
ISSN 0965-5425, Computational Mathematics and Mathematical Physics, 2023, Vol. 63, No. 3, pp. 491–503. © Pleiades Publishing, Ltd., 2023.
Russian Text © The Author(s), 2023, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2023, Vol. 63, No. 3, pp. 517–530.

INFORMATICS
On Stable Flows and Preflows
A. V. Karzanova,*

aCentral Institute of Economics and Mathematics, Russian Academy of Sciences, Moscow, 117418 Russia
*e-mail: akarzanov7@gmail.com

Received August 11, 2022; revised August 26, 2022; accepted November 17, 2022

Abstract—We propose a new algorithm of finding a stable f low in a network with several sources and
sinks. It is based on the idea of preflows (applied in the 1970s for a faster solution of the classical max-
imal f low problem) and has time complexity for a network with vertices and edges. The
obtained results are further generalized to a larger class of objects, the so-called stable quasi-flows with
bounded deviations from the balanced relations in nonterminal vertices.

Keywords: stable f low in a network, stable allocation, preflow, quasi-f low
DOI: 10.1134/S0965542523030077

1. INTRODUCTION
The field of theoretical and applied problems on stable contracts is a subject of an intensive study in

mathematical economics, game theory and combinatorial optimization, and numerous works has been
devoted to this field during last several decades. The classical work on stable marriages (SM) due to Gale
and Shapley [1] has served as a starting point of many subsequent researches.

According to one widespread formulation of that problem, one considers a bipartite graph ,
and for each vertex , there is given a (strict) linear order on its incident edges. (A bipartite graph con-
sidered in [1] is assumed to be complete, but this is not so important. In a popular old interpretation the
edges of represent possible marriages between “men” and “women”, and the order indicates the
preferences of a person , namely: for edges and , if , then prefers the alliance with

 to that with .) In the problem one requires to find a matching which is stable with respect to
all these orders. This means that for any edge in , there exists an edge such that and
share a vertex and there holds . It was shown that a stable matching in a bipartite graph (equipped
with linear orders on the vertices) always exists and that it can be constructed by a combinatorial algorithm
having a linear upper bound on the number of operations (viz. running time, complexity) , where

 and are the numbers of vertices and edges in , respectively.
Subsequent works of many authors have explored various generalizations of problem SM. One can dis-

tinguish two ways of generalizations related to graphs (leaving aside settings where more than two “agents”
may be involved in a contract, or where the preferences could be given in a different manner, e.g. by use
of a choice function). One of them is to admit arbitrary, not necessarily bipartite, graphs . The corre-
sponding analog of problem SM, called the stable roommates problem, was well studied by Irving in [2]
where a linear complexity algorithm was devised that either constructs a stable matching in or proves
that there is none. Important additional structural and algorithmic results were presented in [3].

Another type of generalizations, which is more interesting for us here, remains the graph to
be bipartite but adds numerical parameters. Among the problems of this type, a quite general one is the
so-called stable allocation problem (SA) introduced and studied by Baiou and Balinski [4]. Here “alloca-
tion” means an assignment to each edge a value not exceeding a prescribed capacity ,
and at the same time, for each vertex the sum of assignments on the edges incident to should not
exceed a prescribed “quota” . (In case of SM, all and are ones, and each takes value 0
or 1. In a general case of SA, the number on an edge can be meant, for example, as the share
of participation of the “worker” in the “job” .)

In [4] it is proved that SA is solvable for any nonnegative real-valued (and has an integral solution
 when are integer-valued), and a strongly polynomial solution algorithm is proposed (i.e., an algo-

()O nm n m

= (,)G V E
v

v
<

G
v

<
v v=e u v' =e w

v
< 'e e v

u w ⊆M E
e −E M ∈'e M e 'e

v
v

' <e e

+()O n m
n m G

G

G

= (,)G V E

∈e E ≥() 0x e ()c e
∈ ,Vv v

v()q ()c e v()q ()x e
()x e v=e u

u v

,c q
x ,c q
491

492 KARZANOV
rithm whose running time depends only on the graph size and is expressed by a polynomial in). Dean
and Munshi [5] developed an improved version of the algorithm from [4] that constructs a solution in

 time; moreover, they showed that one can achieve even the better time bound if one
applies, for a number of procedures, certain powerful data structures, such us dynamic and self-adjusting
trees elaborated by Sleator and Tarjan [6, 7]. (This gives a theoretical acceleration, but an algorithm using
such structures are cumbersome and could hardly be applied for practical purposes.)

