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For an odd integer r > 0 and an integer n > r, we introduce
a notion of weakly r-separated collections of subsets of [n] =
{1,2,...,n}. When r = 1, this corresponds to the concept
of weak separation introduced by Leclerc and Zelevinsky.
In this paper, extending results due to Leclerc-Zelevinsky,
we develop a geometric approach to establish a number of
nice combinatorial properties of maximal weakly r-separated
collections (such as an exact upper bound on the maximal size
of weakly r-separated collections, mutations rules, relations to
the so-called weak membranes in zonotopes of dimension r+2,
and etc.) A possible analog with r even is briefly discussed as
well.
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1. Introduction

Let n be a positive integer and let [n] denote the set {1,2,... ,n}. For subsets X,Y C
[n], we write X < Y if the maximal element max(X) of X is smaller than the minimal
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element min(Y) of Y, letting max (@) := 0 and min(f) := n + 1. An interval in [n] is a
subset of the form {a,a + 1,...,b} in it, denoted as [a..b] (so [n] = [1..n]).

The well-known concept of strongly separated sets introduced by Leclerc and Zelevin-
sky [10] is extended as follows.

Definition. For r € Z>q, sets A, B C [n] are called (strongly) r-separated if there is no
sequence i1 < i < -+ < i,49 of elements of [n] such that the elements with odd indices
(namely, 41,13,...) belong to one of A — B and B — A, while the elements with even
indices (ig, 4, ...) belong to the other of these two sets (where A’ — B’ denotes the set
difference {i: A’ 3 i ¢ B'}). Accordingly, a set-system S C 2I"! (a collection of subsets
of [n]) is called r-separated if any two members of S are such.

Equivalently, A, B C [n] are r-separated if there are intervals Iy < Iy < --- < I+ in
[n] with 0 <7/ <7+ 1 such that one of A — B and B — A is included in [y U3 U. ..,
and the other in o U, U.... If, in addition, (a) 7’ is minimal, and (b) |I1| + -+ + ||
is minimal subject to (a), we say that (I1,..., I ) is the interval cortege associated with
A, B.

In particular, A, B are O-separated if A C B or B C A, and l-separated if either
max(A — B) < min(B — A) or max(B — A) < min(A — B). The l-separation relation
is just what is called the strong separation one in [10]. The case r = 2 was studied by
Galashin [6]. A study for a general r is conducted in Galashin and Postnikov [7].

When A, B are r-separated but not (r — 1)-separated, they are called (r + 1)-
intertwined. In other words, the interval cortege associated with A, B consists of r + 1
intervals. When A, B are such that min(A — B) < min(B — A) and max(A — B) >
max(B — A), we say that A surrounds B.

For example, A = {1,2,5,6,7,10,11} and B = {1,3,4,6,9,11} are 5-intertwined
(with the interval cortege ({2}, [3..4],[5..7],{9},{10})) and A surrounds B.

Another kind of set separation introduced by Leclerc and Zelevinsky is known under
the name of weak separation (which appeared in [10] in connection with the problem
of characterizing quasi-commuting flag minors of a quantum matrix; for a discussion on
this and wider relations between the weak separation and quantum minors, see also [1,
Sect. 8]). We generalize that notion to “higher dimensions” in the following way (where
the term “higher dimensions” is justified by appealing to a geometric interpretation
explained later).

Definition. Let r be odd. Sets A, B C [n] are called weakly r-separated if they are 7'-
intertwined with " < r + 2, and if 7' = r + 2 takes place, then either (a) A surrounds B
and |A| < |BJ, or (b) B surrounds A and |B| < |A|. Accordingly, a set-system W C 2["]
is called weakly r-separated if any two members of W are such.

In other words, A and B are weakly r-separated if they are either (strongly)
r-separated or (r + 2)-intertwined, and in the latter case, for the interval cortege
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(I, ..., I,12) associated with A, B, if the cardinalities of A and B are different, say,
|A| < |BJ, then Iy UI3U...U I,.4o contains A — B (while I Uy U...UI,;; contains
B—A). For example, {1,2,6} and {2, 3,4, 5} are weakly 1-separated, whereas {1, 2,5,6,7}
and {1,3,4,5} are 3-intertwined but not weakly 1-separated.

When r = 1, the above definition turns into the classical notion of weak separation
due to Leclerc and Zelevinsky [10] (where sets A, B C [n] are called weakly separated
if either (a) |A| < |B| and there is a partition of A — B into subsets A’, A” (admitting
empty ones) such that A’ < B— A < A”, or (b) |B| < |A| and there is a partition of
B — A into subsets B’, B” such that B’ < A — B < B”, or both).

In this paper we generalize, to an arbitrary odd r > 1, two results on weakly separated
collections obtained in [10]. One of those (Theorem 1.2 in [10]) says that

(1.1) the maximal possible sizes (numbers of members) of strongly and weakly separated
collections in 2/l are the same and equal to 2n(n+1)+1 (= (5) + (}) + (3)).

To formulate a generalization of (1.1), let » < n and denote the maximal possible size | S |
of an r-separated collection S in 21" by $p,r. Also when r is odd, denote the maximal
possible size of a weakly r-separated collection W C 2[ by Wy, . Extending results
n [10] (for r = 1) and [6] (for r = 2), it is shown in [7] that

Sn,r = (grn+1) <: (ril) + (:) +oee Tt (3)) : (1.2)
We prove the following

Theorem 1.1. Let r be odd. Then wy, = Sp .

Example. In case (n,r) = (4,1), one can easily construct a maximal by size weakly
separated collection W which is not strongly separated. It has 54,1 = (g) + (‘11) + (3) =11
sets of which eight are the intervals containing 1 or/and 4 plus the empty interval @ (each
of them is necessary since it is separated from any set in [4]). The other three sets in W
are 14, 23, 24 (where we write a---b for {a,...,b}). Here 23 and 14 are weakly but not
strongly separated. Also one can check that any of the five sets in 2[4 — W (namely, 2, 3,
13, 124, 134) is not weakly separated from some of {14, 23,24}; so W is maximal indeed.

Another impressive result in [10] says that a weakly separated collection can be trans-
formed into another one by making a flip (a sort of mutation) “in the presence of four
witnesses”. This relies on the following property (Theorem 1.7 in [10]):

(1.3) let W C 2" be weakly separated, and suppose that there are elements i < j < k
of [n] and a set X C [n] — {i,7, k} such that W contains four sets (“witnesses”)
Xi, Xk, Xij, Xjk and a set U € {Xj, Xik}; then the collection obtained from W
by replacing U by the other member of {Xj, Xik} is again weakly separated.
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Hereinafter, for disjoint subsets A and {a, ..., b} of [n], we write Aa...bfor AU{a,...,b}.
Also for a € A, we will abbreviate A — {a} as A — a.
We generalize (1.3) as follows.

Theorem 1.2. For an odd r, let v := (r + 1)/2. Let P = {p1,...,pr} and Q =
{q0,-..,qm} consist of elements of [n] such that go < p1 < q1 < p2 < ... < pp < ¢, and
let X C [n]— (PUQ). Define the sets of “upper” and “lower” neighbors (or “witnesses”)
of P,Q to be

NT(P,Q):=={Pq: ¢ € QYU{(P—p)q: p€ P, ¢ € Q}; and (1.4)
NHP,Q) ={Q-q:qeQU{(Q—qp: pE P, ¢ €Q}. (1.5)

Suppose that a weakly r-separated collection W C 21" contains the set X U P (resp.
X UQ) and the sets X U S for all S € NY(P,Q) (resp. S € NT(P,Q)). Then the
collection obtained from W by replacing X U P by X U Q (resp. by replacing X U Q by
X U P) is weakly r-separated as well.

(Note that since @ surrounds P but |Q| > |P|, the sets P and @ are not weakly
r-separated. Also |[P U Q| = r + 2 implies that any two sets in {P,Q} UNT(P,Q) U
N i(P, Q) except for P, @ are weakly r-separated. If » = 1 then, denoting qo,p1,q1 as
i, 7, k, respectively, we obtain NT(P,Q) = N*(P,Q) = {i,k,ij,jk}, and the theorem
turns into (1.3). When 7 > 1, the sets N (P, Q) and N*(P, Q) become different.)

In general, for two weakly r-separated collections YW and W', if there are P,Q, X as
above such that W = (W —{XUP})U{XUQ}and W= W —{XUQ})U{XUP},
then we say that W' is obtained from W by a raising (combinatorial) flip, while W is
obtained from W' by a lowering flip.

Our method of proof of the above theorems and subsequent results essentially use a
geometric approach and some facts on fine zonotopal tilings, or cubillages, on a cyclic
zonotope in a space RY. (The term “cubillage” was introduced by Kapranov and Voevod-
sky in paper [9] containing, in particular, a geometric interpretation of higher Bruhat
orders.)

An important fact is that the maximal by size (strongly) (d—1)-separated collections &
in 2[" one-to-one correspond to the cubillages @ in a cyclic zonotope Z (n,d) (generated
by a cyclic configuration of n vectors in Rd); moreover, the set of vertices of Q) “encodes”
S. (When d = 2, a cubillage becomes a rhombus tiling on a planar n-zonogon; a bijection
between these tilings and the maximal strongly separated collections in 2" is due to [10,
Theorem 1.6] (where the language of pseudo-line arrangements, dual to rhombus tilings,
is used). For d = 3, a bijection between the corresponding cubillages and maximal
2-separated sets was originally established in [6]. For a general d, the corresponding
bijection was shown by Galashin and Postnikov [7].)

Another important fact, inspired by results in the classical work due to Manin and
Schechtman [11] on higher Bruhat orders and their geometric counterparts in [9,12], is
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that any cubillage on Z(n,d—1) can be lifted as a certain (d—1)-dimensional subcomplex,
that we call an s-membrane, in some cubillage on Z(n,d). For more explanations and
other relevant facts, see [5].

We further develop the theory of cubillages by constructing a certain fragmentation
Q= of a cubillage @ on Z(n, d), introducing a class of (d — 1)-dimensional subcomplexes
in Q=, called w-membranes, and showing (in Theorem 6.4) that when d is odd, the vertex
set of any w-membrane forms a maximal by size weakly (d — 2)-separated collection in
2" Tt turns out that the collections of this sort (over all cubillages on Z(n,d)), called
representable ones, constitute a poset, with a unique minimal element and a unique
maximal element, in which neighboring collections are linked by flips; this is obtained as
a consequence of Theorems 1.2 and 6.4.

