].)

Another important fact, inspired by results in the classical work due to Manin and 
Schechtman [11] on higher Bruhat orders and their geometric counterparts in [9,12], is 
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that any cubillage on Z(n, d −1) can be lifted as a certain (d −1)-dimensional subcomplex, 
that we call an s-membrane, in some cubillage on Z(n, d). For more explanations and 
other relevant facts, see [5].

We further develop the theory of cubillages by constructing a certain fragmentation
Q≡ of a cubillage Q on Z(n, d), introducing a class of (d − 1)-dimensional subcomplexes 
in Q≡, called w-membranes, and showing (in Theorem 6.4) that when d is odd, the vertex 
set of any w-membrane forms a maximal by size weakly (d − 2)-separated collection in 
2[n]. It turns out that the collections of this sort (over all cubillages on Z(n, d)), called 
representable ones, constitute a poset, with a unique minimal element and a unique 
maximal element, in which neighboring collections are linked by flips; this is obtained as 
a consequence of Theorems 1.2 and 6.4.

This paper is organized as follows. Sect. 2 contains basic definitions and reviews needed 
facts on cyclic zonotopes and cubillages. Sect. 3 recalls the construction of s-membranes 
in cubillages and describes their properties important to us. Here we also introduce the 
so-called bead-thread relation on vertices of a cubillage, which is used in the proof of 
Theorem 1.1. Sect. 4 proves Theorem 1.1, and Sect. 5 proves Theorem 1.2.

Sect. 6 introduces the notions of cubillage fragmentation and w-membranes. It proves 
the above-mentioned results on w-membranes in a cubillage on Z(n, d) and on the poset 
of representable (d − 2)-separated collections in 2[n] (Theorem 6.4 and Corollary 6.5). 
Here we also raise a conjecture on the representability of all maximal by size weakly r-
separated set-systems, and briefly discuss, in Remark 1, the phenomenon of violation of 
purity for the weak r-separation (i.e., the situation when a maximal by inclusion weakly 
r-separated collection is not maximal by size).

The paper finishes with two appendixes. Appendix A contains proofs of two proposi-
tions stated in Sect. 6 (of which one is of a rather fundamental character). In Appendix B 
we discuss a possible analog of the weak r-separation when r is even, outline some con-
structions and results on this way and raise two more conjectures.

Note that, in order to avoid a possible mess, we throughout prefer to use one symbol 
(namely, r) for the parameter of weak separation, and the other (namely, d) for the 
dimension of related geometric constructions. (Usually, but not always, r = d − 2.)

2. Preliminaries

This section contains additional definitions, notation and conventions that will be 
needed later on. Also we review some known properties of cubillages.

• Let n, d be integers with n ≥ d > 1. By a cyclic configuration of size n in Rd we mean 
an ordered set Ξ of n vectors ξi = (ξi(1), . . . , ξi(d)) ∈ Rd, i = 1, . . . , n, satisfying:

(2.1) (a) ξi(1) = 1 for each i, and
(b) for the d × n matrix A formed by ξ1, . . . , ξn as columns (in this order), any 

flag minor of A is positive.
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A typical (and commonly used) sample of such configurations Ξ is generated by the 
Veronese curve; namely, take reals t1 < t2 < · · · < tn and assign ξi := ξ(ti), where 
ξ(t) = (1, t, t2, . . . , td−1).

The zonotope Z = Z(Ξ) generated by Ξ is the Minkowski sum of line segments 
[0, ξi], i = 1, . . . , n. A fine zonotopal tiling is a subdivision Q of Z into d-dimensional 
parallelotopes such that any two of them either are disjoint or share a face, and each face 
of the boundary of Z is contained in some of these parallelotopes. For brevity, we refer 
to these parallelotopes as cubes, and to Q as a cubillage (following [9]). (Two examples 
for (n, d) = (4, 2) are illustrated in Fig. 1.)
• When n, d are fixed, the choice of one or another cyclic configuration Ξ (subject to (2.1)) 
does not matter in essence, and for this reason, we unify notation Z(n, d) for Z(Ξ), 
referring to it as the cyclic zonotope for (n, d).
• Let π denote the projection Rd → Rd−1 given by (x(1), . . . , x(d)) �→ (x(1), . . . , x(d −1)). 
Due to (2.1), the vectors π(ξ1), . . . , π(ξn) form a cyclic configuration as well, and we may 
say that π projects Z(n, d) onto the zonotope Z(n, d − 1).
• Each subset X ⊆ [n] naturally corresponds to the point 

∑
i∈X ξi in Z(n, d), and the 

cardinality |X| is called the height of this subset/point. (W.l.o.g., we usually assume that 
all combinations of vectors ξi with coefficients 0,1 are different.)
• Depending on the context, we may think of a cubillage Q on Z(n, d) in two ways: 
either as a set of d-dimensional cubes (and write C ∈ Q for a cube C in Q) or as the 
corresponding polyhedral complex. The 0-, 1-, and (d − 1)-dimensional faces of Q are 
called vertices, edges, and facets, respectively. By the above-mentioned subset-to-point 
correspondence, each vertex is identified with a subset of [n]. In turn, each edge e is a 
parallel translation of some segment [0, ξi]; we say that e has color i, or is an i-edge. 
When needed, e is regarded as a directed edge (according to the direction of ξi).
• Let V (Q) denote the set of vertices of a cubillage Q. Galashin and Postnikov [7] estab-
lished a relationship between fine zonotopal tilings and alternating oriented matroids; as 
a consequence, the following one-to-one correspondence takes place:

(2.2) for any cubillage Q on Z(n, d), the set V (Q) of its vertices (regarded as subsets of 
[n]) constitutes a maximal by size (d −1)-separated collection in 2[n]; conversely, for 
any maximal by size (d − 1)-separated collection S ⊆ 2[n], there exists a cubillage 
Q on Z(n, d) with V (Q) = S.

• When a face C of Q has X ⊆ [n] as the minimum height vertex, and T ⊆ [n] as the set 
of edge colors in C, we say that C has root X and type T , and may write C = (X | T ). 
One easily shows that X ∩T = ∅. Another appealing fact is that for any cubillage Q, the 
types of all (d-dimensional) cubes in it are different and form the set 

([n]
d

)
of d-element 

subsets of [n] (so Q has exactly 
(
n
d

)
cubes). See, e.g., [12] or [5].

• For a closed subset U of points in Z = Z(n, d), let U fr (U rear) denote the subset of U
“seen” in the direction of the last, d-th, coordinate vector ed (resp. −ed), i.e., formed by 
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the points x ∈ U such that there is no y ∈ U with π(y) = π(x) and y(d) < x(d) (resp. 
y(d) > x(d)). It is called the front (resp. rear) side of U . Also we call U fr ∩U rear the rim
of U and denote it as U rim (this term is justified when U is a ball in R3.)

In particular, Z fr, Z rear, and Z rim denote the front side, the rear side, and the rim, 
respectively, of the zonotope Z.
• When a set X ⊆ [n] is the union of k intervals and k is as small as possible, we 
say that X is a k-interval. Note that its complementary set [n] −X is a k′-interval with 
k′ ∈ {k−1, k, k+1}. In the next section we will use the following known characterization 
of the sets of vertices in the front and rear sides of a zonotope of an odd dimension (this 
can be easily shown by induction on n using the “n-pie contraction technique” as in [5]).

(2.3) Let d be odd. Then for Z = Z(n, d),
(i) V (Z fr) is formed by all k-intervals of [n] with k ≤ (d − 1)/2;
(ii) V (Z rear) is formed by the subsets of [n] complementary to those in (i); specif-

ically, it consists of all k-intervals with k < (d − 1)/2, all (d − 1)/2-intervals 
containing at least one of the elements 1 and n, and all (d + 1)/2-intervals 
containing both 1 and n.

This implies that: V (Z rim) consists of the k-intervals with k < (d −1)/2 and the (d −1)/2-
intervals containing at least one of 1 and n; the set V (Z fr) −V (Z rim) of inner vertices in 
Z fr consists of the (d −1)/2-intervals containing none of 1 and n; and V (Z rear) −V (Z rim)
consists of the (d + 1)/2-intervals containing both 1 and n.
• Consider a cube C = (X | T ) and let T = (p1 < p2 < · · · < pd). This cube has 2d facets 
F1, . . . , Fd, G1, . . . , Gd, where

(2.4) Fi = Fi(C) is viewed as (X | T − pi), and Gj = Gj(C) as (Xpj | T − pj).

3. S-membranes and bead-threads

In this section we recall the definition of s-membranes, associate with a cubillage a 
certain path structure, and review additional basic properties.

Definition. Let Q be a cubillage on Z(n, d). An s-membrane in Q is a (closed) subcomplex 
M of Q such that M (regarded as a subset of Rd) is bijectively projected by π to 
Z(n, d − 1). (So π gives a homeomorphism between M and Z(n, d − 1).)

Then each facet of Q occurring in M is projected to a cube of dimension d − 1 in 
Z(n, d − 1) and these cubes constitute a cubillage on Z(n, d − 1), denoted as π(M). In 
view of (2.2) and (1.2) (applied to π(Q)), we obtain that

(3.1) each s-membrane M in a cubillage Q on Z(n, d) has sn,d−2 vertices, and the vertex 
set of M (regarded as a collection in 2[n]) is (d − 2)-separated.
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Fig. 1. Left: standard tiling; right: anti-standard tiling.

Two s-membranes are of an especial interest. These are the front side Z fr and the rear 
side Z rear of Z = Z(n, d) (in these cases the choice of a cubillage on Z is not important). 
Following terminology in [4,5], their projections π(Z fr) and π(Z rear) (regarded as com-
plexes) are called the standard and anti-standard cubillages on Z(n, d − 1), respectively. 
Such cubillages in dimension 2 (viz. rhombus tilings) with n = 4 are drawn in Fig. 1.

Next we distinguish certain vertices in cubes. When n = d, the zonotope turns into 
the cube C = (∅|[d]), and there holds:

(3.2) the front side C fr of C = (∅|[d]) has a unique inner vertex (i.e., a vertex not 
contained in C rim), namely, tC := {i ∈ [n] : d − i odd}; symmetrically, the rear side 
C rear of C has a unique inner vertex, namely, hC := {i ∈ [n] : d − i even}.