In its turn, problem SA can be represented as a special case of the stable flow problem (SF). The latter
was stated by Fleiner [8] in 2010th (as an extension of Ostrovsky’s problem [9] concerning acyclic net-
works with unit capacities). Here one is given a network consisting of a directed graph with
capacities of edges and two distinguished vertices (“terminals”) and . For each inner ver-
tex , two linear orders are given, one on the set of its entering (incoming) edges, and the other
on the set of its leaving (outgoing) edges. A (feasible) flow is a nonnegative real function on the edges
satisfying the upper capacity constraints and having zero excesses at all inner vertices, where by an excess
at a vertex one means the difference between the total f low on the entering edges and that on the
leaving edges at . (In applications an inner vertex can be interpreted as a “player” or “trader” or “agent”
who after having received some amount of goods through the entering edges, is sending this amount fur-
ther through the leaving ones, relying on his/her utility rule depending on the above mentioned orders.)
A flow is regarded as stable if, roughly speaking, it does not admit local improvements using “unsaturated
paths”; a precise definition will be given in Section 2.

There is a close relation between problems SA and SF. Indeed, problem SA with a bipartite graph
 is reduced to problem SF with the graph obtained from (whose edges are directed from

 to) by adding two terminals and , the edges with the capacities for vertices from the
part , and the edges with the capacities for vertices from the part .

On the other hand, Fleiner [8] showed that problem SF with a graph can in turn be reduced
to problem SA with some graph obtained by splitting the vertices of into pairs and adding new
edges. As a result, for any network, the existence of a stable f low was established (and an integral one when

 is integer-valued), and a possibility of constructing such a f low by use of algorithms for SA, yielding
complexity of a similar kind.

Subsequently there appeared direct algorithms of finding a stable f low (without appealing to SA).
Recently Cseh and Matuschke [10] proposed a direct algorithm for a network with one source and one
sink, which has complexity and is based on a combination of ideas of Ford–Fulkerson’s method
for the maximal f low problem and the “deferred acceptance method” originated in Gale and Shapley [1].

In this work we present an alternative algorithm to find a stable f low in a network with
arbitrary sets of sources and sinks T, assuming (for simplicity) that there are no edges entering sources
or leaving sinks. This algorithm is direct and purely combinatorial (neither appealing to SA nor using
sophisticated data structures); it exploits the idea of preflows. Recall that a preflow in a network is a non-
negative function on the edges that is bounded by the capacities and has nonnegative excesses at all inner
vertices. (This notion was introduced in [11] and used in the max flow algorithm developed there.) Note
that preflows were used earlier in [12] to find a stable f low in a network with integral capacities in a
pseudo-polynomial time (i.e., with a time bound depending linearly on the sum of capacities).

Our algorithm has basic and modified (accelerated) versions. Both start with constructing a certain ini-
tial stable preflow, and on each subsequent iteration, the current stable preflow is updated with the aim of
getting rid of positive excesses in inner vertices. As soon as the excesses of all inner vertices become zero,
a required stable f low is constructed (and the f low is integral when the capacities с are integer-valued).
The basic algorithm is finite for any nonnegative real capacities . The modified algorithm is strongly
polynomial; it applies additional transformations and constructs a stable f low in time (like the
algorithm in [10]).

Then we consider a more general problem in a network in which for each inner vertex
, there are given two parameters and and it is required to find a stable “quasi-flow”

satisfying the constrains of the form . (This turns into a stable f low when .)
We show that such a “quasi-flow” does exist and it also can be found in time. (In applications the
number can be thought of as the permission to the “agent” to manage on his own a part of the
received goods not exceeding , while the number as the permission to involve from “outside”
additional goods of the amount not exceeding .)

,n m

()O nm (log)O m n

= (,)G V E
≥() 0c e ∈e E s t

∈ −v { , }V s t
f

v vex ()f
v

�1 2= (,)G V V E G
1V 2V s t (,)s u ()q u u

1V v(,)t v()q v 2V
= (,)G V E

G (| |)O V

c

()O nm

= (, , ,)N G S T c
S

c
()O nm

= (, , ,)N G S T c
v β ≥v() 0 γ ≥v() 0 f

−β ≤ ≤ γv v v() ex () ()f β γ, = 0
()O nm

γ v() v

γ v() β v()
β v()
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol. 63 No. 3 2023

ON STABLE FLOWS AND PREFLOWS 493
This paper is organized as follows. Section 2 contains basic definitions and exact formulations of prob-
lems SF and SA. In Section 3 we describe the basic algorithm of finding a stable f low in a network by use
of preflows and show its finite convergence (Proposition 1). The modified version of the algorithm, hav-
ing complexity , is described in Section 4. Section 5 generalizes the obtained results to stable pre-
flows and quasi-f lows with restricted excesses (Propositions 3 and 4). In the final Section 6 we discuss
three additional properties, namely: (1) the maximum preflow value (i.e. the total excess in the sinks)
among the stable preflows is achieved by a stable f low; (2) all stable f lows in a fixed network have the same
value; and (3) the stable f lows form a lattice. (Properties 2 and 3 are shown in [8] via a reduction to the
corresponding properties for problem SA; we give simple proofs using direct constructions.)