This paper is organized as follows. Sect. 2 contains basic definitions and reviews needed
facts on cyclic zonotopes and cubillages. Sect. 3 recalls the construction of s-membranes
in cubillages and describes their properties important to us. Here we also introduce the
so-called bead-thread relation on vertices of a cubillage, which is used in the proof of
Theorem 1.1. Sect. 4 proves Theorem 1.1, and Sect. 5 proves Theorem 1.2.

Sect. 6 introduces the notions of cubillage fragmentation and w-membranes. It proves
the above-mentioned results on w-membranes in a cubillage on Z(n,d) and on the poset
of representable (d — 2)-separated collections in 2I" (Theorem 6.4 and Corollary 6.5).
Here we also raise a conjecture on the representability of all maximal by size weakly -
separated set-systems, and briefly discuss, in Remark 1, the phenomenon of violation of
purity for the weak r-separation (i.e., the situation when a maximal by inclusion weakly
r-separated collection is not maximal by size).

The paper finishes with two appendixes. Appendix A contains proofs of two proposi-
tions stated in Sect. 6 (of which one is of a rather fundamental character). In Appendix B
we discuss a possible analog of the weak r-separation when r is even, outline some con-
structions and results on this way and raise two more conjectures.

Note that, in order to avoid a possible mess, we throughout prefer to use one symbol
(namely, r) for the parameter of weak separation, and the other (namely, d) for the
dimension of related geometric constructions. (Usually, but not always, r = d — 2.)

2. Preliminaries

This section contains additional definitions, notation and conventions that will be
needed later on. Also we review some known properties of cubillages.

e Let n,d be integers with n > d > 1. By a cyclic configuration of size n in R? we mean
an ordered set = of n vectors & = (&(1),...,&(d)) € R?, i=1,...,n, satisfying:

(2.1) (a) &(1) =1 for each 4, and
(b) for the d x n matrix A formed by &;,...,&, as columns (in this order), any
flag minor of A is positive.
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A typical (and commonly used) sample of such configurations = is generated by the

Veronese curve; namely, take reals t; < to < --- < t,, and assign & = &£(t;), where
E(t) = (1,t,¢2,... 1471,

The zonotope Z = Z(Z) generated by = is the Minkowski sum of line segments
[0,&), 9 =1,...,n. A fine zonotopal tiling is a subdivision @ of Z into d-dimensional

parallelotopes such that any two of them either are disjoint or share a face, and each face
of the boundary of Z is contained in some of these parallelotopes. For brevity, we refer
to these parallelotopes as cubes, and to @ as a cubillage (following [9]). (Two examples
for (n,d) = (4,2) are illustrated in Fig. 1.)

e When n, d are fixed, the choice of one or another cyclic configuration = (subject to (2.1))
does not matter in essence, and for this reason, we unify notation Z(n,d) for Z(E),
referring to it as the cyclic zonotope for (n,d).

e Let 7 denote the projection R — R*~! given by (z(1),...,z(d)) — (z(1),...,z(d—1)).
Due to (2.1), the vectors 7(&1), . .., m(&,) form a cyclic configuration as well, and we may
say that 7 projects Z(n, d) onto the zonotope Z(n,d — 1).

e Each subset X C [n] naturally corresponds to the point ), & in Z(n,d), and the
cardinality | X| is called the height of this subset/point. (W.l.o.g., we usually assume that
all combinations of vectors & with coefficients 0,1 are different.)

e Depending on the context, we may think of a cubillage @ on Z(n,d) in two ways:
either as a set of d-dimensional cubes (and write C' € @ for a cube C in @) or as the
corresponding polyhedral complex. The 0-, 1-, and (d — 1)-dimensional faces of @ are
called wertices, edges, and facets, respectively. By the above-mentioned subset-to-point
correspondence, each vertex is identified with a subset of [n]. In turn, each edge e is a
parallel translation of some segment [0,&;]; we say that e has color i, or is an i-edge.
When needed, e is regarded as a directed edge (according to the direction of &;).

e Let V(Q) denote the set of vertices of a cubillage ). Galashin and Postnikov [7] estab-
lished a relationship between fine zonotopal tilings and alternating oriented matroids; as
a consequence, the following one-to-one correspondence takes place:

(2.2) for any cubillage @ on Z(n,d), the set V(Q) of its vertices (regarded as subsets of
[n]) constitutes a maximal by size (d—1)-separated collection in 2[™; conversely, for
any maximal by size (d — 1)-separated collection & C 2["] | there exists a cubillage

Q on Z(n,d) with V(Q) = S.

e When a face C' of @ has X C [n] as the minimum height vertex, and T" C [n] as the set
of edge colors in C, we say that C has root X and type T, and may write C = (X |T).
One easily shows that X N'T = (). Another appealing fact is that for any cubillage Q, the
types of all (d-dimensional) cubes in it are different and form the set ([Z]) of d-element
subsets of [n] (so @ has exactly (7)) cubes). See, e.g., [12] or [5].

e For a closed subset U of points in Z = Z(n,d), let U™ (U™ denote the subset of U
“seen” in the direction of the last, d-th, coordinate vector e4 (resp. —eq), i.e., formed by
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the points x € U such that there is no y € U with n(y) = n(x) and y(d) < z(d) (resp.
y(d) > x(d)). It is called the front (resp. rear) side of U. Also we call U NU™ the rim
of U and denote it as U™ (this term is justified when U is a ball in R3.)

In particular, Z™, Z**" and Z'™ denote the front side, the rear side, and the rim,

respectively, of the zonotope Z.

e When a set X C [n] is the union of k intervals and k is as small as possible, we
say that X is a k-interval. Note that its complementary set [n] — X is a k’-interval with
k' € {k—1,k,k+1}. In the next section we will use the following known characterization
of the sets of vertices in the front and rear sides of a zonotope of an odd dimension (this
can be easily shown by induction on n using the “n-pie contraction technique” as in [5]).

(2.3) Let d be odd. Then for Z = Z(n,d),

(i) V(Z%) is formed by all k-intervals of [n] with k < (d —1)/2;

(if) V(Zr*") is formed by the subsets of [n] complementary to those in (i); specif-
ically, it consists of all k-intervals with k& < (d — 1)/2, all (d — 1)/2-intervals
containing at least one of the elements 1 and n, and all (d + 1)/2-intervals
containing both 1 and n.

This implies that: V (Z*™) consists of the k-intervals with k < (d—1)/2 and the (d—1)/2-
intervals containing at least one of 1 and n; the set V/(Z %) —V (Z™™) of inner vertices in
Z ' consists of the (d—1)/2-intervals containing none of 1 and n; and V (Z ™) —V/ (Z i)
consists of the (d + 1)/2-intervals containing both 1 and n.

e Consider a cube C'= (X |T) and let T = (p1 < p2 < --- < pq). This cube has 2d facets
Fy, ..., Fy,Gq,...,Gq, where

(2.4) F; = F;(C) is viewed as (X | T —p;), and G; = G;(C) as (Xp; | T — p;).
3. S-membranes and bead-threads

In this section we recall the definition of s-membranes, associate with a cubillage a
certain path structure, and review additional basic properties.

Definition. Let @ be a cubillage on Z(n,d). An s-membrane in Q is a (closed) subcomplex
M of @ such that M (regarded as a subset of Rd) is bijectively projected by 7 to
Z(n,d—1). (So 7 gives a homeomorphism between M and Z(n,d — 1).)

Then each facet of @ occurring in M is projected to a cube of dimension d — 1 in
Z(n,d — 1) and these cubes constitute a cubillage on Z(n,d — 1), denoted as w(M). In
view of (2.2) and (1.2) (applied to 7(Q)), we obtain that

(3.1) each s-membrane M in a cubillage @ on Z(n,d) has s, q—2 vertices, and the vertex
set of M (regarded as a collection in 2[") is (d — 2)-separated.
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1234

Fig. 1. Left: standard tiling; right: anti-standard tiling.

Two s-membranes are of an especial interest. These are the front side Z™ and the rear
side Z** of Z = Z(n,d) (in these cases the choice of a cubillage on Z is not important).
Following terminology in [4,5], their projections 7(Z ) and 7(Z*") (regarded as com-
plexes) are called the standard and anti-standard cubillages on Z(n,d — 1), respectively.
Such cubillages in dimension 2 (viz. thombus tilings) with n = 4 are drawn in Fig. 1.

Next we distinguish certain vertices in cubes. When n = d, the zonotope turns into
the cube C' = ((|[d]), and there holds:

(3.2) the front side C™ of C' = (§|[d]) has a unique inner vertex (i.e., a vertex not
contained in C'"™) namely, tc := {i € [n]: d—i odd}; symmetrically, the rear side
C'r*" of C has a unique inner vertex, namely, he := {i € [n]: d — i even}.

(When d is odd, (3.2) can be obtained from (2.3). A direct proof of (3.2) for an
arbitrary d is as follows (a sketch). The facets of C' are F; := (0|[d] — i) and G; :=
(i|[d] —4), i =1,...,d (cf. (2.4)). A facet F; is contained in C' (C**") if, when looking
at the direction eq, C lies “behind” (resp. “before”) the hyperplane containing F;, or,
equivalently, det(A4;) > 0 (resp. det(4;) < 0), cf. (2.1)(b), where A; is the matrix with
the columns &1,...,&-1,&+1,..-&4,& (in this order). It follows that F; C C if and
only if d — i is even. By “central symmetry”, G; C C'™ if and only if d — i is odd.

Now consider a vertex X C [d] of C. If X (resp. [d] — X) has consecutive elements
i —1 and 4, then X € G;_; and simultaneously X € G; (resp. X € F;_; and X € F}).
This implies that X is in both C and C*™" i.e., X € C'™. The remaining vertices of
C' are just tc and he as in (3.2); one can see that the former (latter) is contained in all
facets F; and G; with d—j even and d —¢ odd (resp. d — j odd and d —1 even). So t¢ lies
in C™ and h¢e in C*%; moreover, both are not in C'*™ (since C is full-dimensional).)

When n is arbitrary and @ is a cubillage on Z = Z(n, d), we distinguish vertices t¢
and he of a cube C' € @ in a similar way; namely (cf. (3.2)):

33)ifC=(X|T)and T = (p1 < ... < pa), then t¢ := X U {p;: d — i odd} is the
unique inner vertex in O, and he := X U {p;: d — i even} is the unique inner

vertex in C''e?r,
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Fig. 2. v = tc = hor.

Also for each vertex v of @, unless v is in Z™?*, there is a unique cube C € @ such
that t¢ = v, and symmetrically, unless v is in Z, there is a unique cube C’ € Q such
that her = v. (To see this, consider the line L going through v and parallel to e4. Since
eq and any (d — 1) vectors in Z are linearly independent, L intersects interiors of cubes
in a vicinity of v, namely, C' and C’. See Fig. 2, where d = 3.)