(When d is odd, (3.2) can be obtained from (2.3). A direct proof of (3.2) for an 
arbitrary d is as follows (a sketch). The facets of C are Fi := (∅|[d] − i) and Gi :=
(i|[d] − i), i = 1, . . . , d (cf. (2.4)). A facet Fi is contained in C fr (C rear) if, when looking 
at the direction ed, C lies “behind” (resp. “before”) the hyperplane containing Fi, or, 
equivalently, det(Ai) > 0 (resp. det(Ai) < 0), cf. (2.1)(b), where Ai is the matrix with 
the columns ξ1, . . . , ξi−1, ξi+1, . . . ξd, ξi (in this order). It follows that Fi ⊂ C fr if and 
only if d − i is even. By “central symmetry”, Gi ⊂ C fr if and only if d − i is odd.

Now consider a vertex X ⊆ [d] of C. If X (resp. [d] − X) has consecutive elements 
i − 1 and i, then X ∈ Gi−1 and simultaneously X ∈ Gi (resp. X ∈ Fi−1 and X ∈ Fi). 
This implies that X is in both C fr and C rear, i.e., X ∈ C rim. The remaining vertices of 
C are just tC and hC as in (3.2); one can see that the former (latter) is contained in all 
facets Fj and Gi with d − j even and d − i odd (resp. d − j odd and d − i even). So tC lies 
in C fr, and hC in C rear; moreover, both are not in C rim (since C is full-dimensional).)

When n is arbitrary and Q is a cubillage on Z = Z(n, d), we distinguish vertices tC
and hC of a cube C ∈ Q in a similar way; namely (cf. (3.2)):

(3.3) if C = (X | T ) and T = (p1 < . . . < pd), then tC := X ∪ {pi : d − i odd} is the 
unique inner vertex in C fr, and hC := X ∪ {pi : d − i even} is the unique inner 
vertex in C rear.
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Fig. 2. v = tC = hC′ .

Also for each vertex v of Q, unless v is in Z rear, there is a unique cube C ∈ Q such 
that tC = v, and symmetrically, unless v is in Z fr, there is a unique cube C ′ ∈ Q such 
that hC′ = v. (To see this, consider the line L going through v and parallel to ed. Since 
ed and any (d − 1) vectors in Ξ are linearly independent, L intersects interiors of cubes 
in a vicinity of v, namely, C and C ′. See Fig. 2, where d = 3.)

Therefore, by drawing for each cube C ∈ Q, the edge-arrow from tC to hC , we obtain a 
directed graph whose connectivity components are directed paths beginning at Z fr−Z rim

and ending at Z rear − Z rim. We call these paths bead-threads in Q. It is convenient to 
add to this graph the elements of V (Z rim) as isolated vertices, forming degenerate bead-
threads, each going from a vertex to itself. Let BQ be the resulting directed graph. 
Then

(3.4) BQ contains all vertices of Q, and each component of BQ is a bead-thread going 
from Z fr to Z rear.

Note that along every bead-thread, the heights |X| of vertices X are monotone in-
creasing when d is odd, and constant when d is even.

4. Proof of Theorem 1.1

Let r be odd and n > r. We have to show that

(4.1) if W is a weakly r-separated collection in 2[n], then | W | ≤
(

n
≤r+1

)
.

This is valid when r = 1 (cf. (1.1)) and is trivial when n = r + 1. So one may assume 
that 3 ≤ r ≤ n − 2. We prove (4.1) by induction, assuming that the corresponding 
inequality holds for W ′, n′, r′ when n′ ≤ n, r′ ≤ r, and (n′, r′) 
= (n, r).

Define the following subcollections in W:

W− := {A ⊆ [n− 1] : {A,An} ∩W 
= ∅}, and

T := {A ⊆ [n− 1] : {A,An} ⊆ W}.

Observe that

(4.2) any A, B ∈ W− are weakly r-separated.
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Indeed, this is trivial when A, B ∈ W or An, Bn ∈ W. So one may assume that 
A ∈ W and B′ := Bn ∈ W, and that A, B′ are (r + 2)-intertwined (for if A, B′ are r′-
intertwined with r′ ≤ r + 1, then so is for A, B, and we are done). Since max(B′ −A) =
n > max(A −B′) and r+2 is odd, B′ surrounds A. Therefore, min(B′−A) < min(A −B′)
and |B′| ≤ |A|. Then |B| < |A| and min(B−A) = min(B′−A) < min(A −B), implying 
that A, B are weakly r-separated, as required.

By induction, | W− | ≤
(

n−1
≤r+1

)
. Also one can see that | W | = | W− | + | T |. Therefore, 

using the identity 
(
n
j

)
=

(
n−1
j

)
+
(
n−1
j−1

)
for any j ≤ n −1, in order to obtain the inequality 

in (4.1), it suffices to show that

| T | ≤
(
n−1
≤r

)
. (4.3)

For i = 0, 1, . . . , n − 1, define T i := {A ∈ T : |A| = i}. We will rely on two claims.

Claim 1. For each i, the collection T i is (r−1)-separated; moreover, T i is weakly (r−2)-
separated.

Proof. Let A, B ∈ T i. Take the interval cortege (I1, . . . , Ir′) for A, B, and let for definite-
ness Ir′ concerns A (i.e., Ir′∩(A −B) 
= ∅). Then (I1, . . . , Ir′ , Ir′+1 := {n}) is the interval 
cortege for A and B′ := Bn. Since |A| = |B| < |B′| and max(A −B′) < max(B′−A) = n

and since A, B′ are weakly r-separated, r′+1 must be strictly less than r+2. Then r′ ≤ r, 
implying that A, B are (r− 1)-separated. Since |A| = |B| and r is odd, we also can con-
clude that A, B are weakly (r − 2)-separated. �

Now consider the zonotope Z = Z(n − 1, r). For j = 0, 1, . . . , n − 1, define Sj (resp. 
Aj) to be the set of vertices X of Z fr (resp. Z rear) with |X| = j. We extend each T i to 
the collection

Di := T i ∪(Si+1 ∪ . . . ∪ Sn−1) ∪ (A0 ∪A1 ∪ . . . ∪ Ai−1). (4.4)

Claim 2. Di is weakly (r − 2)-separated.

Proof. The vertex sets of Z fr and π(Z fr) are essentially the same (regarding a vertex 
as a subset of [n − 1]), and similarly for Z rear and π(Z rear). Since π(Z fr) and π(Z rear)
are cubillages on Z(n − 1, r − 1) (namely, the “standard” and “anti-standard” ones, 
respectively), (2.2) implies that both collections V (Z fr) = S0 ∪ . . .∪Sn−1 and V (Z rear) =
A0 ∪ . . . ∪ An−1 are (r − 2)-separated, and therefore, each of them is weakly (r − 2)-
separated as well.

Next, by (2.3)(i), each vertex X of Z fr is a k-interval, where k ≤ (r − 1)/2. Such 
an X and any subset Y ⊆ [n − 1] are k′-intertwined with k′ ≤ 2k + 1. Then k′ ≤ r, 
and this holds with equality when X and Y are r-intertwined and Y surrounds X. It 
follows that X is weakly (r − 2)-separated from any Y ⊆ [n − 1] with |Y | ≤ |X| (in 
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particular, if X ∈ Sj and j ≥ i, then X is weakly (r − 2)-separated from each member 
of T i ∪ A0 ∪ . . . ∪ Ai−1).

Symmetrically, by (2.3)(ii), each vertex X of Z rear is the complement to [n − 1] of 
a k-interval with k ≤ (r − 1)/2, implying that X is weakly (r − 2)-separated from any 
Y ⊆ [n − 1] with |Y | ≥ |X|.

Now the result is provided by Claim 1 and the inequalities |X| > |A| > |X ′| for any 
X ∈ Si+1 ∪ . . . ∪ Sn−1, A ∈ T i, and X ′ ∈ A0 ∪ . . . ∪ Ai−1. �

By induction, | Di | ≤
(

n−1
≤r−1

)
. Then, using (1.2) and (3.1) (relative to n −1 and r−2), 

we have

| Di | ≤
(

n−1
≤r−1

)
= sn−1,r−2 = |V (Z fr)|. (4.5)

Let S ′ := S0 ∪ S1 ∪ . . .∪Si and A′ := A0 ∪ A1 ∪ . . .∪Ai−1. Since Si+1 ∪ . . .∪Sn−1 =
V (Z fr) − S ′, we obtain from (4.4) and (4.5) that

| T i | = | Di | − (|V (Z fr) − S ′ |) − |A′ | ≤ | S ′ | − |A′ |. (4.6)

We now finish the proof by using bead-thread techniques (as in Sect. 3). Fix an 
arbitrary cubillage Q on Z = Z(n − 1, r). Let Ri be the set of vertices X of Q with 
|X| = i, and let B be the set of paths (bead-threads) in the graph BQ beginning at Z fr

and ending at Z rear. Since r is odd, each edge (X, Y ) of BQ is “ascending” (satisfies 
|Y | > |X|). This implies that each path P ∈ B beginning at S ′ must meet (once) 
either Ri or A′, and conversely, each path meeting Ri ∪ A′ begins at S ′. Therefore, 
| Ri | = | S ′ | − | A′ |, and this together with (4.6) implies

| T i | ≤ |Ri |.

Summing up these inequalities for i = 0, 1, . . . , n − 1, we have

| T | =
∑

i
| T i | ≤

∑
i
|Ri | = |VQ| = sn−1,r−1 =

(
n−1
≤r

)
,

yielding (4.3) and completing the proof of Theorem 1.1. � �
5. Proof of Theorem 1.2

Let r, r′, P = {p1, . . . , pr′}, Q = {q0, . . . , qr′} and X be as in the hypotheses of 
Theorem 1.2 (where r is odd and r′ = (r + 1)/2).

In what follows, for sets A, B ⊂ [n], when A ∩ B = ∅, we abbreviate A ∪ B as AB. 
When A, B are not weakly r-separated, we say that the pair {A, B} is bad.

Note that XP and XQ are (r + 2)-intertwined; XQ surrounds XP ; |XQ| > |XP |; 
and {XP, XQ} is the unique bad pair in the collection {XS : S ∈ {P, Q} ∪ N ↑(P, Q) ∪
N ↓(P, Q)}. The theorem is reduced to the following assertion.
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(5.1) Let Y ⊂ [n] be different from XP and XQ. Then:
(i) if {Y, XP} is bad, then there exists S ∈ N ↑(P, Q) such that {Y, XS} is bad;
(ii) if {Y, XQ} is bad, then there exists S ∈ N ↓(P, Q) such that {Y, XS} is bad.