2. DEFINITIONS AND SETTINGS
We consider a network consisting of a directed graph (without loops and

multiple edges), distinguished disjoint subsets of vertices (sources) and (sinks), also called terminals,
and a function of capacities of edges. (Hereinafter and are the sets of nonnegative reals
and integers, respectively.) For a vertex let and denote the sets of edges entering and
leaving , respectively. To simplify our description, we throughout assume that

(2.1)

Definition 1. A function is called feasible (with respect to) if it satisfies the capacity con-
straints for all edges . Define the excess of at a vertex by

A feasible function is called a preflow in (following terminology from [11]) if it has a nonnegative
excess at each vertex . A flow (from to) is a preflow having zero excesses at all
inner (nonterminal) vertices , and its value is defined to be .

A path in is a sequence , where is an edge connecting vertices and .
An edge in is called forward if , and backward if . (We usually denote an edge leav-
ing and entering as , rather than .) A path is called directed if all its edges are forward, and simple
if all its vertices are different. The reversed path is denoted as . A path from a vertex

 to a vertex may be called a – path. Speaking of a path, unless otherwise is explicitly said, we assume
that it is nontrivial, i.e., it has at least one edge.

For a feasible function , an edge with (;) is called saturated (respec-
tively, unsaturated; free (of)). A path is regarded as unsaturated if all its edges are such.

In the problem that we consider each inner vertex of a network is endowed with a linear (total
strict) order on the set , and a linear order on the set . They are interpreted as “preference
relations”; namely, means that the vertex (“agent”) prefers the edge to ; in this case, we will

also say that is located in before, or earlier than, or on the left from , and accordingly, is after,

or later than, or on the right from . In accordance with the order , the set is arranged as a double-
linked list; thus, the first (last) element in the list is most (respectively, least) preferable. And similarly for
the order .

Definition 2. A f low in a network N, with order equipments on the vertices as mentioned above, is
called stable if each unsaturated directed path satisfies at least one of the following
two conditions (where the case is allowed):

(2.2)

(2.3)

()O nm

= (, , ,)N G S T c = (,)G V E
S T

+→ R:c E +R +Z

∈ ,Vv δ v
in() δ v

out() v

v

δ ∅ ∀ ∈ δ ∅ ∀ ∈in out() = and () = .s s S t t T

+→ R:f E c
≤() ()f e c e ∈e E f ∈v V

∈δ ∈δ

− 
v v

v

in out() ()

ex () := () ().f
e e

f e f e

f N
≥vex () 0f ∈ −v V S S T f

∈ − ∪v ()V S T val()f
∈ex () := ex ()f ft T

T t

G v v v…0 1 1= (, , , , ,)k kP e e ie −v 1i vi

ie P −v v1=i i ie −v v 1=i i ie
u v vu v(,)u

−v v v…1 1 0(, , , , ,)k k ke e −1P
u v u v

f e () = ()f e c e () < ()f e c e () = 0f e
f

v N
−
v

< δ v
in() +

v
< δ v

out()
−
v

< 'e e v e 'e

e δ v
in() 'e 'e

e −
v

< δ v
in()

+
v

<
f

v v v…0 1 1= (, , , , ,)k kP e e
v v0 = k

∈ δ
0 0

out
0 1

the first vertex is inner and is dominated at ;

this means that each edge () later than is free of ;

P

e e f

v v

v

∈ δ
v v

v
in

the last vertex is inner and is dominated at ;

that is, each edge () later than is free of .
k k

k k

P

e e f
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol. 63 No. 3 2023

494 KARZANOV
In particular, there is no unsaturated directed path from to . A preflow is called stable in the analo-
gous case.

We are interested in the stable flow problem (SF): given a network N, find a stable f low in it. Fleiner [8]
established that this problem is always solvable, and furthermore, the property of integrality takes place: if
a network is integral (in the sense that), then there exists an integral sta-
ble f low.