Therefore, by drawing for each cube C € @, the edge-arrow from t¢ to ho, we obtain a
directed graph whose connectivity components are directed paths beginning at Z r— 7 rim
and ending at Z7°% — Z"™ We call these paths bead-threads in Q. It is convenient to
add to this graph the elements of V(Z™™) as isolated vertices, forming degenerate bead-
threads, each going from a vertex to itself. Let By be the resulting directed graph.
Then

(3.4) Bg contains all vertices of @, and each component of By is a bead-thread going
from Z T to Zrear,

Note that along every bead-thread, the heights | X| of vertices X are monotone in-
creasing when d is odd, and constant when d is even.

4. Proof of Theorem 1.1
Let r be odd and n > r. We have to show that

(4.1) if W is a weakly r-separated collection in 2I"!| then |W| < (<:‘+1).

This is valid when » =1 (cf. (1.1)) and is trivial when n = r 4+ 1. So one may assume
that 3 < r < n — 2. We prove (4.1) by induction, assuming that the corresponding
inequality holds for W', n/,r’ when n’ < n, r’ <r, and (n/,7') # (n,7).

Define the following subcollections in W:

[n—1]: {A, An} "W # 0}, and

W ={AC
T:={AC[n—-1]: {4, An} CW}.

Observe that

(4.2) any A, B € W™ are weakly r-separated.
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Indeed, this is trivial when A, B € W or An,Bn € W. So one may assume that
A €W and B’ := Bn € W, and that A, B’ are (r + 2)-intertwined (for if A, B’ are r'-
intertwined with 7" < r + 1, then so is for A, B, and we are done). Since max(B’ — A) =
n > max(A—B’) and r+2 is odd, B’ surrounds A. Therefore, min(B’'— A) < min(A—B’)
and |B’| < |A|. Then |B| < |A| and min(B — A) = min(B’ — A) < min(A — B), implying
that A, B are weakly r-separated, as required.

By induction, | W™ | < (<”;+11) Also one can see that |W| = |W™ |+ | T |. Therefore,

using the identity (?) = (";1) + (?:11) for any j < n—1, in order to obtain the inequality

in (4.1), it suffices to show that
T1< () (43)

Fori=0,1,...,n— 1, define 7" := {A € T : |A| = i}. We will rely on two claims.

Claim 1. For each i, the collection T is (r—1)-separated; moreover, T" is weakly (r—2)-
separated.

Proof. Let A, B € T". Take the interval cortege (I1,...,I.) for A, B, and let for definite-
ness I,» concerns A (i.e., Iy N(A—B) # 0). Then (11, ..., I, L/41 := {n}) is the interval
cortege for A and B’ := Bn. Since |A| = |B| < |B’| and max(A—B’) < max(B'—A) =n
and since A, B” are weakly r-separated, ' +1 must be strictly less than r+2. Then r’ < r,
implying that A, B are (r — 1)-separated. Since |A| = |B| and r is odd, we also can con-
clude that A, B are weakly (r — 2)-separated. O

Now consider the zonotope Z = Z(n — 1,7). For j = 0,1,...,n — 1, define &’ (resp.
A7) to be the set of vertices X of Z (resp. Z") with |X| = j. We extend each 7" to
the collection

Di=T U U uSTHu (A UAt UL U AT, (4.4)
Claim 2. D' is weakly (r — 2)-separated.

Proof. The vertex sets of Z and 7(Z ) are essentially the same (regarding a vertex
as a subset of [n — 1]), and similarly for Z™ and 7(Z ™). Since 7(Z ) and 7(Z )
are cubillages on Z(n — 1,7 — 1) (namely, the “standard” and “anti-standard” ones,
respectively), (2.2) implies that both collections V(Z ™) = S°U.. .US" !t and V(Z ") =
A%U...U A" are (r — 2)-separated, and therefore, each of them is weakly (r — 2)-
separated as well.

Next, by (2.3)(i), each vertex X of Z' is a k-interval, where k < (r — 1)/2. Such
an X and any subset Y C [n — 1] are k’-intertwined with ¥’ < 2k + 1. Then k' < r,
and this holds with equality when X and Y are r-intertwined and Y surrounds X. It
follows that X is weakly (r — 2)-separated from any Y C [n — 1] with |Y] < |X]| (in
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particular, if X € &7 and j > i, then X is weakly (r — 2)-separated from each member
of TTUA U...U AT,

Symmetrically, by (2.3)(ii), each vertex X of Z™" is the complement to [n — 1] of
a k-interval with k& < (r — 1)/2, implying that X is weakly (r — 2)-separated from any
Y C[n—1] with |Y| > | X].

Now the result is provided by Claim 1 and the inequalities | X| > |A| > |X'| for any
XeSTu...us" L AeT  and X' e A2U...UA"". O

By induction, | D’ | < (S”;ll) Then, using (1.2) and (3.1) (relative to n—1 and r — 2),
we have
|Dl| S (;;}1) =Sp—-1,r—2 = |V(Zfr)| (45)
Let & :=8°US'U...US and A" := A°UA' U...UA" Since ST U...US" ! =
V(Z') —S’, we obtain from (4.4) and (4.5) that

[T =D [ = (V(Z") =S |) - A | <|S'| = |A. (4.6)

We now finish the proof by using bead-thread techniques (as in Sect. 3). Fix an
arbitrary cubillage Q on Z = Z(n — 1,7). Let R’ be the set of vertices X of Q with
|X| =i, and let B be the set of paths (bead-threads) in the graph Bg beginning at Z
and ending at Z™*'. Since r is odd, each edge (X,Y’) of Bg is “ascending” (satisfies
|Y| > |X]). This implies that each path P € B beginning at &’ must meet (once)
either R or A’, and conversely, each path meeting R'UA’ begins at S’. Therefore,
|R'|=|S"| —|A'|, and this together with (4.6) implies

[T <|R.
Summing up these inequalities for i = 0,1,...,n — 1, we have

1= Y 1T 1€ Y IR = Vol = s = (5),
yielding (4.3) and completing the proof of Theorem 1.1. O O

5. Proof of Theorem 1.2

Let v, 7', P = {p1,...,pr}, @ = {qo,.-.,¢~} and X be as in the hypotheses of
Theorem 1.2 (where r is odd and ' = (r +1)/2).

In what follows, for sets A, B C [n], when AN B = (), we abbreviate AU B as AB.
When A, B are not weakly r-separated, we say that the pair {4, B} is bad.

Note that XP and X@Q are (r + 2)-intertwined; X @ surrounds X P; | XQ| > |XP|;
and {X P, XQ} is the unique bad pair in the collection {XS: S € {P,Q} UNT(P,Q) U
N¥(P,Q)}. The theorem is reduced to the following assertion.
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(5.1) Let Y C [n] be different from X P and X@. Then:
(i) if {Y, X P} is bad, then there exists S € NT(P,Q) such that {Y, XS} is bad;
(ii) if {Y, XQ} is bad, then there exists S € N*(P,Q) such that {Y, XS} is bad.

(Indeed, to obtain Theorem 1.2 from (5.1), suppose that a weakly r-separated collec-
tion W € 2" includes {XS: S € {P} UNY(P,Q)} (resp. {XS: S € {Q}UNT(P,Q)}).
Let Y € W—{XP,XQ}. Then (ii) (resp. (i)) in (5.1) implies that ¥ and X@Q (resp. Y
and X P) are weakly r-separated, and the theorem follows.)

We first prove assertion (i) in (5.1) (obtaining (ii) by symmetry, as we explain in the
end of the proof). Suppose, for a contradiction, that

(5.2) there is Y C [n] different from X @Q such that {Y, X P} is bad but none of the pairs
{v, XS} with S € NT(P,Q) is bad.

This will impose sharp restrictions on Y and will eventually lead us to the conclusion
that Y is impossible. W.l.o.g., one may assume that Y N X = (.

In what follows, the interval cortege for sets A, B C [n] is denoted by Z(A, B), and
when it is not confusing, we refer to the intervals in it concerning A — B (B — A) as A-
bricks (vesp. B-bricks). For brevity we will write N7 for NT(P,Q), and Z for Z(Y, X P).
Also we refer to an element p € P (¢ € Q) as refined if it forms the single-element
X P-brick {p} (resp. the single-element Y-brick {¢}) in Z.

The core of the proof consists in the next lemma.

Lemma 5.1. Let Y be as in (5.2). Then at least one of the following holds:
(x) all elements of P are refined;
(%) all elements of Q are refined.

This lemma will be proved later, and now assuming its validity, we show (5.1)(i) as
follows. Note that Y N P # () is possible (whereas Y N X = (), as assumed above).

Let a and b denote the numbers of Y- and X P-bricks in Z, respectively. Then a +b =
|Z|>r+2=2r"+1and |a — b <1. We assume that the intervals in Z are viewed as
. <A1 <Bi<A; <Biy1..., where A; (B;/) stands for a Y-brick (resp. X P-brick).
The first (last) Y-brick is denoted by A™ (resp. AM), and the first (last) X P-brick by
B™ (resp. BM). Also for a set C' C [n] and a singleton ¢ € [n], we write ¢ < C' (¢ > O)
if ¢ < min(C) (resp. ¢ > max(C)).

We first assume that (xx) from Lemma 5.1 is valid. Then Y D Q and a > |Q| = '+ 1.
Consider two possible cases for a.

Case I: a > "+ 2. Then b > ' + 1 and |Z| > 21" + 3. If o < B™, then ¢y € A™,
implying A™ = {qo} (since qo is refined). Taking S := Pqy € NT(P,Q), we obtain
|Z(Y,XS)| = |Z| -1 > 2r' +2 > r + 2 (since the Y-brick {go} disappears, while
the other bricks of Z preserve). Hence {Y, XS} is bad. Similarly, if BM < ¢, then
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AM = {g.}, and taking S := Pgq,,, we again obtain |Z(Y, XS)| > 2’ + 2, whence
{Y, XS} is bad.

So we may assume that B™ < qo and ¢ < B™. Then b > |Q| +1 = ' + 2 and
|Z| =a+b>2r'+4. Taking S := Pqp, we obtain | Z(Y, X S)| = |Z|—2 > 2r' 4+ 2 (since
the Y-brick {qo} disappears and the X P-bricks preceding and succeeding {qo} merge).
Thus, in all cases, {Y, XS} is bad; a contradiction.