(Indeed, to obtain Theorem 1.2 from (5.1), suppose that a weakly r-separated collec-
tion W ⊂ 2[n] includes {XS : S ∈ {P} ∪N ↓(P, Q)} (resp. {XS : S ∈ {Q} ∪N ↑(P, Q)}). 
Let Y ∈ W −{XP, XQ}. Then (ii) (resp. (i)) in (5.1) implies that Y and XQ (resp. Y
and XP ) are weakly r-separated, and the theorem follows.)

We first prove assertion (i) in (5.1) (obtaining (ii) by symmetry, as we explain in the 
end of the proof). Suppose, for a contradiction, that

(5.2) there is Y ⊂ [n] different from XQ such that {Y, XP} is bad but none of the pairs 
{Y, XS} with S ∈ N ↑(P, Q) is bad.

This will impose sharp restrictions on Y and will eventually lead us to the conclusion 
that Y is impossible. W.l.o.g., one may assume that Y ∩X = ∅.

In what follows, the interval cortege for sets A, B ⊂ [n] is denoted by I(A, B), and 
when it is not confusing, we refer to the intervals in it concerning A −B (B −A) as A-
bricks (resp. B-bricks). For brevity we will write N ↑ for N ↑(P, Q), and I for I(Y, XP ). 
Also we refer to an element p ∈ P (q ∈ Q) as refined if it forms the single-element 
XP -brick {p} (resp. the single-element Y -brick {q}) in I.

The core of the proof consists in the next lemma.

Lemma 5.1. Let Y be as in (5.2). Then at least one of the following holds:
(∗) all elements of P are refined;
(∗∗) all elements of Q are refined.

This lemma will be proved later, and now assuming its validity, we show (5.1)(i) as 
follows. Note that Y ∩ P 
= ∅ is possible (whereas Y ∩X = ∅, as assumed above).

Let a and b denote the numbers of Y - and XP -bricks in I, respectively. Then a + b =
| I | ≥ r + 2 = 2r′ + 1 and |a − b| ≤ 1. We assume that the intervals in I are viewed as 
. . . < Ai−1 < Bi < Ai < Bi+1 . . ., where Ai′ (Bi′) stands for a Y -brick (resp. XP -brick). 
The first (last) Y -brick is denoted by Am (resp. AM ), and the first (last) XP -brick by 
Bm (resp. BM ). Also for a set C ⊂ [n] and a singleton c ∈ [n], we write c < C (c > C) 
if c < min(C) (resp. c > max(C)).

We first assume that (∗∗) from Lemma 5.1 is valid. Then Y ⊇ Q and a ≥ |Q| = r′ +1. 
Consider two possible cases for a.

Case I : a ≥ r′ + 2. Then b ≥ r′ + 1 and | I | ≥ 2r′ + 3. If q0 < Bm, then q0 ∈ Am, 
implying Am = {q0} (since q0 is refined). Taking S := Pq0 ∈ N ↑(P, Q), we obtain 
| I(Y, XS)| = | I | − 1 ≥ 2r′ + 2 > r + 2 (since the Y -brick {q0} disappears, while 
the other bricks of I preserve). Hence {Y, XS} is bad. Similarly, if BM < qr′ , then 
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AM = {qr′}, and taking S := Pqr′ , we again obtain | I(Y, XS)| ≥ 2r′ + 2, whence 
{Y, XS} is bad.

So we may assume that Bm < q0 and qr′ < BM . Then b ≥ |Q| + 1 = r′ + 2 and 
| I | = a + b ≥ 2r′ +4. Taking S := Pq0, we obtain | I(Y, XS)| = | I | − 2 ≥ 2r′ +2 (since 
the Y -brick {q0} disappears and the XP -bricks preceding and succeeding {q0} merge). 
Thus, in all cases, {Y, XS} is bad; a contradiction.

Case II : a = r′ + 1. Then Am = {q0}, {q1}, . . . , {qr′} = AM are exactly the Y -bricks of 
I. If Bm < q0 and BM < qr′ , then b = a = r′ + 1 and | I | = 2r′ + 2. Taking S := Pqr′ , 
we obtain | I(Y, XS)| = | I | − 1 = 2r′ + 1. Also XS surrounds Y (since BM becomes 
the last interval in I(Y, XS)). Hence |Y −XS| = r′ < r′ + 1 ≤ |XS − Y |, implying that 
{Y, XS} is bad.

Similarly, if q0 < Bm and qr′ < BM , then S := Pq0 gives | I(Y, XS)| = | I | − 1 =
2r′ + 1, and XS surrounds Y as well. And if Bm < q0 and qr′ < BM , then b = r′ + 2, 
and for S := Pq0, we obtain | I(Y, XS)| = | I | − 2 = 2r′ + 1. Again, XS surrounds Y , 
whence {Y, XS} is bad.

So it remains to consider the situation when q0 < Bm and BM < qr′ . Then b = r′ and 
Y surrounds XP . Since {Y, XP} is bad and Y −XP = Q, we have r′ +1 = |Y −XP | >
|XP − Y | ≥ r′. It follows that |XP − Y | = r′. This implies that each XP -brick is a 
singleton. Also in case Y ∩ P = ∅, the XP -bricks of I are exactly {p1}, . . . , {pr′}. But 
then X = ∅ and Y = Q = XQ, contradicting the condition Y 
= XQ in (5.1).

Therefore, Y must contain an element pi for some i. Then pi /∈ Bi (in view of |Bi| = 1
and pi /∈ XP − Y ). So one of two situations takes place: qi−1 < pi < Bi < qi, or 
qi−1 < Bi < pi < qi. Define S := (P − pi)qi−1 in the former case, and S := (P − pi)qi in 
the latter case. The transformation XP �→ XS replaces the Y -brick {qi−1} or {qi} by 
{pi}. We obtain: | I(Y, XS)| = | I | = 2r′ + 1, Y surrounds XS, and |Y | > |XS|. Hence 
{Y, XS} is bad; a contradiction.

Next we assume that (∗) from Lemma 5.1 is valid. Then b ≥ r′ and each pi ∈ P forms 
the XP -brick {pi} in I (admitting the possibility of other XP -bricks); in particular, 
Y ∩ P = ∅. Consider two possibilities for b.

Case III : b = r′. Then {p1}, . . . , {pr′} are exactly the XP -bricks of I, X = ∅, and 
a = r′ +1 (in view of | I | ≥ 2r′ +1). So Y surrounds P = XP , and |Y | > |P |. Assuming, 
w.l.o.g., that (∗∗) from Lemma 5.1 is not valid, there is i ∈ {0, . . . , r′} such that {qi} is 
not a Y -brick of I. Then either (a) qi lies in some Y -brick Aj with |Aj | ≥ 2, or (b) qi
lies in no interval of I.

In case (a), take S := Pqi. Note that |Y | ≥ r′ + 2 = |P | + 2 (in view of a = r′ + 1 and 
|Aj | ≥ 2). If qi ∈ Y , then the transformation P �→ S replaces Aj by a (possibly smaller 
but nonempty) Y -brick in I(Y, S), while preserving the other intervals of I. It follows 
that | I(Y, S)| = | I | = 2r′ +1, Y surrounds S, and |Y | > |P | +1 = |S|; so {Y, S} is bad. 
And if qi /∈ Y , then, obviously, min(Aj) < qi < max(Aj). This gives | I(Y, S)| = | I | + 2
(since P �→ S replaces Aj by the S-brick {qi} and two Y -bricks, one containing min(Aj)
and the other containing max(Aj)); so {Y, S} is bad again.
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In case (b), it is clear that qi /∈ Y . Then one of four subcases takes place: (b1) 
pi < qi < Ai; (b2) Ai < qi < pi+1; (b3) i = 0 and q0 < Am; and (b4) i = r′ and 
AM < qr′ . In subcases (b3) and (b4), taking S := Pqi, we have | I(Y, S)| = | I | + 1
(since {qi} becomes a new brick), whence {Y, S} is bad. In subcases (b1) and (b2), for 
S′ := (P −pi)qi and S′ := (P −pi+1)qi, respectively, the transformation P �→ S′ replaces 
the P -brick {pi} or {pi+1} by the S′-brick {qi}, and the badness of {Y, P} implies that 
of {Y, S′}.

Case IV : b ≥ r′ + 1. Assuming, as before, that we are not in (∗∗) from Lemma 5.1, 
there is i such that {qi} is not a Y -brick of I. Take S := Pqi. We can observe that in 
all possible cases for qi (as exposed in Case III above), the transformation XP �→ XS

leads to the following: |XS| > |XP |, each Y -brick of I either preserves or is replaced 
by a (nonempty) Y -brick of I(Y, XS) =: I ′, and similarly for the XP -bricks of I. Then 
| I ′ | ≥ | I | ≥ 2r′ + 1. Moreover, in case | I ′ | = 2r′ + 1, the number of XS-bricks (Y -
bricks) of I ′ and the number of XP -bricks (resp. Y -bricks) of I are the same, which is 
equal to r′ + 1 = b (resp. r′ = a). So b > a, XP surrounds Y , and |XP | > |Y | (since 
{Y, XP} is bad). Now the badness of {Y, XS} follows from |XS| > |XP |, yielding a 
contradiction.

Thus, assertion (i) in (5.1) is proven (subject to Lemma 5.1).

It remains to show (ii). We reduce it to the previous case, using the following ob-
servation. For A ⊆ [n], let A denote the complementary set [n] − A. One can see that 
I(A, B) = I(A, B) and that the bricks for A −B coincide with those for B−A. It follows 
that if A, B are (r+ 2)-intertwined (where r is odd, as before) and A surrounds B, then 
A, B are (r + 2)-intertwined, B surrounds A, and |A| − |B| = |B| − |A|. Therefore, if 
A, B are weakly r-separated then so are A, B.

Now for Y, P, Q, X as above and U := XQ, consider Y ′ := Y , X ′ := XPQ (=
[n] − (X ∪ P ∪ Q)) and U ′ := XQ. Suppose that {Y, U} is bad. Then {Y ′, U ′} is bad 
as well. Note also that U ′ = X ′P . By the theorem applied to Y ′, P, Q, X ′ and U ′, there 
exists S′ ∈ N ↑(P, Q) such that {Y ′, X ′S′} is bad. Then {Y, X ′S′} is bad as well. Take 
S := (P ∪Q) −S′. One can see that S ∈ N ↓(P, Q) and X ′S′ = XS. Therefore, {Y, XS}
is bad, as required.