This is proved in [8] by a reduction of problem SF in to the stable allocation problem (SA) in a bipar-
tite graph with weights on the edges and “quotas” on the vertices

. (Strictly speaking, [8] deals with the case when and condition (2.1) is not imposed;
however, the above-mentioned facts are valid for our case as well.) Also the reduction is linear in the input
graph size, namely: and , and preserves the integrality: and are integral
when so is . Problem SA was introduced and studied in [4] where the solvability for any bipartite network
and the integrality property were proved and a solution algorithm was devised.

As is mentioned in the Introduction, it is shown in [5] that by use of sophisticated data structures, the
so-called dynamic and self-adjusting trees, the stable allocation problem in a graph with vertices and
edges can be solved in time (but without using those, one can obtain time). This, due to
the above-mentioned reduction, leads to a similar algorithmic complexity for problem SF as well. A direct
algorithm for SF in case proposed in [10] has complexity .

In the present paper we device an alternative direct algorithm of finding a stable f low in a network
 (subject to (2.1)) based on a preflow method. In the next section we describe the basic

version of our algorithm (finite for any), and in Section 4, the modified version (with running time
).

3. BASIC ALGORITHM

Our algorithm of finding a stable f low in a network consists of a sequence of
iterations; as a rule (but not always) an iteration has two phases: balancing and pushing (similar to the struc-
ture of a stage (“big iteration”) in the max flow algorithm in [11]). Each iteration transforms one blocking
preflow into another, and the process terminates when the current preflow becomes a f low. One should
emphasize that the term “blocking” here is borrowed from the language in [11] and has another meaning
compared with what is usually understood in problems on stability.

Definition 3. For a preflow in a network N, let us say that a vertex is excessive if . A pre-
flow is called blocking if every directed path from to has a saturated edge. If, in addition, any
directed path going from an excessive inner vertex to has a saturated edge, then we call fully blocking.

Remark 1. A fully blocking preflow is not necessarily stable, and vice versa. At the same time, any stable
flow is blocking (and automatically fully blocking). In general, already in the case of ranged acyclic net-
works, to find a stable f low looks a somewhat more complicated task than the problem of finding a block-
ing f low. The latter problem is solved on a stage of the algorithm in [11] in time, which is faster than
the complexity of the algorithm for SF in Section 4.

3.1. Initial Iteration

At this and subsequent iterations, we maintain two sets and which are arranged as double-
linked lists and formed by excessive inner vertices of the current preflow. Also for each inner vertex , there
is an element which either is void, denoted as , or is a specified unsaturated edge in ,
called the active edge at . In the beginning one puts , and for each ,
one assigns as the active edge the first (most preferable) edge in .

The initial iteration consists of only the pushing phase, which starts with the trivial blocking preflow f,
defined as for all edges , , and for the remaining edges . Each inner
vertex connected by an edge with a source is inserted in the list (since the excess at
became positive). Then we scan vertices of the current list , as follows.

S T f

= (= (,), , ,)N G V E S T c +∈ Z
Ec

N
' = (', ')G V E ≥'() 0c e ∈ 'e E ≥v() 0q

∈v 'V ∪| | = 2S T

| ' | = 2| |V V +| '| < | | 2| |E E V 'c q
c

n m
(log)O m n ()O nm

| | = | | = 1S T ()O nm

= (, , ,)N G S T c
c

()O nm

= (= (,), , ,)N G V E S T c

f v vex () > 0f

f S T
T f

2()O n
()O nm

Old New
v

v�()e ∅v�() = { }e δ v
out()

v ∅Old := New := ∈ − ∪v ()V S T
δ v

out()

() := ()f e c e ∈ δout()e s ∈s S () := 0f e e
v v=e s ∈s S New v

New
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol. 63 No. 3 2023

ON STABLE FLOWS AND PREFLOWS 495
For a current vertex , we update on so as either to reduce the excess at to zero, or
to saturate all edges in (or both). More precisely, the edges are handled following the
order (“from left to right”), starting from the active edge . If the current excess is
still nonzero, then we update . If the new excess becomes zero, then the treat-
ment of finishes; otherwise we proceed to the next edge in the list , and so on. Also when changing

 on the edge , if the vertex (in which the excess increases) is contained neither in nor in
, then we add to the current list New.

Upon termination of the work with , this vertex is deleted (maybe temporarily) from the list , and
if the excess at remains nonzero, then is inserted in the list . The new active edge is assigned
to be the leftmost unsaturated edge in , and if all edges in it are saturated (in particular, when

), then one puts . Then we proceed to handling another vertex in , and so on.
The iteration terminates when the set New becomes empty.