Case II: a = ' + 1. Then A™ = {qo},{@1},...,{q~} = AM are exactly the Y-bricks of
I.If B™ < qo and BM < g, then b=a ="+ 1 and |Z| = 20’ + 2. Taking S := Pq,,
we obtain |Z(Y, XS)| = |Z| — 1 = 2/ + 1. Also XS surrounds Y (since BM becomes
the last interval in Z(Y, X.S)). Hence |Y — X S| =+ <’ 4+ 1 < |XS — Y/, implying that
{Y, XS} is bad.

Similarly, if gg < B™ and ¢ < BM, then S := Pqqg gives |Z(YV,X9)| = |Z| -1 =
27" 4+ 1, and XS surrounds Y as well. And if B™ < ¢y and ¢» < BM, then b = 1/ + 2,
and for S := Pqg, we obtain |Z(Y, XS)| = |Z| — 2 = 21’ + 1. Again, XS surrounds Y,
whence {Y, XS} is bad.

So it remains to consider the situation when gy < B™ and BM < ¢,.. Then b = ' and
Y surrounds X P. Since {Y, XP}isbad and Y — XP = @, we have ' +1 =Y — X P| >
| XP —Y| > +'. It follows that | XP — Y| = »’. This implies that each X P-brick is a
singleton. Also in case Y N P = (), the X P-bricks of Z are exactly {p1},...,{p~}. But
then X =@ and Y = Q = XQ, contradicting the condition Y # X@Q in (5.1).

Therefore, Y must contain an element p; for some i. Then p; ¢ B; (in view of |B;| = 1
and p; ¢ XP —Y). So one of two situations takes place: ¢;—1 < p; < B; < ¢;, or
gi—1 < B; < p; < ¢;. Define S := (P — p;)g;—1 in the former case, and S := (P — p;)g; in
the latter case. The transformation X P — XS replaces the Y-brick {¢;—1} or {¢;} by
{p:}. We obtain: |Z(Y, XS)| = |Z| =2+ 1, Y surrounds XS, and |Y| > | X S|. Hence
{Y, XS} is bad; a contradiction.

Next we assume that (%) from Lemma 5.1 is valid. Then b > 7’ and each p; € P forms
the X P-brick {p;} in Z (admitting the possibility of other X P-bricks); in particular,
Y N P = (). Consider two possibilities for b.

Case III: b = r’. Then {p1},...,{p~} are exactly the X P-bricks of Z, X = (), and
a=7r"+1 (inview of |Z| > 2r'4+1). So Y surrounds P = X P, and |Y| > | P|. Assuming,
w.l.o.g., that (xx) from Lemma 5.1 is not valid, there is ¢ € {0,...,r'} such that {¢;} is
not a Y-brick of Z. Then either (a) ¢; lies in some Y-brick A; with |4, > 2, or (b) ¢
lies in no interval of Z.

In case (a), take S := Pg;. Note that [Y| > 7' 4+2 = |P|+2 (in view of a = ' + 1 and
|A;] > 2). If ¢; € Y, then the transformation P +— S replaces A; by a (possibly smaller
but nonempty) Y-brick in Z(Y,.S), while preserving the other intervals of Z. It follows
that |Z(Y, S)| = |Z| =2r"+1, Y swrrounds S, and Y] > |P|+1 = |S|; so {Y, S} is bad.
And if ¢; ¢ Y, then, obviously, min(A4;) < ¢; < max(A;). This gives |Z(Y,S)| = |Z|+2
(since P +— S replaces A; by the S-brick {¢;} and two Y-bricks, one containing min(A;)
and the other containing max(A4;)); so {Y, S} is bad again.
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In case (b), it is clear that ¢; ¢ Y. Then one of four subcases takes place: (bl)
pi < qi < A (b2) A; < ¢ < pip1; (b3) i = 0 and g9 < A™; and (b4) ¢ = 7' and
AM < g... In subcases (b3) and (b4), taking S := Pg;, we have |Z(Y,S)| = |Z|+1
(since {g;} becomes a new brick), whence {Y, S} is bad. In subcases (bl) and (b2), for
S" = (P—pi)q and S’ := (P —p;4+1)¢;, respectively, the transformation P — S’ replaces
the P-brick {p;} or {p;y+1} by the S’-brick {¢;}, and the badness of {Y, P} implies that
of {Y,S5'}.

Case IV: b > r’' + 1. Assuming, as before, that we are not in (x*) from Lemma 5.1,
there is 7 such that {¢;} is not a Y-brick of Z. Take S := Pg;. We can observe that in
all possible cases for ¢; (as exposed in Case III above), the transformation X P — XS
leads to the following: |X S| > |X P|, each Y-brick of Z either preserves or is replaced
by a (nonempty) Y-brick of Z(Y, X S) =: Z', and similarly for the X P-bricks of Z. Then
|Z'| > |Z| > 2r' + 1. Moreover, in case |Z'| = 2r' + 1, the number of X S-bricks (Y-
bricks) of Z' and the number of X P-bricks (resp. Y-bricks) of Z are the same, which is
equal to 7' +1 = b (resp. ' = a). So b > a, X P surrounds Y, and | X P| > |Y| (since
{Y, X P} is bad). Now the badness of {Y, XS} follows from |XS| > |XP|, yielding a
contradiction.

Thus, assertion (i) in (5.1) is proven (subject to Lemma 5.1).

It remains to show (ii). We reduce it to the previous case, using the following ob-
servation. For A C [n], let A denote the complementary set [n] — A. One can see that
TI(A, B) = I(A, B) and that the bricks for A— B coincide with those for B — A. It follows
that if A, B are (r + 2)-intertwined (where r is odd, as before) and A surrounds B, then
A, B are (r + 2)-intertwined, B surrounds A, and |A| — |B| = |B| — |A|. Therefore, if
A, B are weakly r-separated then so are A, B.

Now for Y, P,Q,X as above and U := XQ, consider Y/ := Y, X' := XPQ (=
[n] — (X UPUQ)) and U’ := XQ. Suppose that {Y,U} is bad. Then {Y’, U’} is bad
as well. Note also that U’ = X’P. By the theorem applied to Y’, P,Q, X’ and U’, there
exists S’ € NT(P,Q) such that {Y’, X’S’} is bad. Then {Y, X’S"} is bad as well. Take
S:=(PUQ)—S". One can see that S € N*(P,Q) and X'S” = X S. Therefore, {Y, X S}
is bad, as required.

This completes the proof of (5.1) (yielding Theorem 1.2), modulo Lemma 5.1.

Proof of Lemma 5.1. Suppose that there are simultaneously p € P and ¢ € @ that are
not refined. Form S’ := P —p, S” := Pq and S := (P — p)q (note that S” and S
are in NT = NT(P,Q), whereas S’ is not). Let T := Z(Y, X P), ' := Z(Y, XS’) and
I":=1I(Y,XS"). We write A; (B;) for Y-bricks (resp. X P-bricks) in Z and assume that
they follow in Z in the order ... < A;_1 < B; < A; < Bjy1.. ..

For A, B, A’, B’ C [n], let us say that the ordered pairs (A, B) and (A’, B") have the
same type if |Z(A, B)| = |Z(A’, B")| and the first interval of Z(A, B) concerns A — B
if and only if the first interval of Z(A’, B’) concerns A’ — B’ (implying that a similar
property holds for the last intervals of Z(A4, B) and Z'(A’, B")).
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We examine four possible cases for p,q and establish important interrelations for
Z,7',I"” which will be used later.

Case 1: p lies in an interval C of Z.

(1a) Suppose that C is an X P-brick B;. Since p is not refined, |B;| > 2. If p ¢ Y,
then the transformation XP — XS’ replaces B; by a (nonempty) XS’-brick B, in 7
with B C B;, while the other intervals in Z and T’ coincide. Therefore, Z' and Z have
the same type.

And if p € Y, then min(B;) < p < max(B;), and XP — XS’ replaces B; by three
bricks, say, B’ < A’ < B”, where A’ is the single-element Y-brick {p}, and B’, B” are
X §’-bricks (with min(B’) = min(B;) and max(B”) = max(B;)). Then |Z'| = || + 2.

(1b) Now suppose that C is a Y-brick A;. This is possible only if p € ¥ and min(A4;) <
p < max(4;). Then p € Y — X5’ and XP — XS’ preserves A; (as well as the other
intervals of Z), whence Z' = T.

Case 2: q lies in an interval C of 7.

(2a) Suppose that C' = B;. This is possible only if ¢ ¢ Y and min(B;) < ¢ < max(B;)
(since ¢ ¢ X P). Then X P+ XS" preserves B;, yielding Z” = T.

(2b) Now suppose that C = A;. Since ¢ is not refined, |A4;|] > 2. If ¢ € Y, then
XP — XS" replaces A; by a (nonempty) Y-brick A, with A, C A;. Therefore, Z"
and Z have the same type. And if ¢ ¢ Y, then XP — XS” replaces A; by three
bricks A’ < B" < A”, where B’ is the XS”-brick {q}, and A’, A" are Y-bricks (with
min(A’) = min(4;) and max(A”) = max(4;)), whence |Z"| = |Z| + 2.

Case 3: p belongs to no interval of Z. Then p € Y.

(3a) Suppose that A; < p < B;;1 or B; < p < A; for some i. Then p € Y — X8, and
XP — XS extends A; (making a Y-brick with the beginning or end at p). Hence 7
and Z have the same type.

(3b) Suppose that p < C, where C' is the first interval of Z. If C is an X P-brick, then
XP — XS’ produces a new Y-brick, namely, {p}, and preserves the other intervals of
Z, whence |Z'| = |Z |+ 1. And if C is a Y-brick, then X P — XS’ extends C (making a
Y-brick with the beginning p), whence Z' and Z have the same type.

(3c) Similarly, if p > D, where D is the last interval of Z, then either |Z'| =|Z |+ 1,
or Z' and Z have the same type (when D is extended to a Y-brick with the end p).

Case /4: q belongs to no interval of Z. Then ¢ ¢ Y.

(4a) Suppose that A;_1 < ¢ < B; or B; < q < A; for some i. Then XP — XS”
extends B; (making a X S”-brick with the beginning or end at ¢). Hence Z", Z have the
same type.

(4b) Suppose that g < C, where C is the first interval of Z. If C' is an X P-brick, then
X P+ XS” extends C (making an X S”-brick with the beginning ¢), whence Z”, 7 have
the same type. And if C' is a Y-brick, then X P — X S” preserves C' and produces the
new brick {q} (concerning XS”), whence |Z"|=|Z| + 1.
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(4c) Similarly, if ¢ > D, where D is the last interval of Z, then either Z" and Z have
the same type, or |Z"|=|Z| + 1.

Now we finish proving the lemma as follows. Analyzing Cases 1,3 above, we observe
that |Z'| > | Z| is valid throughout, and if this holds with equality, then Z' and Z have
the same type. For Z” and Z, the behavior is similar (in Cases 2,4).