This completes the proof of (5.1) (yielding Theorem 1.2), modulo Lemma 5.1.

Proof of Lemma 5.1. Suppose that there are simultaneously p ∈ P and q ∈ Q that are 
not refined. Form S′ := P − p, S′′ := Pq and S := (P − p)q (note that S′′ and S
are in N ↑ = N ↑(P, Q), whereas S′ is not). Let I := I(Y, XP ), I ′ := I(Y, XS′) and 
I ′′ := I(Y, XS′′). We write Ai (Bi) for Y -bricks (resp. XP -bricks) in I and assume that 
they follow in I in the order . . . < Ai−1 < Bi < Ai < Bi+1 . . ..

For A, B, A′, B′ ⊆ [n], let us say that the ordered pairs (A, B) and (A′, B′) have the 
same type if | I(A, B)| = | I(A′, B′)| and the first interval of I(A, B) concerns A − B

if and only if the first interval of I(A′, B′) concerns A′ − B′ (implying that a similar 
property holds for the last intervals of I(A, B) and I ′(A′, B′)).
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We examine four possible cases for p, q and establish important interrelations for 
I, I ′, I ′′ which will be used later.

Case 1 : p lies in an interval C of I.
(1a) Suppose that C is an XP -brick Bi. Since p is not refined, |Bi| ≥ 2. If p /∈ Y , 

then the transformation XP �→ XS′ replaces Bi by a (nonempty) XS′-brick B′
i in I

with B′
i ⊆ Bi, while the other intervals in I and I ′ coincide. Therefore, I ′ and I have 

the same type.
And if p ∈ Y , then min(Bi) < p < max(Bi), and XP �→ XS′ replaces Bi by three 

bricks, say, B′ < A′ < B′′, where A′ is the single-element Y -brick {p}, and B′, B′′ are 
XS′-bricks (with min(B′) = min(Bi) and max(B′′) = max(Bi)). Then | I ′ | = | I | + 2.

(1b) Now suppose that C is a Y -brick Ai. This is possible only if p ∈ Y and min(Ai) <
p < max(Ai). Then p ∈ Y − XS′, and XP �→ XS′ preserves Ai (as well as the other 
intervals of I), whence I ′ = I.

Case 2 : q lies in an interval C of I.
(2a) Suppose that C = Bi. This is possible only if q /∈ Y and min(Bi) < q < max(Bi)

(since q /∈ XP ). Then XP �→ XS′′ preserves Bi, yielding I ′′ = I.
(2b) Now suppose that C = Ai. Since q is not refined, |Ai| ≥ 2. If q ∈ Y , then 

XP �→ XS′′ replaces Ai by a (nonempty) Y -brick A′
i with A′

i ⊆ Ai. Therefore, I ′′

and I have the same type. And if q /∈ Y , then XP �→ XS′′ replaces Ai by three 
bricks A′ < B′ < A′′, where B′ is the XS′′-brick {q}, and A′, A′′ are Y -bricks (with 
min(A′) = min(Ai) and max(A′′) = max(Ai)), whence | I ′′ | = | I | + 2.

Case 3 : p belongs to no interval of I. Then p ∈ Y .
(3a) Suppose that Ai < p < Bi+1 or Bi < p < Ai for some i. Then p ∈ Y −XS′, and 

XP �→ XS′ extends Ai (making a Y -brick with the beginning or end at p). Hence I′

and I have the same type.
(3b) Suppose that p < C, where C is the first interval of I. If C is an XP -brick, then 

XP �→ XS′ produces a new Y -brick, namely, {p}, and preserves the other intervals of 
I, whence | I ′ | = | I | + 1. And if C is a Y -brick, then XP �→ XS′ extends C (making a 
Y -brick with the beginning p), whence I ′ and I have the same type.

(3c) Similarly, if p > D, where D is the last interval of I, then either | I′ | = | I | + 1, 
or I ′ and I have the same type (when D is extended to a Y -brick with the end p).

Case 4 : q belongs to no interval of I. Then q /∈ Y .
(4a) Suppose that Ai−1 < q < Bi or Bi < q < Ai for some i. Then XP �→ XS′′

extends Bi (making a XS′′-brick with the beginning or end at q). Hence I′′, I have the 
same type.

(4b) Suppose that q < C, where C is the first interval of I. If C is an XP -brick, then 
XP �→ XS′′ extends C (making an XS′′-brick with the beginning q), whence I′′, I have 
the same type. And if C is a Y -brick, then XP �→ XS′′ preserves C and produces the 
new brick {q} (concerning XS′′), whence | I ′′ | = | I | + 1.
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(4c) Similarly, if q > D, where D is the last interval of I, then either I′′ and I have 
the same type, or | I ′′ | = | I | + 1.

Now we finish proving the lemma as follows. Analyzing Cases 1,3 above, we observe 
that | I ′ | ≥ | I | is valid throughout, and if this holds with equality, then I′ and I have 
the same type. For I ′′ and I, the behavior is similar (in Cases 2,4).

If | I ′′ | > | I | happens, then Y and XS′′ form a bad pair (since they are | I ′′ |-
intertwined with | I ′′ | > r + 2 and taking into account that S′′ = Pq ∈ N ↑). This 
contradicts (5.2).

Now let | I ′′ | = | I | (then I ′′, I have the same type). We consider the neighbor 
S = (P − p)q ∈ N ↑ and assert that {Y, XS} is bad, thus coming to a contradiction 
again.

To show this, let Ĩ := I(Y, XS). Suppose that q ∈ Y . Setting Y − := Y − q, we have 
Y −−XP = Y −XS′′ and XP −Y − = XS′′−Y , implying that I− := I(Y −, XP ) coin-
cides with I ′′. Hence I− and I have the same type. Moreover, under the correspondence 
of intervals in these corteges (exposed in (2b)), each Y −-brick of I− is included in the cor-
responding Y -brick of I, and each XP -brick of I− includes the corresponding XP -brick 
of I. In particular, p is not refined w.r.t. I−. So we can apply to X, P, Y −, p the analysis 
as in Cases 1 and 3 and conclude that under the transformation XP �→ XS′, the cortege 
I− turns into Î := I(Y −, XS′) such that either |Î| > | I− |, or Î and I− have the same 
type. But Y = Y −q and S = S′q imply Î = Ĩ. Now the badness of {Y, XS} is immediate 
when |Î| > | I− | (= | I |), and follows from the badness of {Y, XP} when |Î| = | I− |
(since Î and I have the same type and |Y −| − |XS′| = |Y | − |XS| = |Y | − |XP |).

Finally, let q /∈ Y . Then (in view of | I′′ | = | I |) we are in one of the following subcases: 
(2a) with min(Bi) < q < max(Bi) for some i; or (4a) with Ai−1 < q < Bi or Bi < q < Ai

for some i; or (4b) with q < Bm < Am; or (4c) with q > BM > AM (where, as before, 
Am and AM (resp. Bm and BM ) are the first and last Y -bricks (resp. XP -bricks) in I, 
respectively). By the explanations above, in all of these situations, XP �→ XS′′ leads to 
increasing at most one brick concerning X and preserving the other intervals of I. This 
implies that p is not refined w.r.t. I ′′, and we can apply to X, S′′, Y, p the reasoning as in 
Cases 1 and 3 and conclude that XS′′ �→ XS turns I ′′ into Ĩ so that either |Ĩ| > | I ′′ |
(= | I |), or Ĩ and I ′′ have the same type. Then the badness of {Y, XS} follows.

This completes the proof of the lemma. �
6. Weakly r-separated collections generated by cubillages

In Sects. 2, 3 we outlined an interrelation between (strongly) ∗-separated collections on 
the one hand, and cubillages and s-membranes on the other hand (see (2.2) and (3.1)). 
This section is devoted to geometric aspects of the weak r-separation when r is odd. 
Being motivated by geometric constructions for maximal weakly 1-separated collections 
elaborated in [3,4], we explain how to construct maximal by size weakly r-separated 
collections by use of the so-called w-membranes; these are analogs of s-membranes in 
certain fragmentations of cubillages.
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In the subsections below we introduce the notions of fragmentation and w-membrane, 
demonstrate their properties (extending results from [4, Sect. 6]) and finish with a the-
orem saying that the vertex set of any (r + 1)-dimensional w-membrane gives rise to 
a maximal by size weakly r-separated collection (for corresponding n). Note that in 
Sects. 6.1–6.3 the dimension d of a zonotope/cubillage in question is assumed to be 
arbitrary (not necessarily odd).

6.1. Fragmentation

Let Q be a cubillage on Z(n, d). For � = 0, 1, . . . , n, we denote the “horizontal” 
hyperplane at “height” � in Rd by H�, i.e., H� := {x = (x(1), . . . , x(d)) ∈ Rd : x(1) = �}. 
The fragmentation of Q is meant to be the complex Q≡ obtained by cutting Q by 
H1, . . . , Hn−1.

Such hyperplanes subdivide each cube C = (X | T ) of Q into d pieces C≡
1 , . . . , C≡

d , 
where C≡

h is the (closed) portion of C between H|X|+h−1 and H|X|+h. We say that C≡
h

is h-th fragment of C and, depending on the context, may also think of Q≡ as the set of 
fragments over all cubes of Q. Let Sh(C) denote h-th horizontal section C ∩H|X|+h of 
C (where 0 ≤ h ≤ d); this is the convex hull of the set of vertices

(X |
(
T
h

)
) (= {X ∪A : A ⊂ T, |A| = h}). (6.1)

(Such an Sh(C) is called a hyper-simplex, in terminology of [8]. It turns into a usual 
simplex when h = 1 or d − 1.) Observe that for h = 1, . . . , d,

(6.2) the h-th fragment C≡
h of C is the convex hull of the set of vertices (X | 

(
T

h−1
)
)

and (X | 
(
T
h

)
); it has two “horizontal” facets, namely, Sh−1(C) and Sh(C), and 2d

other facets (conditionally called “vertical” ones), namely, the portions of Fi(C)
and Gi(C) between H|X|+h−1 and H|X|+h for i = 1, . . . , d, denoted as Fh,i(C) and 
Gh,i(C), respectively.

Here Fi(C) and Gi(C) are the facets of C = (X|T ) defined in (2.4), letting T = (p1 <

p2 < · · · < pd). We call Sh−1(C) and Sh(C) the lower and upper facets of the fragment 
C≡

h , respectively. Note that S0(C) and Sd(C) degenerate to the single points X and XT , 
respectively. The vertical facets Fd,i(C) and G1,i(C) (for all i) degenerate as well.