Note that during the iteration one and the same vertex may appear and disappear several times in
. However, we shall show later that the initial (and every subsequent) iteration always terminates. One

can see the following:

(3.1)

From (3.1) it is easy to conclude validity of (2.2) for all unsaturated directed paths; therefore, the initial
preflow is stable.

In the rest of this section we first describe the balancing phase for a general iteration. Then we specify
the conditions to which a current preflow should satisfy at the moment of beginning the pushing phase.
Finally, we describe the pushing phase for a general iteration.

3.2. Balancing
This procedure is performed when the set of excessive inner vertices for the current preflow is

nonempty (while). It applies to one chosen vertex . Define () and let

be the last (rightmost, least preferable) edge in with . We decrease on by .
If the excess at becomes zero (in case), the procedure finishes. Otherwise (when) we
take the last edge with for the updated and decrease on in a similar way. And so on until
the excess at becomes zero.

For each edge where decreases under the balancing at , we examine the vertex . If is inner
and not contained in , then we add it to the list . (Thus, is formed by the set of new excessive
vertices appeared as a result of decreasing on edges .) The leftmost (chronologically last) edge in

 where was decreased is called critical and denoted by . This edge along with all edges
 in after it are labeled as closed (to avoid any further increase only!). At the same time, if such

an edge is the current active edge in , then we assign the new active edge in it to be the first after
 edge in that is not closed (under earlier balancing phases), and if it is absent, then one puts

.
Remark 2. During the algorithm one should maintain the values of excesses at the inner vertices (cor-

recting each of them in time whenever changes).
We assume (by induction) that upon termination of the balancing phase at a vertex , the current func-

tion is a preflow, which need not be fully blocking but satisfies the following three properties.

(C1) Each unsaturated edge in , , is closed.

∈v New f δ v
out() v

δ v
out() ∈ δout()e v

+
v

< v�= ()e e Δ v:= ex ()f

+ Δ() := min{ (), () }f e c e f e
v δ v

out()
f v=e w w Old
New w

v New
v v Old v�()e

δ v
out()

vex () > 0f ∅v�() := { }e New

v

New

∅ δ ≠ ∅� �

out

Upon termination of the initial iteration, the resulting function is a fully
blocking preflow possessing the property that: for each inner vertex ,

if () = { }, then all edges in () are saturated, whereas if () { },

then all

f
f

e e

v

v v v

δ

∅�

outedges in () earlier than are saturated, but all edges after
are free of . Also all excessive inner vertices (and only these) are

included in the list Old, and for such a , we have () = { }.

e
e f

e

v

v

v v

f

Old f
∅New = ∈v Old Δ v:= ex ()f >0 e

δ v
in() () > 0f e f e Δmin{ , ()}f e

v Δ ≤ ()f e Δ > ()f e
'e (') > 0f e f f 'e

v

v=e u f v u u
Old New New

u f vu
δ v

in() f vˆ ˆ= ()e e
v=e u δ v

in()
e δout()u

e δout()u
∅�() := { }e u

(1)O f
v

f

δout()s ∈s S
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol. 63 No. 3 2023

496 KARZANOV
(C2) If for an excessive inner vertex , the set contains an unsaturated edge which is not closed,
then .

(C3) For each inner vertex , there holds: (a) if the active edge in is not void: , then
this edge is unsaturated and not closed, and all edges in after it are free of , while each edge before
it is saturated or closed (becoming so after the last or earlier balancing); (b) if , then all edges in

 are saturated or closed; and (c) if has ever been balanced, then , and the set pos-
sesses the critical edge , which is unsaturated and all edges in after it are free of f.

3.3. Pushing (after Balancing at a Vertex)

This phase consists in increasing the current preflow on some edges, aiming to make it fully block-
ing; this is close to the construction of the initial preflow but has some features. The phase immediately
terminates when the beginning set is empty. Otherwise it starts with choosing a vertex , and
we try to reduce the excess at as much as possible. To this aim, we handle edges in following the
order and skipping the closed ones. This starts with the active edge (if , then we
simply transfer the vertex from to and the work with finishes). Similar to the initial iteration,
for the current edge , we update , where is the current excess at , and
simultaneously add the vertex to the set unless it is already contained in (for the excess
at increases). If the new excess at is still nonzero, then we proceed to the next non-closed edge in

, and so on. If the excess becomes zero, then the work with finishes and we delete from .
When all edges are already handled but the excess at remains nonzero, then is transferred from
to . After finishing the work with and properly updating the active edge in (getting
which satisfies (C3a, C3b), we choose another vertex in the current , and so on. The phase terminates
when the current set becomes empty.