If |Z”| > |Z| happens, then Y and XS” form a bad pair (since they are |Z” |-
intertwined with |Z”| > r + 2 and taking into account that S” = Pg € NT). This
contradicts (5.2).

Now let |Z"”| = |Z| (then Z”,Z have the same type). We consider the neighbor
S = (P —p)g € N1 and assert that {Y, XS} is bad, thus coming to a contradiction
again.

To show this, let Z := Z(Y, X S). Suppose that ¢ € Y. Setting Y~ :=Y — ¢, we have
Y™ —XP=Y—-XS"and XP-Y~ = XS”-Y, implying that Z~ := Z(Y~, X P) coin-
cides with Z”. Hence Z~ and Z have the same type. Moreover, under the correspondence
of intervals in these corteges (exposed in (2b)), each Y ~-brick of Z™ is included in the cor-
responding Y-brick of Z, and each X P-brick of Z~ includes the corresponding X P-brick
of Z. In particular, p is not refined w.r.t. Z~. So we can apply to X, P,Y ~, p the analysis
as in Cases 1 and 3 and conclude that under the transformation X P — X S’, the cortege
7~ turns into Z := Z(Y ~, X$’) such that either |Z| > |Z~ |, or Z and Z~ have the same
type. But Y = Y ~gand S = §'¢ imply Z = Z. Now the badness of {Y, XS} is immediate
when |Z| > |Z” | (= |Z|), and follows from the badness of {Y, X P} when |Z| = |Z" |
(since Z and T have the same type and [Y~| — |X$'| = |Y| — |X S| = |Y]| — |XP]).

Finally, let ¢ ¢ Y. Then (in view of | Z" | = | Z|) we are in one of the following subcases:
(2a) with min(B;) < ¢ < max(B;) for some 4; or (4a) with A;_1 < ¢ < B;or B; < ¢ < A;
for some i; or (4b) with ¢ < B™ < A™; or (4c) with ¢ > BM > AM (where, as before,
A™ and AM (resp. B™ and BM) are the first and last Y-bricks (resp. X P-bricks) in Z,
respectively). By the explanations above, in all of these situations, X P — X S” leads to
increasing at most one brick concerning X and preserving the other intervals of Z. This
implies that p is not refined w.r.t. Z”, and we can apply to X, S”.Y, p the reasonlng as in
Cases 1 and 3 and conclude that XS” — XS turns Z” into Z so that either |Z| > |Z” |
(=|Z|), or Z and Z" have the same type. Then the badness of {Y, XS} follows.

This completes the proof of the lemma. O

6. Weakly r-separated collections generated by cubillages

In Sects. 2, 3 we outlined an interrelation between (strongly) x-separated collections on
the one hand, and cubillages and s-membranes on the other hand (see (2.2) and (3.1)).
This section is devoted to geometric aspects of the weak r-separation when r is odd.
Being motivated by geometric constructions for maximal weakly 1-separated collections
elaborated in [3,4], we explain how to construct maximal by size weakly r-separated
collections by use of the so-called w-membranes; these are analogs of s-membranes in
certain fragmentations of cubillages.
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In the subsections below we introduce the notions of fragmentation and w-membrane,
demonstrate their properties (extending results from [4, Sect. 6]) and finish with a the-
orem saying that the vertex set of any (r + 1)-dimensional w-membrane gives rise to
a maximal by size weakly r-separated collection (for corresponding n). Note that in
Sects. 6.1-6.3 the dimension d of a zonotope/cubillage in question is assumed to be
arbitrary (not necessarily odd).

6.1. Fragmentation

Let @Q be a cubillage on Z(n,d). For £ = 0,1,...,n, we denote the “horizontal”
hyperplane at “height” £ in R? by Hy, i.e., Hy := {x = (z(1),...,z(d)) € R*: x(1) = ¢}.
The fragmentation of Q) is meant to be the complex Q= obtained by cutting @ by
Hy,...,H, ;.

Such hyperplanes subdivide each cube C' = (X |T) of @ into d pieces CT,...,C7,
where Cf7 is the (closed) portion of C' between H|x|44—1 and H|x|4,. We say that Cj;
is h-th fragment of C and, depending on the context, may also think of Q= as the set of
fragments over all cubes of Q. Let Sj,(C) denote h-th horizontal section C' N H|x|1p, of
C (where 0 < h < d); this is the convex hull of the set of vertices

(X1(})  (={XUu4: ACT, |A]=h}). (6.1)

(Such an S, (C) is called a hyper-simplex, in terminology of [8]. It turns into a usual
simplex when h =1 or d — 1.) Observe that for h=1,...,d,

(6.2) the h-th fragment Cj of C is the convex hull of the set of vertices (X | (hil))
and (X | (;’;)), it has two “horizontal” facets, namely, Sp,_1(C) and S, (C), and 2d
other facets (conditionally called “vertical” ones), namely, the portions of F;(C)
and G;(C) between H|x|4p—1 and H x|y fori=1,...,d, denoted as F}, ;(C) and
Gh,,i(C), respectively.

Here F;(C) and G;(C) are the facets of C = (X|T) defined in (2.4), letting T = (p1 <
po < -+ < pg). We call S,_1(C) and Si,(C) the lower and upper facets of the fragment
C},, respectively. Note that Sy(C) and S4(C) degenerate to the single points X and XT,
respectively. The vertical facets Fyy;(C) and G1,(C) (for all i) degenerate as well.

The horizontal facets are *

‘not fully seen” under the projection 7. To visualize all
facets of fragments of =, it is convenient to look at them as though “from the front

and slightly from below”, i.e., by use of the projection 7¢ : R¢ — R?~! defined by
x=(z(1),...,2(d)) — (z(1) — ex(d), z(2),...,2(d — 1)) =: n°(z) (6.3)

for a sufficiently small € > 0. (Compare 7¢ with 7.) Fig. 3 illustrates the case d = 3; here
the fragments of a cube C'= (X |T) with T' = (i < j < k) are drawn.
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Fig. 3. The fragmentation of cube C = (X | T).
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Using this projection, we obtain slightly slanting front and rear sides of objects in Q=.
More precisely, for a closed set U of points in Z = Z(n, d), let UST (U4 be the subset
of U “seen” in the direction ey + eey (resp. —eq — €eq ), where e; is i-th coordinate vector,
i.e., formed by the points z € (7€) ~!(2’) N U with z(d) minimum (resp. maximum) over
all 2’ € 7¢(U). We call it the e-front (resp. e-rear) side of U.

Obviously, Z&f = Z and Zerar = Z a1 Also for a cube C = (X|T) in Z, CoF =
C' and Co™* = C'** | As to fragments of C, their e-front and e-rear sides are viewed
as follows:

(6.4) forh=1,...,d, C;’fr is the union of C} and the lower facet Sj,_1(C) (degenerating
to the point X when h = 1); in turn, C;***" is formed by the union of C**" and
the upper facet Sy (C) (degenerating to the point XT when h = d).

So C’;’ﬁ U CL™ is just the full boundary of Cj;.
6.2. W-membranes

Membranes of this sort represent certain (d — 1)-dimensional subcomplexes of Q=. To
introduce them, we consider small deformations of cyclic zonotopes in R1 using the
projection 7€. More precisely, given a cyclic configuration = = (£;,...,&,) as in (2.1),
define

1/)2' = 71—(51) and 11/}16 = ﬂ_e(gi)a i=1,...,n.

Then ¥ = (¢1,...,1¢y) obeys (2.1) (with d—1 instead of d), and when e is small enough,
Ue = (¢5,...,905) obeys the condition (2.1)(b), though slightly violates (2.1)(a); yet
we keep the term “cyclic configuration” for W€ as well. Consider the zonotope in R
generated by ¢, denoted as Z¢(n,d — 1) (when it is not confusing).

Definition. A w-membrane of a cubillage Q on Z(n,d) is a (closed) subcomplex M of the
fragmentation Q= such that M (regarded as a subset of ]Rd) is bijectively projected by
€ onto Z¢(n,d — 1).

(Ctf. [5, Appendix C].) A w-membrane M has facets (of dimension d — 1) of two sorts,
called H-tiles and V-tiles. Each H-tile is a horizontal facet of some fragment (viz. the
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section Sy (C) of a cube C in @ at height h € [d — 1]). And V-tiles are vertical facets of
some fragments C;- (see (6.2)).

6.38. Acyclicity and the lattice structure of w-membranes

Let C(n,d) denote the set of all cubes in Z(n,d) (occurring in all cubillages there).
For C,C'" € C(n,d), we say that C immediately precedes C' if C™* and (C")' share
a facet (of dimension d — 1). Generalizing the known acyclicity property for cubes in a
cubillage, one can show the following

Proposition 6.1. The directed graph I',, 4 whose vertices are the cubes in C(n,d) and
whose edges are the pairs (C,C") of cubes such that C immediately precedes C' is acyclic.

(As a consequence, the transitive closure of this “immediately preceding” relation
forms a partial order on C(n,d).) Proposition 6.1 enables us to further construct a
partial order on the set of fragments for a cubillage @), which in turn is used to show
that the set of w-membranes in Q= forms a distributive lattice.

More precisely, given a cubillage @ on Z(n,d), consider fragments A = C= and
A" = (C")5 of Q=. Let us say that A immediately precedes A’ if the e-rear side of A and
the e-front side of A’ share a facet. In other words, either C' # C’ and A N (A") is
a V-tile, or C' = C’ and j =i + 1. The following is important for us.

Proposition 6.2. The directed graph I'g= whose vertices are the fragments in Q= and
whose edges are the pairs (A, A’) of fragments such that A immediately precedes A’ is
acyclic.

Proofs of Propositions 6.1 and 6.2 will be given in Appendix A.

From Proposition 6.2 it follows that the transitive closure of the immediately preceding
relation on the fragments of Q= forms a partial order; denote it as (Q=, <).

Let us associate with a w-membrane M of @ the (closed) region Q(M) of Z = Z(n,d)
between Z% and M, and let Q=(M) be the set of fragments in Q= lying in Q(M).
The constructions of 7¢ and M imply that M is the erear side of Q(M) (while Z
is its e-front side). This leads to the following property: for fragments A, A’ of Q=, if
A immediately precedes A’ and if A" € Q=(M), then A € Q=(M) as well (since the
common facet of A, A’ lies in (M) and belongs to the e-rear side of A). Then a similar
property for fragments A, A’ with A < A’ is valid as well. Hence Q=(M) is an ideal of
(Q=,<). A converse property is also true: any ideal I of (Q=, <) is expressed as Q= (M)
for some w-membrane M of @ (this M is the e-rear side of the minimal region of Z
containing Z & and I). Therefore (cf. [5, Appendix C]),

(6.5) the set MY (Q) of w-membranes of a cubillage Q on Z = Z(n,d) is a distributive
lattice in which for M, M’ € M¥(Q), the w-membranes M A M’ and M v M’
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satisfy QS(M AM') = Q=(M)NQ=(M') and Q=(M v M') = Q=(M)UQ=(M');
the minimal and maximal elements of this lattice are Z™ and Z7*®" respectively.