The horizontal facets are “not fully seen” under the projection π. To visualize all 
facets of fragments of Q≡, it is convenient to look at them as though “from the front 
and slightly from below”, i.e., by use of the projection πε : Rd → Rd−1 defined by

x = (x(1), . . . , x(d)) �→ (x(1) − εx(d), x(2), . . . , x(d− 1)) =: πε(x) (6.3)

for a sufficiently small ε > 0. (Compare πε with π.) Fig. 3 illustrates the case d = 3; here 
the fragments of a cube C = (X | T ) with T = (i < j < k) are drawn.
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Fig. 3. The fragmentation of cube C = (X |T ).

Using this projection, we obtain slightly slanting front and rear sides of objects in Q≡. 
More precisely, for a closed set U of points in Z = Z(n, d), let U ε,fr (U ε,rear) be the subset 
of U “seen” in the direction ed + εe1 (resp. −ed− εe1), where ei is i-th coordinate vector, 
i.e., formed by the points x ∈ (πε)−1(x′) ∩U with x(d) minimum (resp. maximum) over 
all x′ ∈ πε(U). We call it the ε-front (resp. ε-rear) side of U .

Obviously, Zε,fr = Z fr and Zε,rear = Z rear. Also for a cube C = (X|T ) in Z, Cε,fr =
C fr and Cε,rear = C rear. As to fragments of C, their ε-front and ε-rear sides are viewed 
as follows:

(6.4) for h = 1, . . . , d, Cε,fr
h is the union of C fr

h and the lower facet Sh−1(C) (degenerating 
to the point X when h = 1); in turn, Cε,rear

h is formed by the union of C rear
h and 

the upper facet Sh(C) (degenerating to the point XT when h = d).

So Cε,fr
h ∪ Cε,rear

h is just the full boundary of C≡
h .

6.2. W-membranes

Membranes of this sort represent certain (d −1)-dimensional subcomplexes of Q≡. To 
introduce them, we consider small deformations of cyclic zonotopes in Rd−1 using the 
projection πε. More precisely, given a cyclic configuration Ξ = (ξ1, . . . , ξn) as in (2.1), 
define

ψi := π(ξi) and ψε
i := πε(ξi), i = 1, . . . , n.

Then Ψ = (ψ1, . . . , ψn) obeys (2.1) (with d −1 instead of d), and when ε is small enough, 
Ψε = (ψε

1, . . . , ψ
ε
n) obeys the condition (2.1)(b), though slightly violates (2.1)(a); yet 

we keep the term “cyclic configuration” for Ψε as well. Consider the zonotope in Rd−1

generated by Ψε, denoted as Zε(n, d − 1) (when it is not confusing).

Definition. A w-membrane of a cubillage Q on Z(n, d) is a (closed) subcomplex M of the 
fragmentation Q≡ such that M (regarded as a subset of Rd) is bijectively projected by 
πε onto Zε(n, d − 1).

(Cf. [5, Appendix C].) A w-membrane M has facets (of dimension d − 1) of two sorts, 
called H-tiles and V-tiles. Each H-tile is a horizontal facet of some fragment (viz. the 
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section Sh(C) of a cube C in Q at height h ∈ [d − 1]). And V-tiles are vertical facets of 
some fragments C≡

h (see (6.2)).

6.3. Acyclicity and the lattice structure of w-membranes

Let C(n, d) denote the set of all cubes in Z(n, d) (occurring in all cubillages there). 
For C, C ′ ∈ C(n, d), we say that C immediately precedes C ′ if C rear and (C ′)fr share 
a facet (of dimension d − 1). Generalizing the known acyclicity property for cubes in a 
cubillage, one can show the following

Proposition 6.1. The directed graph Γn,d whose vertices are the cubes in C(n, d) and 
whose edges are the pairs (C, C ′) of cubes such that C immediately precedes C ′ is acyclic.

(As a consequence, the transitive closure of this “immediately preceding” relation 
forms a partial order on C(n, d).) Proposition 6.1 enables us to further construct a 
partial order on the set of fragments for a cubillage Q, which in turn is used to show 
that the set of w-membranes in Q≡ forms a distributive lattice.

More precisely, given a cubillage Q on Z(n, d), consider fragments Δ = C≡
i and 

Δ′ = (C ′)≡j of Q≡. Let us say that Δ immediately precedes Δ′ if the ε-rear side of Δ and 
the ε-front side of Δ′ share a facet. In other words, either C 
= C ′ and Δrear ∩ (Δ′)fr is 
a V-tile, or C = C ′ and j = i + 1. The following is important for us.

Proposition 6.2. The directed graph ΓQ≡ whose vertices are the fragments in Q≡ and 
whose edges are the pairs (Δ, Δ′) of fragments such that Δ immediately precedes Δ′ is 
acyclic.

Proofs of Propositions 6.1 and 6.2 will be given in Appendix A.
From Proposition 6.2 it follows that the transitive closure of the immediately preceding 

relation on the fragments of Q≡ forms a partial order; denote it as (Q≡, ≺).
Let us associate with a w-membrane M of Q the (closed) region Ω(M) of Z = Z(n, d)

between Z fr and M , and let Q≡(M) be the set of fragments in Q≡ lying in Ω(M). 
The constructions of πε and M imply that M is the ε-rear side of Ω(M) (while Z fr

is its ε-front side). This leads to the following property: for fragments Δ, Δ′ of Q≡, if 
Δ immediately precedes Δ′ and if Δ′ ∈ Q≡(M), then Δ ∈ Q≡(M) as well (since the 
common facet of Δ, Δ′ lies in Ω(M) and belongs to the ε-rear side of Δ). Then a similar 
property for fragments Δ, Δ′ with Δ ≺ Δ′ is valid as well. Hence Q≡(M) is an ideal of 
(Q≡, ≺). A converse property is also true: any ideal I of (Q≡, ≺) is expressed as Q≡(M)
for some w-membrane M of Q (this M is the ε-rear side of the minimal region of Z
containing Z fr and I). Therefore (cf. [5, Appendix C]),

(6.5) the set Mw(Q) of w-membranes of a cubillage Q on Z = Z(n, d) is a distributive 
lattice in which for M, M ′ ∈ Mw(Q), the w-membranes M ∧ M ′ and M ∨ M ′
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satisfy Q≡(M ∧M ′) = Q≡(M) ∩Q≡(M ′) and Q≡(M ∨M ′) = Q≡(M) ∪Q≡(M ′); 
the minimal and maximal elements of this lattice are Z fr and Z rear, respectively.

Suppose that M ∈ Mw(Q) is different from Z fr. Then Q≡(M) 
= ∅. Take a maximal 
(relative to the order ≺ in Q≡) fragment Δ in Q≡(M). Then Δε,rear is entirely contained 
in M . Indeed, if a facet F ∈ Δε,rear lies in Z rear, then F is automatically in M . And if F
is not in Z rear, then F is shared by Δε,rear and (Δ′)ε,fr for another fragment Δ′. Hence 
Δ immediately precedes Δ′, implying that Δ′ lies in the region between M and Z rear. 
Then F is in M , as required.

For Δ as above, the set Q≡(M) −{Δ} is again an ideal of (Q≡, ≺), and therefore it is 
expressed as Q≡(M ′) for some w-membrane M ′. Moreover, M ′ is obtained from M by 
replacing the disk Δε,rear by Δε,fr. We call the transformation M �→ M ′ the (geometric) 
lowering flip on M using Δ, and call the reverse transformation M ′ �→ M the (geometric) 
raising flip on M ′ using Δ. As a result, we obtain the following nice property.

Corollary 6.3. Let M be a w-membrane of a cubillage Q. Then there exists a sequence 
of w-membranes M0, M1, . . . , Mk ∈ Mw(Q) such that M0 = Z fr, Mk = M , and for i =
1, . . . , k, Mi is obtained from Mi−1 by the (geometric) raising flip using some fragment 
in Q≡.

6.4. Weakly r-separated collections via w-membranes

Now we throughout assume that r is odd and d = r + 2. Consider a cubillage Q on 
Z = Z(n, d). Based on Theorems 1.1, 1.2 and Corollary 6.3, we establish the main result 
of Sect. 6.

Theorem 6.4. For any w-membrane M of a cubillage Q on Z(n, d), the set V (M) of 
vertices of M (regarded as subsets of [n]) constitutes a maximal by size weakly r-separated 
collection in 2[n] (where, as before, r is odd and d = r+2). In particular, all w-membranes 
in Q have the same number of vertices, namely, wn,d−2 (= sn,d−2).

Example. Fig. 4 illustrates a w-membrane M for (n, d) = (4, 3) for which V (M) is the 
weakly separated collection W exposed in Example in Sect. 1; here there are ten V-tiles 
and two H-tiles, which are shadowed. For simplicity we do not indicate a cubillage on 
Z(4, 3) whose fragmentation contains this membrane.

Proof. Let M ∈ Mw(Q) and consider a sequence Z fr = M0, M1, . . . , Mk = M as in 
Corollary 6.3. Let Δ1, . . . , Δk be the fragments of Q such that Mi is obtained from 
Mi−1 by the raising flip using Δi. The collection V (Z fr) is weakly r-separated (as it 
is strongly r-separated, cf. (3.1)), and our aim is to show that if V (Mi−1) is weakly 
r-separated, then so is V (Mi), and |V (Mi)| = |V (Mi−1)| is valid.

To show this, consider w-membranes M, M ′ of Q such that M ′ is obtained from M
by the raising flip using a fragment Δ ∈ Q≡. Let Δ = C≡

h for a cube C = (X | T ) with 
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Fig. 4. An example of w-membrane for d = 3 and n = 4.