Upon termination of the pushing phase (which is finite by Prop. 1 below) the resulting is again a pre-
flow, and one can see that continues to satisfy properties (C1) and (C3), whereas (C2) is replaced by the
following property (cf. C3b).

(C2') Each excessive inner vertex is contained in , and takes place.
Lemma 1. The preflow obtained in the pushing phase is stable and fully blocking.
Proof. Consider an unsaturated directed path . Suppose that either or

is not dominated at (when is inner). Then the edge is closed (in view of (C1) and (C3)). This
implies that the vertex was handled at some balancing phase, so it was excessive before that. Applying
(C2') and (C3b) to the vertex and preflow at the moment just before the balancing, we conclude that
the edge should be closed to this moment. Therefore, is closed for as well. Arguing so, step by step,
we can conclude that the edges are closed as well. (The case is impossible since at the
moment of balancing at , this vertex was excessive, and the situation that is unsaturated is impossi-
ble.) Since is closed, it must either occur in after the critical edge or coincide with the latter.
Then it follows from (C3c) that all edges in after are free of . Therefore, is dominated at ,
yielding (2.3). This implies that is stable.

The fact that is fully blocking is deduced from (C1), (C3), (C2') by similar reasonings. Q.E.D.
Using the above-mentioned properties of a preflow obtained at the pushing phase, one can conclude

that the balancing phase of the next iteration produces a preflow satisfying properties (C1)–(C3). This
implies the correctness of the basic algorithm.

3.4. Convergence of the Basic Algorithm
From Lemma 1 we obtain
Corollary 1. If for the current preflow at an iteration, the excesses of all inner vertices become zero,

then is a stable f low.

u δout()u
∈ Newu

u δout()u ≠ ∅�() { }e u
δout()u f

∅�() = { }e u
δout()u u ∅�() = { }e u δin()u

(̂)e u δin()u

v

f

New ∈ Newu
u δout()u

+<u ≠ ∅�() { }e u ∅�() = { }e u
u New Old u

=e uw + Δ() := min{ (), () }f e c e f e Δ u
w New ∪Old New

w u
δout()u u u New

u u New
Old u �()e u δout()u �()e u

New
New

f
f

u Old ∅�() = { }e u
f

…0 1 1= (, , , , ,)k kP u e u e u ∈0u S P
0u 0u 1e

1u
1u 'f

2e 2e f
…3, , ke e ∈ku T

−1ku ke

ke δin()ku (̂)ke u
δin()ku ke f P ku

f
f

f
f

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol. 63 No. 3 2023

ON STABLE FLOWS AND PREFLOWS 497
In this case is a required solution of the problem and the algorithm finishes. Since each application
of balancing or pushing can either decrease or increase the number of excessive inner vertices, in order to
establish the finiteness of the algorithm we need an additional analysis.

For a current , let us call an edge middle if it is neither free nor saturated: . Let
 denote the subgraph of induced by the middle edges. In particular, contains all non-free

critical edges. We also add to each free active edge (recall that any active edge is non-closed and unsat-
urated). We can observe the following.

(1) For an edge , let us call the moment when becomes saturated the event S, and the moment
when becomes free (after reducing a positive value of to zero) the event F. The changes at are of “sin-
gle-peak character”: at a first stage is monotone increasing under pushing at , and after the first
decrease of the edge becomes closed and further can only decrease (under balancing at).

(2) An edge can be added to the graph at most two times: first when becomes active, and second
when becomes critical.

Let , , denote, respectively, the numbers of events , events , and events consisting of
changes of the graph . From the observations above it follows that

(3.2)

Thus, to analyze the convergence of the algorithm, one should estimate the number of consecutive itera-
tions when none of the events and happens. To this aim, we notice the following.

(3) During the algorithm, for each inner vertex , the active edge in can be shifted only to the
right (when pushing at), whereas the critical edge in only to the left (when balancing at); also
the status of such edges changes: for the old active edge, the event happened or the edge became closed,
and for the old critical edge, the event did. In view of this, denoting by and
the sets of active and critical edges in , respectively, we obtain that

(3.3)

One can also see that these sets give a partition of :

(taking into account (C3) and the fact that a critical edge becomes closed and could no longer be
active in). Therefore, in case of preserving together with preserving the same partition
on consecutive iterations, any change of the preflow on an iteration consists in only one decrease at
some critical edge, or in one or more increases at some active edges (which preserve). Note also that an
active edge can be turned into a critical one, but not conversely. These facts together with properties (3.2)
and (3.3) allow us to obtain the following

Proposition 1. The above basic algorithm of finding a stable flow in a network is finite, and
in case of integer-valued capacities , it finds an integral stable flow.