Suppose that M € M™(Q) is different from Z. Then Q= (M) # ). Take a maximal
(relative to the order < in Q) fragment A in Q=(M). Then A®™®" is entirely contained
in M. Indeed, if a facet F' € A®"?" lies in Z"*" then F is automatically in M. And if F’
is not in Z ™ then F is shared by A" and (A’)% for another fragment A’. Hence
A immediately precedes A’, implying that A’ lies in the region between M and Z ™',
Then F'is in M, as required.

For A as above, the set Q= (M) — {A} is again an ideal of (Q=, <), and therefore it is
expressed as Q=(M') for some w-membrane M’. Moreover, M’ is obtained from M by
replacing the disk A®™ by A% We call the transformation M + M’ the (geometric)
lowering flip on M using A, and call the reverse transformation M’ — M the (geometric)
raising flip on M’ using A. As a result, we obtain the following nice property.

Corollary 6.3. Let M be a w-membrane of a cubillage Q). Then there exists a sequence
of w-membranes My, My, ..., M, € MY (Q) such that My = Z%, My, = M, and for i =
1,...,k, M; is obtained from M;_1 by the (geometric) raising flip using some fragment

mn Q=.
6.4. Weakly r-separated collections via w-membranes

Now we throughout assume that r is odd and d = r + 2. Consider a cubillage ) on
Z = Z(n,d). Based on Theorems 1.1, 1.2 and Corollary 6.3, we establish the main result
of Sect. 6.

Theorem 6.4. For any w-membrane M of a cubillage Q on Z(n,d), the set V(M) of
vertices of M (regarded as subsets of [n]) constitutes a mazimal by size weakly r-separated
collection in 21" (where, as before, r is odd and d = r+2). In particular, all w-membranes
in Q have the same number of vertices, namely, Wy, g—2 (= Sn,d—2)-

Example. Fig. 4 illustrates a w-membrane M for (n,d) = (4, 3) for which V(M) is the
weakly separated collection W exposed in Example in Sect. 1; here there are ten V-tiles
and two H-tiles, which are shadowed. For simplicity we do not indicate a cubillage on
Z(4,3) whose fragmentation contains this membrane.

Proof. Let M € MY (Q) and consider a sequence Z% = My, My,..., M, = M as in
Corollary 6.3. Let Aq,...,A; be the fragments of @@ such that M; is obtained from
M;_1 by the raising flip using A;. The collection V(Z ) is weakly r-separated (as it
is strongly r-separated, cf. (3.1)), and our aim is to show that if V(M;_;) is weakly
r-separated, then so is V(M;), and |V (M;)| = |V (M;_1)| is valid.

To show this, consider w-membranes M, M’ of @ such that M’ is obtained from M
by the raising flip using a fragment A € Q<. Let A = C}- for a cube C = (X |T') with
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ViM)={0, 1, 4, 12,14, 23,24, 34, 123, 234, 1234}

Fig. 4. An example of w-membrane for d = 3 and n = 4.

T =(p1 <...<pg)),and h € [d]. By explanations in Sect. 3, C* and C** differ by
exactly two vertices; namely, V(CT) = V(C"™)U{tc} and V(C™*) = V(C'™)u{hc},
where tc = Xpapy ...pi—1 and he = Xpips...pa (cf. (3.3)). Define R to be the set of
vertices of C'"™ occurring in A, and let 7’ := (d — 1)/2. We consider three cases.

Case 1: h < r'. Since the vertices of A are formed by the sections S,_1(C) and Sp(C),
V(A) = (X | (hil)) U (X| (Z)) and R g V(Aﬁ") U V(Arear)

(cf. (6.1)). Also V(AT) C V(ASf) and V(A ™) C V(AS™) If h < ¢/, then all vertices
of A belong to C'™™; this implies V(A%%) = R = V(A®™ar). And if h = 7/, then the
only vertex of A not in R is t¢. Since t¢ € V(C’fr), tc belongs to AS™. But t¢ also lies
in the upper facet S, (C) (in view of |paps ...pa—1| = '), and this facet is included in
Acrear Hence to € AT N A9 implying V(Aevfr) = V(Aerear),

Case 2: h > r' + 2. This is “symmetric” to the previous case. If h > 7/ + 2, then all
vertices of A belong to C'™™  implying V(A%T) = R = V(AS™), And if h = 1/ + 2,
then A5 includes the lower facet S,/ 11(C), which in turn contains the vertex h¢ (since
|p1ps ... pa| =1 +1). Also he € V(C*2") implies he € V(A9*T), and we again obtain
V(Ae,fr) — V(Ae,rear).

Thus, in both cases the raising flip M — M’ using A does not change the vertex set
of the current w-membrane.

Case 3: h = r' 4+ 1. This case is most important. Now the lower facet Sp_1—,+(C) of A
contains t¢, while the upper facet Sp—,11(C) contains heo. Hence to € V(AST) and
he € V(AS™r), On the other hand, neither t¢ belongs to A®™* (= Areary S, 4 (C)),
nor h¢c belongs to AS™ (= AU S, (C)).

It follows that V(ASrear) = (V(AST) — {to}) U {hc}, and therefore the raising flip
M +— M’ using A replaces tc by hc, while preserving the other vertices of the w-
membrane. Since the vertices of A are of the form XS with S running over the r’- and
r’ + 1-element subsets of {p1,...,pq}, this vertex set includes {XS: S € ./\/L(IS,@)}
(which is contained in R and in M), where P = Papy4 - .. Pg—1 and é =pips...pq (i€,
tc = XP and he = XQ).

Now applying Theorem 1.2 to W :=V (M), X, ]5, é and NL(IS, @), we conclude that
W(M') is weakly r-separated, as required.

This completes the proof of the theorem. 0O
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It should be noted that any w-membrane in a cubillage on Z(n,3) can be expressed
as a quasi-combined tiling in the planar zonogon Z(n,2), and in this particular case, the
statement of Theorem 6.4 with r =1 is equivalent to Corollary 6.5 in [4].

Next, in light of the above discussion, given an odd r and n > r, we can specify three
classes W, ., W and W7  of weakly r-separated collections WV in 2l"l such that W
is maximal by inclusion, maximal by size, and representable, respectively. (Recall that
W is called representable if it can be represented as the vertex set of a w-membrane in
a cubillage on Z(n,r + 2); in particular, W is maximal by size.) We have the following

hierarchy:
WTL-,T 2 W;,r 2 W:L,r .
Theorem 6.4 together with (6.5) implies the following nice property of W7, .

Corollary 6.5. W . is a poset with the unique minimal element V(Z') and the unique

mazximal element V (Z ') in which any two neighboring elements are linked by a (raising
or lowering) combinatorial flip, where Z := Z(n,r + 2).

Indeed, for a cubillage Q on Z, let W(Q) be the set of collections W C 2I" such that
W = V(M) for some w-membrane M in (the fragmentation of) Q. Typically, the set
MY(Q) of w-membranes of @ is larger that W(Q) since no geometric raising flip on
MY (Q) occurring in Cases 1 and 2 of the proof of Theorem 6.4 changes the vertex set
of the membrane. On the other hand, each flip M — M’ in Case 3 of the proof induces
the combinatorial raising flip V(M) — V(M’) on W(Q), which replaces the set (vertex)
te by he for some cube C € Q. The fact that |tc| < |he| implies that the directed
graph T'(Q) on W(Q) whose edges correspond to such raising flips is acyclic. Also I'(Q)
is connected and has one minimal vertex (namely, V(Z)) and one maximal vertex
(V(Zr<*r)); this follows from similar properties of I'g= (defined in Proposition 6.2).
Combining the graphs I'(Q) over all cubillages @ on Z, we obtain an acyclic graph on
wa, giving rise to the desired poset.

A natural question is whether any two members of the set W' can be connected by
a sequence of flips. This is strengthened in the following

Conjecture 1. Let 7 be odd. Then any maximal by size weakly r-separated collection in
20" is representable.

Its validity together with Theorem 6.4 would imply W7 . = W . This has been
proved for r = 1 (cf. Theorems 3.4, 3.5 in [3] and Theorem 6.8 in [4]).

We finish the main content of this paper with one more aspect, as follows.

Remark 1. For a symmetric binary relation R on a set N, let G be the graph whose
vertices are the elements of N and whose edges are the pairs {u,v} of distinct vertices
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subject to uRv. Let C be the set of cliques in G (i.e., inclusion-wise maximal subsets of
vertices of which any two are connected by edge in G). Then C is said to be pure if all
cliques of G have the same size.

Recall that for an odd r, W,, , denotes the set of all maximal by inclusion weakly
r-separated collections in 2["). Tt was shown in [2] that W, ; is pure for any n (which
affirmatively answers Leclerc-Zelevinsky’s conjecture on maximal weakly separated set-
systems in [10]). In other words, W, 1 = W ; (= W/ ;). A reasonable question is:
whether W, ;. is pure when r > 37 It is not difficult to show that this is so if n —r <
2 (see [5]). On the other hand, it turns out that already Wg 3 is not pure. Here a
counterexample to the purity can be constructed as follows.

(6] consists of 64 sets, and a direct enumeration shows that exactly

The set-system 2
52 of them are formed by (a) intervals in the six-element set [6], and (b) 2-intervals
containing at least one of the elements 1 and 6; let S denote the set of these. One easily
shows that each member of S is weakly 3-separated from any subset of [6]. So there are

26 — 52 = 12 other subsets of [6]; these are:
(6.6) 24, 245, 25, 235, 35, 135, 1356, 136, 1346, 146, 1246, 246.

(Recall that a - - - b stands for {a,...,b}.) Let A be the collection formed by the members
of the sequence in (6.6) indicated in bold, i.e., A = {24, 35,1346}; these sets are weakly
3-separated from each other. Then SUA consists of 52 + 3 = 55 sets, whereas the
number sg3 = wg,3 is equal to (g) + ((15) + (g) + (g) + (2) = 57. So SUA is weakly
3-separated. Moreover, it is maximal by inclusion, since any element of (6.6) not in A
is not weakly 3-separated from some element of A (which can be verified directly). For
example, 245, 25, 235 are not weakly 3-separated from 1346. Thus, Wg 3 is not pure,
yielding Wg 3 # Wg 5.
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Appendix A. Proofs of two propositions on acyclicity

In Sect. 6.3 we stated two propositions on acyclicity for cubes and their fragments.
Their proofs can be found in our recent paper [5] (in Appendixes C and D there), but
in order to make our description more self-contained, below we give proofs, using some
stylistic modifications and improvements.