T = (p1 < . . . < pd)), and h ∈ [d]. By explanations in Sect. 3, C fr and C rear differ by 
exactly two vertices; namely, V (C fr) = V (C rim) ∪{tC} and V (C rear) = V (C rim) ∪{hC}, 
where tC = Xp2p4 . . . pd−1 and hC = Xp1p3 . . . pd (cf. (3.3)). Define R to be the set of 
vertices of C rim occurring in Δ, and let r′ := (d − 1)/2. We consider three cases.
Case 1 : h ≤ r′. Since the vertices of Δ are formed by the sections Sh−1(C) and Sh(C),

V (Δ) = (X |
(

T
h−1

)
) ∪ (X |

(
T
h

)
) and R ⊆ V (Δ fr) ∪ V (Δ rear)

(cf. (6.1)). Also V (Δ fr) ⊆ V (Δε,fr) and V (Δ rear) ⊆ V (Δε,rear). If h < r′, then all vertices 
of Δ belong to C rim; this implies V (Δε,fr) = R = V (Δε,rear). And if h = r′, then the 
only vertex of Δ not in R is tC . Since tC ∈ V (C fr), tC belongs to Δε,fr. But tC also lies 
in the upper facet Sr′(C) (in view of |p2p4 . . . pd−1| = r′), and this facet is included in 
Δε,rear. Hence tC ∈ Δε,fr ∩ Δε,rear, implying V (Δε,fr) = V (Δε,rear).
Case 2 : h ≥ r′ + 2. This is “symmetric” to the previous case. If h > r′ + 2, then all 
vertices of Δ belong to C rim, implying V (Δε,fr) = R = V (Δε,rear). And if h = r′ + 2, 
then Δε,fr includes the lower facet Sr′+1(C), which in turn contains the vertex hC (since 
|p1p3 . . . pd| = r′ + 1). Also hC ∈ V (C rear) implies hC ∈ V (Δε,rear), and we again obtain 
V (Δε,fr) = V (Δε,rear).

Thus, in both cases the raising flip M �→ M ′ using Δ does not change the vertex set 
of the current w-membrane.
Case 3 : h = r′ + 1. This case is most important. Now the lower facet Sh−1=r′(C) of Δ
contains tC , while the upper facet Sh=r′+1(C) contains hC . Hence tC ∈ V (Δε,fr) and 
hC ∈ V (Δε,rear). On the other hand, neither tC belongs to Δε,rear (= Δ rear ∪Sr′+1(C)), 
nor hC belongs to Δε,fr (= Δ fr ∪ Sr′(C)).

It follows that V (Δε,rear) = (V (Δε,fr) − {tC}) ∪ {hC}, and therefore the raising flip 
M �→ M ′ using Δ replaces tC by hC , while preserving the other vertices of the w-
membrane. Since the vertices of Δ are of the form XS with S running over the r′- and 
r′ + 1-element subsets of {p1, . . . , pd}, this vertex set includes {XS : S ∈ N ↓(P̃ , Q̃)}
(which is contained in R and in M), where P̃ = p2p4 . . . pd−1 and Q̃ = p1p3 . . . pd (i.e., 
tC = XP̃ and hC = XQ̃).

Now applying Theorem 1.2 to W := V (M), X, P̃ , Q̃ and N ↓(P̃ , Q̃), we conclude that 
W(M ′) is weakly r-separated, as required.

This completes the proof of the theorem. �
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It should be noted that any w-membrane in a cubillage on Z(n, 3) can be expressed 
as a quasi-combined tiling in the planar zonogon Z(n, 2), and in this particular case, the 
statement of Theorem 6.4 with r = 1 is equivalent to Corollary 6.5 in [4].

Next, in light of the above discussion, given an odd r and n > r, we can specify three 
classes Wn,r, W=

n,r and W∗
n,r of weakly r-separated collections W in 2[n] such that W

is maximal by inclusion, maximal by size, and representable, respectively. (Recall that 
W is called representable if it can be represented as the vertex set of a w-membrane in 
a cubillage on Z(n, r + 2); in particular, W is maximal by size.) We have the following 
hierarchy:

Wn,r ⊇ W=
n,r ⊇ W∗

n,r .

Theorem 6.4 together with (6.5) implies the following nice property of W∗
n,r.

Corollary 6.5. W∗
n,r is a poset with the unique minimal element V (Z fr) and the unique 

maximal element V (Z rear) in which any two neighboring elements are linked by a (raising 
or lowering) combinatorial flip, where Z := Z(n, r + 2).

Indeed, for a cubillage Q on Z, let W(Q) be the set of collections W ⊆ 2[n] such that 
W = V (M) for some w-membrane M in (the fragmentation of) Q. Typically, the set 
Mw(Q) of w-membranes of Q is larger that W(Q) since no geometric raising flip on 
Mw(Q) occurring in Cases 1 and 2 of the proof of Theorem 6.4 changes the vertex set 
of the membrane. On the other hand, each flip M �→ M ′ in Case 3 of the proof induces 
the combinatorial raising flip V (M) �→ V (M ′) on W(Q), which replaces the set (vertex) 
tC by hC for some cube C ∈ Q. The fact that |tC | < |hC | implies that the directed 
graph Γ(Q) on W(Q) whose edges correspond to such raising flips is acyclic. Also Γ(Q)
is connected and has one minimal vertex (namely, V (Z fr)) and one maximal vertex 
(V (Z rear)); this follows from similar properties of ΓQ≡ (defined in Proposition 6.2). 
Combining the graphs Γ(Q) over all cubillages Q on Z, we obtain an acyclic graph on 
W∗

n,r, giving rise to the desired poset.
A natural question is whether any two members of the set W=

n,r can be connected by 
a sequence of flips. This is strengthened in the following

Conjecture 1. Let r be odd. Then any maximal by size weakly r-separated collection in 
2[n] is representable.

Its validity together with Theorem 6.4 would imply W∗
n,r = W=

n,r. This has been 
proved for r = 1 (cf. Theorems 3.4, 3.5 in [3] and Theorem 6.8 in [4]).

We finish the main content of this paper with one more aspect, as follows.

Remark 1. For a symmetric binary relation R on a set N , let G be the graph whose 
vertices are the elements of N and whose edges are the pairs {u, v} of distinct vertices 
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subject to uRv. Let C be the set of cliques in G (i.e., inclusion-wise maximal subsets of 
vertices of which any two are connected by edge in G). Then C is said to be pure if all 
cliques of G have the same size.

Recall that for an odd r, Wn,r denotes the set of all maximal by inclusion weakly 
r-separated collections in 2[n]. It was shown in [2] that Wn,1 is pure for any n (which 
affirmatively answers Leclerc-Zelevinsky’s conjecture on maximal weakly separated set-
systems in [10]). In other words, Wn,1 = W=

n,1 (= W∗
n,1). A reasonable question is: 

whether Wn,r is pure when r ≥ 3? It is not difficult to show that this is so if n− r ≤
2 (see [5]). On the other hand, it turns out that already W6,3 is not pure. Here a 
counterexample to the purity can be constructed as follows.

The set-system 2[6] consists of 64 sets, and a direct enumeration shows that exactly 
52 of them are formed by (a) intervals in the six-element set [6], and (b) 2-intervals 
containing at least one of the elements 1 and 6; let S denote the set of these. One easily 
shows that each member of S is weakly 3-separated from any subset of [6]. So there are 
26 − 52 = 12 other subsets of [6]; these are:

(6.6) 24, 245, 25, 235, 35, 135, 1356, 136, 1346, 146, 1246, 246.

(Recall that a · · · b stands for {a, . . . , b}.) Let A be the collection formed by the members 
of the sequence in (6.6) indicated in bold, i.e., A = {24, 35, 1346}; these sets are weakly 
3-separated from each other. Then S ∪ A consists of 52 + 3 = 55 sets, whereas the 
number s6,3 = w6,3 is equal to 

(6
0
)

+
(6
1
)

+
(6
2
)

+
(6
3
)

+
(6
4
)

= 57. So S ∪ A is weakly 
3-separated. Moreover, it is maximal by inclusion, since any element of (6.6) not in A
is not weakly 3-separated from some element of A (which can be verified directly). For 
example, 245, 25, 235 are not weakly 3-separated from 1346. Thus, W6,3 is not pure, 
yielding W6,3 
= W=

6,3.
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Appendix A. Proofs of two propositions on acyclicity

In Sect. 6.3 we stated two propositions on acyclicity for cubes and their fragments. 
Their proofs can be found in our recent paper [5] (in Appendixes C and D there), but 
in order to make our description more self-contained, below we give proofs, using some 
stylistic modifications and improvements.

Proof of Proposition 6.1. Let C immediately precede C ′, and let the cubes C, C ′ and 
the facet F := C rear ∩ (C ′)fr be of the form (X | T ), (X ′ | T ′) and (X̃ | T̃ ), respectively. 
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Fig. 5. Cases (i), (ii), (iii), (iv) (from left to right).

Then T = T̃α and T ′ = T̃ β for some α, β ∈ [n]. Four cases are possible (as illustrated in 
Fig. 5):

(i) X = X ′ = X̃;
(ii) X, X ′, X̃ are different (then X̃ = Xα = X ′β);
(iii) X 
= X ′ = X̃ (then X̃ = Xα);
(iv) X ′ 
= X = X̃ (then X̃ = X ′β).
Let us associate with a cube C ′′ = (X ′′ | T ′′) a label ω(C ′′) ∈ {0, 1, 2} by the following 

rule:

(∗) ω(C ′′) = 0 if n /∈ X ′′, T ′′; ω(C ′′) = 1 if n ∈ T ′′; ω(C ′′) = 2 if n ∈ X ′′.

The following observation is the key.

Claim. For C, C ′ as above, ω(C) ≤ ω(C ′).

Proof of the Claim. We may assume that ω(C) 
= ω(C ′). Then n ∈ T ∪X ∪ T ′ ∪X ′ but 
n belongs to neither T̃ nor X ∩ X ′. This implies that either α = n or β = n (in view 
of T̃ = T − α = T ′ − β). We use the following characterization of facets (in notation as 
in (2.4)) of the front and rear sides of a cube, which is shown by arguing as in Sect. 3
(when proving (3.2)):

(A.1) for a cube Ĉ = (X̂|T̂ ) with T̂ = (p1 < · · · < pd), a facet Fi(Ĉ) is in Ĉfr if and 
only if d − i is even, whereas Gi(Ĉ) is in Ĉfr if and only if d − i is odd.

Using this for C and F as above and considering the inclusion F ⊂ C rear, one can 
conclude that if α = n, then the root X̃ of F and the root X of C are different (taking 
into account that n is the maximal element in T ). In turn, F ⊂ (C ′)fr implies that if 
β = n, then X̃ = X ′. This leads to the following:

(A.2) α = n is possible only in cases (ii) and (iii), whereas β = n is possible only in 
cases (i) and (iii).

In particular, case (iv) is impossible (when ω(C) 
= ω(C ′)). As to the other three cases, 
we obtain from (A.2) that
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(a) in case (i), ω(C) = 0 and ω(C ′) = 1 (since n = β ∈ T ′);
(b) in case (ii), ω(C) = 1 (since n = α ∈ T ) and ω(C ′) = 2 (since X̃ = Xα = X ′β

implies α ∈ X ′);
(c) in case (iii), if α = n then ω(C) = 1 and ω(C ′) = 2 (since X ′ = Xα), and if β = n

then ω(C) = 0 and ω(C ′) = 1.