Proof. One should show the finiteness of a sequence of consecutive iterations on which both and
 preserve. Let be the minimal positive excess among inner vertices in the beginning of this sequence.

Assume by induction that before a change of the preflow on an iteration of this sequence, the set
 of excessive vertices is nonempty and (): each of them has the excess at least . If at this

moment the balancing operation at a vertex takes place, then, in view of keeping , this operation is
reduced only to decreasing by the value at the critical edge . This turns the
excess at to zero and causes growing the excess at the vertex by the same amount ; therefore, property
() is valid for the updated (in case the set simply decreases by one element). And
in case of performing the pushing operation at some inner vertex with the active edge , then, in
view of keeping , this operation is reduced to increasing on by the value .
This turns the excess at to zero and increases the excess at the vertex by ; therefore, property () con-
tinues to hold for the new (in case the set decreases by one element).

f

f e 0 < () < ()f e c e
Γ ΓΓ = (,)V E G Γ

Γ

v=e u e
e f e

()f e u
()f e e ()f e v

e Γ e
e

αS αF αM S F M
Γ

α α αeach of the numbers , , is estimated as ().S F M O m

,S F M

v δ v
out()

v δ v
in() v

S
F + += ()E E f − −= ()E E f

Γ

+ −

Γas a result of a balancing or pushing operation, the graph

preserves if and only if none of the sets and changes.E E

ΓE
+ − + −

Γ∪ ∩ ∅= and =E E E E E

v=e u
δout()u Γ + −(,)E E

f

= (, , ,)N G S T c
c

+E
−E ε

f
∪Old New ∗ ε

v
−E

f Δ ≥ εv:= ex ()f v v(̂) =e u
v u Δ

∗ f ∈u S ∪Old New v

u ≠ ∅�()e u
+E f �() =e u uw Δ ≥ ε:= e ()x u

u w Δ ∗
f ∈w T ∪Old New u
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol. 63 No. 3 2023

498 KARZANOV
Thus, any change of consists in decreasing it by at one edge in or increasing by at one edge

in . Hence the number of iterations in the given sequence does not exceed , implying the
finiteness of the algorithm.

In case of integral any operation changes the preflow value at an edge by an integer amount, and
therefore, the resulting stable f low is integral as well. Q.E.D.

In spite of the finiteness of the basic algorithm, the number of iterations in it can be very large, as the
next example shows.

Example. Let contain vertices and edges , and such that and .

Assume that the edge is critical in , the edge is critical in , and the edge is active in
. We assume that the values , and are sufficiently large, that the excess

 at is positive and sufficiently small, and that the excesses at and are zero. The work of the algo-
rithm can happen as follows: first decreases by , second decreases by , third
increases by . So we come to the starting vertex with the same excess (and with),
and then we move along the same cycle again, and so many times.

In the next section we explain how to modify the above algorithm in order that it could lead to a faster
solution.

4. MODIFIED ALGORITHM
In the above algorithm the number of consecutive iterations on which the auxiliary graph is not

changed can be very large (as Example in Section 3 shows); for convenience hereinafter we include the
partition in the description of . In this section we describe a modified version for which the
number of changes of the current preflow without changing is of order . This is
equivalent to the fact that changes of lead to the event , , or (including the case when some
active edge is getting closed and critical).

Let us call a path in regular if all active edges in it are forward while all critical edges are backward. A
maximal sequence of iterations with a fixed will be called a big iteration. It starts with choosing an exces-
sive vertex in , and the order of handling the vertices in it is now refined as follows (assuming that

 belongs to).
(A) When balancing at an excessive vertex , which consists in decreasing at the critical edge

(which keeps in), if we see that the vertex is inner and its active edge is void (whence all edges in
are saturated or closed (see (C3b), implying that pushing at is impossible), then we proceed to balancing
at the vertex .

(B) When pushing at a vertex , which consists in increasing at the active edge , if we see that
the vertex is inner and has a non-void active edge wz, then we proceed to the pushing operation at ;
whereas if , then we go to balancing at . At this balancing, if the critical edge in turns
out to be the same edge , then this edge becomes closed and no longer active at ; this implies that
the graph changes and the big iteration finishes.