Proof of Proposition 6.1. Let C immediately precede C’, and let the cubes C, C’ and
the facet F := C*2* N (C")¥ be of the form (X |T), (X’|T") and (X | T), respectively.
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' I | — 5 XX
X=X'=X

Fig. 5. Cases (i), (ii), (iii), (iv) (from left to right).

Then T = T and T = T8 for some o, 8 € [n]. Four cases are possible (as illustrated in
Fig. 5):

(i) X =X =X;

(ii) X, X', X are different (then X = Xa = X'B);

(iii) X # X’ = X (then X = Xa);

(iv) X' # X = X (then X = X'8).

Let us associate with a cube C"" = (X" |T") a label w(C") € {0, 1, 2} by the following
rule:

(%) w(C")=0itn g X' T" w(C")=1ifneT"; w(C")=2ifn e X".
The following observation is the key.
Claim. For C,C’ as above, w(C) < w(C").

Proof of the Claim. We may assume that w(C) # w(C’). Then n € TUX UT'U X’ but
n belongs to neither T nor X N X'. This implies that either « = n or § = n (in view
of T=T—a=T — B). We use the following characterization of facets (in notation as
n (2.4)) of the front and rear sides of a cube, which is shown by arguing as in Sect. 3
(when proving (3.2)):

(A.1) for a cube C = (X|T) with T = (p; < --- < pa), a facet F;(C) is in C™ if and
only if d — i is even, whereas G;(C) is in C’fr if and only if d — 7 is odd.

Using this for C' and F' as above and considering the inclusion F' C C'*®") one can
conclude that if & = n, then the root X of F and the root X of C are different (taking
into account that n is the maximal element in 7). In turn, F C (C")¥ implies that if
8 =n, then X = X'. This leads to the following;:

(A.2) a = n is possible only in cases (ii) and (iii), whereas 5 = n is possible only in
cases (i) and (iii).

In particular, case (iv) is impossible (when w(C) # w(C")). As to the other three cases,
we obtain from (A.2) that
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(a) in case (i), w(C) =0 and w(C’) =1 (since n = € T');

(b) in case (i), w(C) = 1 (since n = a € T) and w(C’) = 2 (since X = Xa = X'
implies « € X');

(¢c) in case (iii), if @ = n then w(C) =1 and w(C’) = 2 (since X’ = Xa), and if  =n
then w(C) =0 and w(C’") = 1.

Thus, w(C) < w(C’) holds in all cases, as required. O

Now we finish the proof of the proposition by induction on n. This is trivial when
n = d, so assume that n > d and that the assertion is valid for (n/,d") with n’ < n.

Suppose, for a contradiction, that I',, 4 has a directed cycle C = (Cy, C1,...,Cy = C)
(where each C; immediately precedes C;y1). Then the Claim implies that w(C;) is the
same number ¢ for all ¢. Consider three cases (where C; = (X; | T;)).

Case 1: ¢ = 0. Then C is a directed cycle in I';,_; 4, contrary to the inductive assump-

tion.
Case 2: ¢ = 2. Define X/ := X; —n and C/ := (X/|T;),i=0,...,k. Then each C} is
a cube in Z(n — 1,d), and the sequence Cy, C1, ..., C}, forms a directed cycle in I',,_q_g;

a contradiction.

Case 3: ¢ = 1. Define T) := T, —n and C} := (X;|T}),i=0,..., k. Then each C/ can
be regarded as a cube in Z(n—1,d —1) (in view of |T/| = d — 1). Considering (A.1) and
using the fact that n is the maximal element in T}, one can conclude that if (Y'|U) is a
facet with n € U in C'*, then (Y |UN[n—1]) is a facet in (C/)*", and similarly for facets
in C°*" and (C/)™. Then the fact that C/°**"NC,T | is a facet (having n in its type) implies
that (C/)f N (CL ;)™ is a facet as well. This means that C],, immediately precedes
C!. Therefore, the sequence C},C}._,,...,C1,C} forms a directed cycle in I',_1 415 a
contradiction.

This completes the proof of the proposition. O

Proof of Proposition 6.2. For a fragment A = C}; of a cube C' = (X |T), denote |X|+
h —1/2 by £(A), called the mid-level of A.

Suppose that there exist fragments Ag, A1, ..., Ar = Ag forming a directed cycle in
I'g=. Consider two consecutive fragments A = A;_; and A’ = A;. Then the sides A®r?"
and AS' share a facet F, and either (a) F is a vertical facet of both (in terminology
of (6.2)), or (b) F is the upper facet of A and the lower facet of A’. Obviously, ¢(A’) =
£(A) in case (a), and £(A") = £(A) + 1 in case (b). This implies

(Do) < L(A1) <+ < U(Ag—1) S L(Ao).
Then all fragments A; have the same mid-level, and therefore each pair of consecutive

fragments shares a vertical facet. But this means that the sequence of cubes containing
these fragments forms a cycle in the graph I'j, 4, contrary to Proposition 6.1. O
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Appendix B. A concept of weak r-separation when r is even

Up to now, we have dealt with the weak r-separation when r is odd. In this section
we attempt to introduce and explore an analogous concept when r is even.

For A’, B’ C [n], we say that A" surrounds B’ from the right if max(A’ — B") >
max (B’ — A’).

Definition. For an even integer r > 0 and an integer n > r, sets A, B C [n] are called
weakly r-separated if they are r-intertwined with ¥ < r + 2, and in case 7 = r 4 2, either
(a) A surrounds B from the right and |A| < |BJ, or (b) B surrounds A from the right
and |B| < |A|. Accordingly, a set-system W C 2[" is called weakly r-separated if any
two members of W are such.

(Note that this matches the definition for r odd in the Introduction.)

Remark 2. In contrast to the odd case, the size | W| of a weakly r-separated collection
W C 2["] with 7 even can exceed the value s, (defined in (1.2)). The simplest example
is given by n = 7 + 2 and W = 2. Indeed, in this case s, , amounts to >_(("1%) : i =
0,...,7+1) =2"+2 -1, which is less than | W | = 2"+2. Observe that W has only one pair
{4, B} of (r + 2)-intertwined sets, namely, A = {2,4,...,r} and B = {1,3,...,r — 1}.
These A, B are weakly r-separated since |A| = |B|. (By the way, one can see that this W
represents the vertex set of a w-membrane in the fragmentation of the cube C = (@] [n]),

forming the trivial cubillage on Z(n,n).)

Thus, if one wished to get rid of exceeding sy, ., one should impose additional restric-
tions on W. The above example prompts an idea on this way.

Definition. Let us say that a pair {A, B} of subsets of [n] is a double r-comb if A, B are
(r + 2)-intertwined and |AAB| =r + 2, i.e., AAB consists of elements a1 < az < -+ <
ary2 of [n], one of A — B and B — A is formed by aj,as,...,a,41, and the other by
ag,ayq,...,0r+2 (Where AAB denotes the symmetric difference (A — B) U (B — A)).

A result involving a double r-comb and related neighbors is presented in the theorem
below. This is in the spirit of Theorem 1.2 (concerning an odd r), but now the situation
becomes more intricate.

More precisely, let ' := r/2 + 1, where r is even as before. Let P = {p1,...,p}
and @ = {q1,...,q} consist of elements of [n] such that p; < ¢1 < ... < p < gp.
Define the sets NT(P, Q) and N*(P, Q) of neighbors of P, Q in the same way as in (1.4)
and (1.5) (where now P, @ satisfy |P| = |Q| =7'). Let X C [n] - (PUQ) and let Y C [n]
be different from X P and X Q. We assert the following (cf. (5.1)).

Theorem B.1. Let r,n, 7", P,Q, X,Y be as above.
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1. Suppose that Y and XS are weakly r-separated for any S € /\ﬁ(R Q), but Y and
XP are not. If, in addition, Y and X P are (r + 2)-intertwined, then

(B.1) Y is equal to XQ U {a} for some element a € [n] — X PQ such that a > p;.

2. Suppose that Y and XS are weakly r-separated for any S € ./\N(P7 Q), but Y and
XQ are not. If, in addition, Y and XQ are (r + 2)-intertwined, then

(B.2) Y is equal to XP — b for some b € X such that b > p;.

(One can check that Y as in (B.1) (resp. (B.2)) is indeed weakly r-separated from any
member of NT(P,Q) (resp. N*(P,Q)) but not from X P (resp. XQ), and the essence of
the theorem is that there is no other Y # X P, X@Q with such a property.)

Proof. Let us prove assertion 1.

Analyzing the proof of Lemma 5.1, one can realize that it remains valid for correspond-
ing P,Q,X,Y when r is even as well. We further rely on this lemma, borrowing, with
a due care, terminology and notation from Section 5. In particular: when sets A, B are
not weakly r-separated, the pair {A, B} is called bad; T abbreviates the interval cortege
Z(Y, X P); the intervals in Z are viewed as ... < A;_1 < B; < A; < Bj41..., where
A; (By) stands for a Y-brick (resp. X P-brick). Also we may assume that Y N X = ()
(though Y and P need not be disjoint).

Since Y and X P are required be (r + 2)-intertwined, Z consists of ' Y-bricks and r’/
X P-bricks. So we may assume that Z is viewed as either

(V1) By < A < By <Ay <...< By < A, or
(V2) A1 < Ba<As < ...< By <A < Bpy1.

Next we consider two possible cases.

Case A: (xx) from Lemma 5.1 is valid. Then A; = {¢;} for each i. Hence Y — XP = Q
and |[Y — XP| =1 <|XP —Y]|. Suppose that (V1) takes place. Then Y-surrounds X P
from the right. This contradicts the condition that {Y, X P} is bad.

And if (V2) takes place, then p; ¢ XP —Y (since p; < ¢; and {¢1} = A;1). Hence
p1 € Y. For S := (P — p1)q1, the transformation X P — XS replaces the first brick
{1} of Z by {p1}, forming the first Y-brick of Z(Y, XS). Then |Z(Y,XS)| = ' + 2,
|XS| = |XP|, XS surrounds Y from the right, and therefore the badness of {Y, X P}
implies that of {Y, X S}; a contradiction.