Thus, ω(C) ≤ ω(C ′) holds in all cases, as required. �
Now we finish the proof of the proposition by induction on n. This is trivial when 

n = d, so assume that n > d and that the assertion is valid for (n′, d′) with n′ < n.
Suppose, for a contradiction, that Γn,d has a directed cycle C = (C0, C1, . . . , Ck = C0)

(where each Ci immediately precedes Ci+1). Then the Claim implies that ω(Ci) is the 
same number q for all i. Consider three cases (where Ci = (Xi | Ti)).

Case 1 : q = 0. Then C is a directed cycle in Γn−1,d, contrary to the inductive assump-
tion.

Case 2 : q = 2. Define X ′
i := Xi − n and C ′

i := (X ′
i | Ti), i = 0, . . . , k. Then each C ′

i is 
a cube in Z(n − 1, d), and the sequence C ′

0, C
′
1, . . . , C

′
k forms a directed cycle in Γn−1,d; 

a contradiction.
Case 3 : q = 1. Define T ′

i := Ti−n and C ′
i := (Xi | T ′

i ), i = 0, . . . , k. Then each C ′
i can 

be regarded as a cube in Z(n − 1, d − 1) (in view of |T ′
i | = d − 1). Considering (A.1) and 

using the fact that n is the maximal element in Ti, one can conclude that if (Y | U) is a 
facet with n ∈ U in Cfr

i , then (Y | U ∩ [n −1]) is a facet in (C ′
i)rear, and similarly for facets 

in Crear
i and (C ′

i)fr. Then the fact that C rear
i ∩C fr

i+1 is a facet (having n in its type) implies 
that (C ′

i)fr ∩ (C ′
i+1)rear is a facet as well. This means that C ′

i+1 immediately precedes 
C ′

i. Therefore, the sequence C ′
k, C

′
k−1, . . . , C

′
1, C

′
0 forms a directed cycle in Γn−1,d−1; a 

contradiction.
This completes the proof of the proposition. �

Proof of Proposition 6.2. For a fragment Δ = C≡
h of a cube C = (X | T ), denote |X| +

h − 1/2 by �(Δ), called the mid-level of Δ.
Suppose that there exist fragments Δ0, Δ1, . . . , Δk = Δ0 forming a directed cycle in 

ΓQ≡ . Consider two consecutive fragments Δ = Δi−1 and Δ′ = Δi. Then the sides Δε,rear

and Δε,fr share a facet F , and either (a) F is a vertical facet of both (in terminology 
of (6.2)), or (b) F is the upper facet of Δ and the lower facet of Δ′. Obviously, �(Δ′) =
�(Δ) in case (a), and �(Δ′) = �(Δ) + 1 in case (b). This implies

�(Δ0) ≤ �(Δ1) ≤ · · · ≤ �(Δk−1) ≤ �(Δ0).

Then all fragments Δi have the same mid-level, and therefore each pair of consecutive 
fragments shares a vertical facet. But this means that the sequence of cubes containing 
these fragments forms a cycle in the graph Γn,d, contrary to Proposition 6.1. �
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Appendix B. A concept of weak r-separation when r is even

Up to now, we have dealt with the weak r-separation when r is odd. In this section 
we attempt to introduce and explore an analogous concept when r is even.

For A′, B′ ⊆ [n], we say that A′ surrounds B′ from the right if max(A′ − B′) >
max(B′ −A′).

Definition. For an even integer r > 0 and an integer n > r, sets A, B ⊆ [n] are called 
weakly r-separated if they are r̃-intertwined with r̃ ≤ r + 2, and in case r̃ = r + 2, either 
(a) A surrounds B from the right and |A| ≤ |B|, or (b) B surrounds A from the right 
and |B| ≤ |A|. Accordingly, a set-system W ⊆ 2[n] is called weakly r-separated if any 
two members of W are such.

(Note that this matches the definition for r odd in the Introduction.)

Remark 2. In contrast to the odd case, the size | W | of a weakly r-separated collection 
W ⊆ 2[n] with r even can exceed the value sn,r (defined in (1.2)). The simplest example 
is given by n = r + 2 and W = 2[n]. Indeed, in this case sn,r amounts to 

∑
(
(
r+2
i

)
: i =

0, . . . , r+1) = 2r+2−1, which is less than | W | = 2r+2. Observe that W has only one pair 
{A, B} of (r + 2)-intertwined sets, namely, A = {2, 4, . . . , r} and B = {1, 3, . . . , r − 1}. 
These A, B are weakly r-separated since |A| = |B|. (By the way, one can see that this W
represents the vertex set of a w-membrane in the fragmentation of the cube C = (∅ | [n]), 
forming the trivial cubillage on Z(n, n).)

Thus, if one wished to get rid of exceeding sn,r, one should impose additional restric-
tions on W. The above example prompts an idea on this way.

Definition. Let us say that a pair {A, B} of subsets of [n] is a double r-comb if A, B are 
(r + 2)-intertwined and |A�B| = r + 2, i.e., A�B consists of elements a1 < a2 < · · · <
ar+2 of [n], one of A − B and B − A is formed by a1, a3, . . . , ar+1, and the other by 
a2, a4, . . . , ar+2 (where A�B denotes the symmetric difference (A −B) ∪ (B −A)).

A result involving a double r-comb and related neighbors is presented in the theorem 
below. This is in the spirit of Theorem 1.2 (concerning an odd r), but now the situation 
becomes more intricate.

More precisely, let r′ := r/2 + 1, where r is even as before. Let P = {p1, . . . , pr′}
and Q = {q1, . . . , qr′} consist of elements of [n] such that p1 < q1 < . . . < pr′ < qr′ . 
Define the sets N ↑(P, Q) and N ↓(P, Q) of neighbors of P, Q in the same way as in (1.4)
and (1.5) (where now P, Q satisfy |P | = |Q| = r′). Let X ⊆ [n] − (P ∪Q) and let Y ⊆ [n]
be different from XP and XQ. We assert the following (cf. (5.1)).

Theorem B.1. Let r, n, r′, P, Q, X, Y be as above.
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1. Suppose that Y and XS are weakly r-separated for any S ∈ N ↑(P, Q), but Y and 
XP are not. If, in addition, Y and XP are (r + 2)-intertwined, then

(B.1) Y is equal to XQ ∪ {a} for some element a ∈ [n] −XPQ such that a > p1.

2. Suppose that Y and XS are weakly r-separated for any S ∈ N ↓(P, Q), but Y and 
XQ are not. If, in addition, Y and XQ are (r + 2)-intertwined, then

(B.2) Y is equal to XP − b for some b ∈ X such that b > p1.

(One can check that Y as in (B.1) (resp. (B.2)) is indeed weakly r-separated from any 
member of N ↑(P, Q) (resp. N ↓(P, Q)) but not from XP (resp. XQ), and the essence of 
the theorem is that there is no other Y 
= XP, XQ with such a property.)

Proof. Let us prove assertion 1.
Analyzing the proof of Lemma 5.1, one can realize that it remains valid for correspond-

ing P, Q, X, Y when r is even as well. We further rely on this lemma, borrowing, with 
a due care, terminology and notation from Section 5. In particular: when sets A, B are 
not weakly r-separated, the pair {A, B} is called bad; I abbreviates the interval cortege 
I(Y, XP ); the intervals in I are viewed as . . . < Ai−1 < Bi < Ai < Bi+1 . . ., where 
Ai′ (Bi′) stands for a Y -brick (resp. XP -brick). Also we may assume that Y ∩ X = ∅
(though Y and P need not be disjoint).

Since Y and XP are required be (r + 2)-intertwined, I consists of r′ Y -bricks and r′

XP -bricks. So we may assume that I is viewed as either

(V1) B1 < A1 < B2 < A2 < . . . < Br′ < Ar′ , or
(V2) A1 < B2 < A2 < . . . < Br′ < Ar′ < Br′+1.

Next we consider two possible cases.

Case A: (∗∗) from Lemma 5.1 is valid. Then Ai = {qi} for each i. Hence Y −XP = Q

and |Y −XP | = r′ ≤ |XP − Y |. Suppose that (V1) takes place. Then Y -surrounds XP

from the right. This contradicts the condition that {Y, XP} is bad.
And if (V2) takes place, then p1 /∈ XP − Y (since p1 < q1 and {q1} = A1). Hence 

p1 ∈ Y . For S := (P − p1)q1, the transformation XP �→ XS replaces the first brick 
{q1} of I by {p1}, forming the first Y -brick of I(Y, XS). Then | I(Y, XS)| = r′ + 2, 
|XS| = |XP |, XS surrounds Y from the right, and therefore the badness of {Y, XP}
implies that of {Y, XS}; a contradiction.

Case B: (∗) from Lemma 5.1 is valid. Then Y ∩P = ∅, and the fact that I has exactly r′

XP -bricks implies that X = ∅; so we may ignore X in what follows. If (V2) takes place, 
then XP surrounds Y from the right. Since each P -brick Bi is a singleton, |P | = r′ ≤ |Y |, 
contradicting the condition that {Y, P} is bad.
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Now let (V1) take place. Then Bi = {pi} for each i. Suppose that there is qi ∈ Q such 
that qi /∈ Y . Then either (a) qi lies in some Y -brick Aj , or (b) no brick of I contains 
qi. In case (a), we have i = j (in view of pi < qi < pi+1 and pi < Ai < pi+1, letting 
pr′+1 := n + 1). Moreover, min(Ai) < qi < max(Ai) (since both min(Ai) and max(Ai)
are in Y ). Taking S := Pqi, we obtain | I(Y, S)| = | I | + 2 (since P �→ S replaces Ai by 
the S-brick {qi} and two Y -bricks). Hence {Y, S} is bad; a contradiction.

In case (b), three subcases are possible: either (b1) pi < qi < Ai; or (b2) Ai < qi <

pi+1, or (b3) i = r′ and Ar′ < qr′ . In these subcases, taking as S the neighbors (P−pi)qi, 
(P − pi+1)qi, and Pqr′ , respectively, one can see that {Y, S} is bad.

Thus, Q ⊆ Y . Note that any Y -brick Ai contains at most one element of Q (for if Ai

would contain qj−1 and qj say, then Ai should contain pj as well, which is impossible). It 
follows that each Ai contains exactly one element of Q, namely, qi. Since {Y, P} is bad 
and Y surrounds P from the right, there must be |Y | > |P | = r′. So at least one Y -brick 
Ai has size ≥ 2. For such an Ai, taking S := Pqi, one can see that | I(Y, S)| = | I |
and that Y surrounds S from the right. Then |Y | ≤ |S| (otherwise {Y, S} is bad). This 
together with |Y | > r′ and |S| = |P | + 1 = r′ + 1 gives |Y | = r′ + 1. The latter means 
that there is exactly one brick Ai of size ≥ 2; moreover, |Ai| = 2. Then Ai = {qi, a}, 
where a is as required in (B.1), yielding assertion 1 of the theorem.

Assertion 2 of the theorem can be shown by symmetry and we leave details to the 
reader. �
Remark 3. Some neighbors of P, Q arising in connection with Theorem B.1 play an 
especial role. More precisely, let Y = XQ ∪ {a} be as in (B.1); then pi < a < pi+1
for some i ∈ [r′] (letting pr′+1 := n + 1). One can check that in the upper neighbor 
collection {S ⊂ P ∪ Q : S 
= P, Q, r′ ≤ |S| ≤ r′ + 1} (which includes N ↑(P, Q)) 
there is exactly one set S such that {Y, XS} is a double r-comb; this is S = Pqi. (Then 
XS−Y = {p1, . . . , pr′} and Y −XS = {q1, . . . , qi−1, a, qi+1, . . . , qr′}.) Symmetrically, for 
Y = XP −b as in (B.2), in the lower neighbor collection {S ⊂ P ∪Q : S 
= P, Q, r′−1 ≤
|S| ≤ r′} (which includes N ↓(P, Q)) there is exactly one S such that {Y, XS} is a double 
r-comb. Namely, if pi < b < pi+1 (letting pr′+1 := n + 1), then S = Q − qi. (In this case, 
Y −XS = {p1, . . . , pr′} and XS − Y = {q1, . . . , qi−1, b, qi+1, . . . , qr′}.)

The rest of this section is devoted to a geometric construction representing a class of 
r-separated collections. This relies on Theorem B.1 and is in the spirit of the construction 
from Sect. 6.4 (with r odd), though looks a bit more intricate. We will use terminology 
and notation from Sect. 6.

As before, let r be even and r′ = r/2 + 1. For d := r + 2, consider a cubillage Q on 
the zonotope Z = Z(n, d) and its fragmentation Q≡. For each cube C = (X|T ) ∈ Q, 
we distinguish two “central” fragments C≡

r′ and C≡
r′+1. They share the middle horizontal 

section Sd/2(C) (= C∩H|X|+r′), which contains the specified vertices tC = XP and hC =
XQ, where T = (p1 < q1 < . . . < pr′ < qr′), P = {p1, . . . , pr′} and Q = {q1, . . . , qr′} (so 
{tC , hC} forms a double r-comb).
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Definitions. For a cube C ∈ Q, the set C≡
r′ ∪ C≡

r′+1 is called the doubled fragment, or 
the center, of C and denoted by C≡

cup; the remaining fragments C≡
h of C (h 
= r′, r′ + 1) 

are called ordinary ones. By the enlarged fragmentation of Q we mean the complex 
generated by the centers and ordinary fragments of all cubes of Q, denoted as Q≡

en, i.e., 
it is obtained from Q≡ by merging the pieces C≡

r′ and C≡
r′+1 into one piece C≡

cup for each 
cube C ∈ Q. Depending on the context, we may also think of Q≡

en as the collection of 
doubled and ordinary fragments over all cubes of Q.

This gives rise to an important subclass of w-membranes. More precisely, when a w-
membrane M of Q is a subcomplex (of dimension d − 1) of Q≡

en, we say that M is an 
e-membrane. It is not difficult to show that a w-membrane M of this sort is characterized 
by the property that no facet of M is the middle section of a cube of Q, or, equivalently, 
for each cube C ∈ Q, M contains at most one vertex among tC , hC .

Like s- and w-membranes, the set of e-membranes of Q forms a distribute lattice. This 
is based on the following

Proposition B.2. The directed graph ΓQ≡
en

whose vertices are the fragments in Q≡
en and 

whose edges are the pairs (Δ, Δ′) of fragments such that Δ immediately precedes Δ′ (in 
the sense that Δε,rear and (Δ′) ε,fr share a facet) is acyclic. �
Proof. This is similar to the proof of Proposition 6.2 and is briefly as follows. Suppose 
that fragments Δ0, Δ1, . . . , Δk = Δ0 of Q≡

en form a directed cycle in ΓQ≡
en

. For each 
i, let Ci be the cube of Q containing Δi. If Ci = Ci+1, then the height of Δi+1 is 
greater than that of Δi. Therefore, a maximal subsequence S of different cubes among 
C0, C1, . . . , Ck−1 consists of more than one element. Moreover, consecutive cubes in S
share a (vertical) facet, whence S determines a directed cycle in Γn,d, contradicting 
Proposition 6.1. �

Thus, the transitive closure of the above relation on the fragments of Q≡
en forms a 

partial order, denoted as ≺en. As a consequence (cf. (6.5) and Corollary 6.3):

(B.3) For an e-membrane M of Q, let Q≡
en(M) be the collection of fragments of Q≡

en
lying between Z fr and M . Then the set Me(Q) of e-membranes of a cubillage Q
on Z(n, d) is a distributive lattice, with the minimal element Z fr and the maximal 
element Z rear, in which for M, M ′ ∈ Me(Q), the e-membranes M∧M ′ and M∨M ′

satisfy Q≡
en(M∧M ′) = Q≡

en(M) ∩Q≡
en(M ′) and Q≡

en(M∨M ′) = Q≡
en(M) ∪Q≡

en(M ′).

(B.4) Let M be an e-membrane of Q. Then there exists a sequence of e-membranes 
M0, M1, . . . , Mk ∈ Me(Q) such that M0 = Z fr, Mk = M , and for i = 1, . . . , k, 
Mi−1 is obtained from Mi by the lowering flip using some maximal (w.r.t. ≺en) 
fragment Δ in Q≡

en(Mi) (in the sense that Δε,rear ⊂ Mi, and Mi−1 is obtained 
from Mi by replacing the disk Δε,rear by Δε,fr).
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Based on the above properties, we obtain a geometric result which can be viewed, to 
some extent, as a counterpart of Theorem 6.4 (concerning the odd case).

Theorem B.3. Let r be even and d := r + 2. Suppose that a cubillage Q on Z = Z(n, d)
possesses the property that

(P) no e-membrane of Q has a pair of vertices forming a double r-comb.

Then for any e-membrane M of Q,

(i) the set V (M) of vertices of M (regarded as subsets of [n]) is weakly r-separated;
(ii) |V (M)| = sn,r.

Proof. We argue as in the proof of Theorem 6.4. For M ∈ Me(Q), consider a sequence 
Z fr = M0, M1, . . . , Mk = M of e-membranes of Q as in (B.4). Since Z fr satisfies (i), (ii), 
it suffices to prove the following assertion.

(B.5) For M, M ′ ∈ Me(Q), let M ′ be obtained from M by the raising flip using a 
(doubled or ordinary) fragment Δ of Q≡

en, and suppose that M satisfies (i), (ii). 
Then M ′ satisfies (i), (ii) as well.

To show this, assume that Δ belongs to a cube C = (X|T ) ∈ Q. When Δ is ordinary, 
i.e., Δ = C≡

h with h ≤ r′ − 1 or h ≥ r′ + 2 (where r′ = r/2 + 1), then V (M ′) = V (M), 
and we are done (cf. the explanations in Cases 1 and 2 of the proof of Theorem 6.4).

So let Δ be the center C≡
cup of C and let T = (p1 < q1 < . . . < pr′ < qr′). The 

raising flip using Δ replaces in M the side Δε,fr by Δε,rear. One can see that the vertex 
tC of C is in Δε,fr by not in Δε,rear, while hC is in Δε,rear by not in Δε,fr, and that the 
other vertices of Δ and Δ′ coincide. Therefore, the flip replaces tC = XP by hC = XQ, 
yielding V (M ′) = (V (M) −{tC}) ∪{hC}, where P = {p1, . . . , pr′} and Q = {q1, . . . , qr′}.

We have |V (M ′)| = |V (M)|; so M ′ satisfies (ii). Suppose, for a contradiction, that (i) 
is false for M ′, i.e., there are two vertices of M ′ that are not weakly r-separated from 
each other. Then one of them is XQ, and the other, Y say, belongs to M and differs 
from XP . By (i) for M , the vertex Y is weakly r-separated from XS for each neighbor 
S ∈ N ↓(P, Q). (Note that XS lies in Δε,fr even if |S| = r′.) So we can apply assertion 2 
of Theorem B.1 and conclude that Y is viewed as in (B.2). But then, as mentioned 
in Remark 3, there is S ∈ N ↓(P, Q) such that {Y, XS} is a double r-comb; namely, 
Y = XP − b and S = Q − qi, where pi < b < pi+1. Hence M contains a double r-comb, 
contrary to condition (P).

Thus, (B.5) is valid, and the theorem follows. �
Remark 4. By the construction of an e-membrane M of a cubillage Q, M has no double 
r-comb of the form {tC , hC} for a cube C of Q. However, a priori it is not clear whether 
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M is free of double r-combs at all. We conjecture that this is so for any e-membrane, 
i.e., property (P) holds for any cubillage Q. Its validity would give a strengthening of 
Theorem B.3. We state it as follows:

Conjecture 2. For r even, the vertex set V (M) of any e-membrane M of an arbitrary 
cubillage Q on Z(n, r + 2) gives a weakly r-separated collection.

(Note that such a V (M) is automatically of size sn,r, by explanations above.) It is 
tempting to conjecture a sharper property (which is just a direct analog of Theorem 6.4), 
by claiming that V (M) is weakly r-separated for any w-membrane M of a cubillage Q
on Z(n, r + 2) (where |V (M)| may exceed sn,r), but we do not go so far at the moment.

We finish the paper with a counterpart of Conjecture 1 from Sect. 6.4:

Conjecture 3. For r even, the maximal size of a weakly r-separated collection W ⊆ 2[n]

without double r-combs is equal to sn,r and such a W with |W | = sn,r is representable, 
in the sense that there exists a cubillage Q on Z(n, r + 2) and an e-membrane M of Q
such that V (M) = W .
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