Case B: () from Lemma 5.1 is valid. Then Y NP = (), and the fact that Z has exactly r/
X P-bricks implies that X = {); so we may ignore X in what follows. If (V2) takes place,
then X P surrounds Y from the right. Since each P-brick B; is a singleton, |P| = r’ < |V,
contradicting the condition that {Y, P} is bad.
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Now let (V1) take place. Then B; = {p;} for each i. Suppose that there is ¢; € @ such
that ¢; ¢ Y. Then either (a) g; lies in some Y-brick A;, or (b) no brick of Z contains
gi- In case (a), we have i = j (in view of p; < ¢; < piy1 and p; < A; < piy1, letting
prr+1 := n + 1). Moreover, min(4;) < ¢; < max(4;) (since both min(4;) and max(A;)
are in Y'). Taking S := Pg;, we obtain | Z(Y,S)| = |Z| + 2 (since P — S replaces A; by
the S-brick {¢;} and two Y-bricks). Hence {Y, S} is bad; a contradiction.

In case (b), three subcases are possible: either (bl) p; < ¢; < A;; or (b2) 4; < ¢; <
pi+1,or (b3) i =" and A, < ¢,. In these subcases, taking as S the neighbors (P —p;)g;,
(P — pi+1)qi, and Pq,, respectively, one can see that {Y; S} is bad.

Thus, @ C Y. Note that any Y-brick A; contains at most one element of @ (for if A;
would contain ¢;_1 and g; say, then A; should contain p; as well, which is impossible). It
follows that each A; contains exactly one element of @, namely, ¢;. Since {Y, P} is bad
and Y surrounds P from the right, there must be |Y| > |P| = v’. So at least one Y-brick
A; has size > 2. For such an A4, taking S := Pg;, one can see that |Z(Y,S)| = |Z|
and that Y surrounds S from the right. Then Y| < |S| (otherwise {Y, S} is bad). This
together with |Y'| > " and |S| = |P|+ 1 =7’ + 1 gives |Y| = 7’ + 1. The latter means
that there is exactly one brick A; of size > 2; moreover, |4;| = 2. Then A; = {¢;,a},
where a is as required in (B.1), yielding assertion 1 of the theorem.

Assertion 2 of the theorem can be shown by symmetry and we leave details to the
reader. O

Remark 3. Some neighbors of P, arising in connection with Theorem B.1 play an
especial role. More precisely, let Y = XQ U {a} be as in (B.1); then p; < a < p;j11
for some i € [r'] (letting p, 11 := n + 1). One can check that in the upper neighbor
collection {S € PUQ: S # P,Q, v < |S| < v + 1} (which includes NT(P,Q))
there is ezactly one set S such that {Y, XS} is a double r-comb; this is S = Pg;. (Then
XS-Y ={p1,...,prtand Y -XS ={q1,...,¢-1,0,Git1,- -, G~ }.) Symmetrically, for
Y = XP—basin (B.2), in the lower neighbor collection {S C PUQ : S # P,Q, ' —1<
|S| < '} (which includes N* (P, Q)) there is exactly one S such that {Y, XS} is a double
r-comb. Namely, if p; < b < p;11 (letting p,»y1 :=n+1), then S = Q — g;. (In this case,
Y -XS={p1,....pv}tand XS =Y ={q1,...,¢i-1,0,¢i1,- .-, ¢ }.)

The rest of this section is devoted to a geometric construction representing a class of
r-separated collections. This relies on Theorem B.1 and is in the spirit of the construction
from Sect. 6.4 (with r odd), though looks a bit more intricate. We will use terminology
and notation from Sect. 6.

As before, let r be even and v’ = r/2 + 1. For d := r + 2, consider a cubillage @) on
the zonotope Z = Z(n,d) and its fragmentation Q=. For each cube C = (X|T) € Q,
we distinguish two “central” fragments C7 and C7, ;. They share the middle horizontal
section Sg/2(C) (= CNH|x|4,), which contains the specified vertices tc = X P and h¢ =
XQ, where T=(p1 <q1 <...<pw<qn), P={p1,...,p} and Q = {qu,...,q~} (so
{tc, h¢} forms a double r-comb).
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Definitions. For a cube C' € @, the set C7 U CZ ;| is called the doubled fragment, or

the center, of C' and denoted by CZ,; the remaining fragments Cj; of C' (h # r',r' +1)
are called ordinary ones. By the enlarged fragmentation of () we mean the complex

generated by the centers and ordinary fragments of all cubes of @), denoted as QZ,, i.e.,

it is obtained from Q= by merging the pieces C7 and C7,, into one piece Cg,, for each

cube C' € Q. Depending on the context, we may also think of )7, as the collection of
doubled and ordinary fragments over all cubes of Q.

This gives rise to an important subclass of w-membranes. More precisely, when a w-

membrane M of @ is a subcomplex (of dimension d — 1) of Q3,, we say that M is an

en’
e-membrane. It is not difficult to show that a w-membrane M of this sort is characterized
by the property that no facet of M is the middle section of a cube of @, or, equivalently,
for each cube C' € (), M contains at most one vertex among t¢, he.

Like s- and w-membranes, the set of e-membranes of ) forms a distribute lattice. This

is based on the following

Proposition B.2. The directed graph I'q= whose vertices are the fragments in QZ, and
whose edges are the pairs (A, A’) of fragments such that A immediately precedes A’ (in
the sense that A©™ and (A') " share a facet) is acyclic. O

Proof. This is similar to the proof of Proposition 6.2 and is briefly as follows. Suppose
that fragments Ag, Aq,..., A = Ap of QF, form a directed cycle in I'g=. For each
i, let C; be the cube of @ containing A;. If C; = Cj;y1, then the height of A;;q is
greater than that of A;. Therefore, a maximal subsequence S of different cubes among
Co,C4,...,Cr_1 consists of more than one element. Moreover, consecutive cubes in §
share a (vertical) facet, whence S determines a directed cycle in I, 4, contradicting
Proposition 6.1. O

Thus, the transitive closure of the above relation on the fragments of @, forms a
partial order, denoted as <e,. As a consequence (cf. (6.5) and Corollary 6.3):

(B.3) For an e-membrane M of @, let QZ (M) be the collection of fragments of QZ
lying between Z and M. Then the set M®(Q) of e-membranes of a cubillage Q
on Z(n,d) is a distributive lattice, with the minimal element Z  and the maximal
element Z ™" in which for M, M’ € M®(Q), the e-membranes M AM' and MV M’
satisty Q, (MAM) = Qm(M)NQ, (M) and Qe (MVM’) = Q2 (M)UQS, (M),

(B.4) Let M be an e-membrane of Q). Then there exists a sequence of e-membranes
Moy, My, ..., My € M®(Q) such that My = Z% M;, = M, and fori = 1,... .k,
M;_4 is obtained from M; by the lowering flip using some maximal (w.r.t. <epn)
fragment A in QZ (M;) (in the sense that A“™ C M,;, and M;_, is obtained

en

from M; by replacing the disk A®™¥ by A&,
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Based on the above properties, we obtain a geometric result which can be viewed, to
some extent, as a counterpart of Theorem 6.4 (concerning the odd case).

Theorem B.3. Let r be even and d :=r + 2. Suppose that a cubillage Q on Z = Z(n,d)
possesses the property that

(P) no e-membrane of Q has a pair of vertices forming a double r-comb.
Then for any e-membrane M of Q,

(i) the set V(M) of vertices of M (regarded as subsets of [n]) is weakly r-separated;
(i) [V(M)] = sny-

Proof. We argue as in the proof of Theorem 6.4. For M € M®(Q), consider a sequence
Z = My, My, ..., M, = M of e-membranes of Q as in (B.4). Since Z satisfies (i), (ii),
it suffices to prove the following assertion.

(B.5) For M, M’ € M®°(Q), let M’ be obtained from M by the raising flip using a

en?’

(doubled or ordinary) fragment A of QZ,, and suppose that M satisfies (i), (ii).

Then M’ satisfies (i), (ii) as well.

To show this, assume that A belongs to a cube C' = (X|T') € Q. When A is ordinary,
ie, A=C; withh <7’ —1orh>7r"+2 (where v’ =r/2 + 1), then V(M') = V(M),
and we are done (cf. the explanations in Cases 1 and 2 of the proof of Theorem 6.4).

So let A be the center CZ,, of C and let T' = (p1 < ¢1 < ... < ppr < g). The
raising flip using A replaces in M the side AST by A®™2 One can see that the vertex
te of C is in AS™ by not in A9 while h¢ is in AS™ by not in AS" and that the
other vertices of A and A’ coincide. Therefore, the flip replaces tc = X P by h¢ = XQ,
yielding V(M') = (V(M)—{tc})U{hc}, where P = {p1,...,pr} and Q = {q1,..., ¢ }.

We have |V(M')| = |[V(M)[; so M’ satisfies (ii). Suppose, for a contradiction, that (i)
is false for M’, i.e., there are two vertices of M’ that are not weakly r-separated from
each other. Then one of them is X @, and the other, Y say, belongs to M and differs
from X P. By (i) for M, the vertex Y is weakly r-separated from XS for each neighbor
S € NH(P,Q). (Note that XS lies in A even if |S| = r’.) So we can apply assertion 2
of Theorem B.1 and conclude that Y is viewed as in (B.2). But then, as mentioned
in Remark 3, there is S € N*(P,Q) such that {Y, XS} is a double r-comb; namely,
Y=XP—-band S =@ — q;, where p; < b < p;4+1. Hence M contains a double r-comb,
contrary to condition (P).

Thus, (B.5) is valid, and the theorem follows. O

Remark 4. By the construction of an e-membrane M of a cubillage @), M has no double
r-comb of the form {tc, ho} for a cube C of Q). However, a priori it is not clear whether
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M is free of double r-combs at all. We conjecture that this is so for any e-membrane,
i.e., property (P) holds for any cubillage Q. Its validity would give a strengthening of
Theorem B.3. We state it as follows:

Conjecture 2. For r even, the vertex set V(M) of any e-membrane M of an arbitrary
cubillage @ on Z(n,r + 2) gives a weakly r-separated collection.

(Note that such a V(M) is automatically of size s,,, by explanations above.) It is

tempting to conjecture a sharper property (which is just a direct analog of Theorem 6.4),

by claiming that V(M) is weakly r-separated for any w-membrane M of a cubillage Q

on Z(n,r+2) (where |V(M)| may exceed s, ), but we do not go so far at the moment.
We finish the paper with a counterpart of Conjecture 1 from Sect. 6.4:

Conjecture 3. For 7 even, the maximal size of a weakly r-separated collection W C 20"
without double r-combs is equal to s, , and such a W with |W| = s,,, is representable,
in the sense that there exists a cubillage Q on Z(n,r + 2) and an e-membrane M of Q
such that V(M) = W.
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