From these refinements it follows that the sequence of handled vertices and edges forms a regular path
. For a current vertex in P, the following especial situations are possible:

(Q1) coincides with an earlier vertex ;
(Q2) is a terminal.
Consider these situations in detail. Note that as a result of updating on , the excesses of all

vertices in , except for , become zero.
(1) In case (Q1), we extract the simple regular cycle . Similar to what used to be done

with rotations in known algorithms for stable -matchings, allocations, etc., we uniformly update along
 by “pushing” the amount equal to the minimum of values for and values

 for , that is, by increasing by in the forward edges and decreasing by in
the backward edges of the cycle . As a result, at least one edge in becomes saturated or free, implying

f ≥ε −E ≥ε
+E − +∪ ε()/c E E

c

G v, ,u w vu vw uw +
v <uu uw −

v<wuw w

vw δin()w vu δ v
in() uw

δout()u v()f u v()f w −() ()c uw f uw
Δ w u v

v()f w Δ v()f u Δ ()f uw
Δ w Δ vex() = ex() = 0u

→ → →vw u w

Γ

+ −(,)E E Γ
f + −

ΓΓ = (; ,)V E E ()O n
()O n f S F M

Γ
Γ

v0 (,)G f
v0 Γ

v f vu
Γ u δout()u

u
u

u f =e uw
w w

∅�() = { }e w w δin()w
=e uw u

Γ

v v v… …0 1 1= (, , , , , ,)i iP e e vk

vk vi

vk

f …1, , ke e
P vk

+ …1= (, , ,)i i kC ev v

b f
C Δ ()f e −∈ ∩Ce E E

−(') (')c e f e +∈ ∩' Ce E E f Δ Δ
C C
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol. 63 No. 3 2023

ON STABLE FLOWS AND PREFLOWS 499
that event (along with or) happens, completing the big iteration. Also the excesses of all vertices
preserve and one can see that the updated preflow f continues to be stable and fully blocking.

(2) In case (Q2), we store (where now the excesses of all inner vertices are zero) and, in the assump-
tion of preserving , we continue the big iteration, by choosing a new excessive vertex in and con-
structing a new regular path . Consider possible variants.

(a) If the path generates a cycle, than we act as described in part 1 above and complete the big iter-
ation.

(b) If meets the previous path (going to a terminal) in a vertex , then we combine with
, obtaining a tree (having its root at some source or “anti-root” at some sink); here all

inner vertices occurring in , except for , have zero excess. We continue the big iteration with a new
excessive vertex in .

(c) If enters a terminal different from the terminal in , then we store (as well as) and continue
with a new excessive vertex.

(d) In a general case, every new constructed path, unless it contains a cycle or enters a new terminal,
meets either a tree rooted in or a tree “anti-rooted” in T, and we combine this path with the given
tree.

As a result, when preserves (in particular, when no cycle arises), we obtain the following situation: in
 there are constructed several pairwise disjoint regular trees with the roots in and trees

 with the anti-roots in , and all inner vertices of not contained in these trees have zero
excesses.

Note also that the number of updates of the preflow is equal to
. It remains to explain how to get rid of these trees.

Suppose that and let be the set of excessive vertices in (which is exactly the set of branching
points in). Scanning , we extract in it the minimal subtree containing and the anti-root
of , and enumerate the edges of in a topological order, say, (so that if lies on the path
connecting and , then). Scanning the edges of in this order, we update in a natural way,
obtaining one of the following two situations: either (i) the excesses of all vertices in become zero,
or (ii) some intermediate edge becomes saturated or free, thus completing the big iteration.

We act with the other trees and in a similar way.
Thus, the total work with the trees takes time and finishes either with event (along with or

) or with elimination of all excessive inner vertices in , and therefore, obtaining a stable f low . During
the big iteration, each edge in is handled times. Therefore, the complexity of the big iteration is

. This together with (3.2) leads to the following result.
Proposition 2. The modified algorithm finds a stable flow in a network in

 time (and is integral when so is).
Remark 3. With a sufficient certainty one can think that the above algorithm can be accelerated to

attain the time bound , by using data structures as in [6, 7] to make operations on the current
graphs (such as extracting and rearranging components and cycles in , updating the preflow on cycles
and trees, etc.), in a similar spirit as analogous procedures on the subgraph of “weak edges” are acceler-
ated in the algorithm for the allocation problem in [5]. We omit elaboration of such technical details in
this paper, trying to keep a sufficient simplicity and possible practical applications of the above method.

5. GENERALIZATIONS

The stable f low problem in a network can be generalized by introducing for
each inner vertex , an upper bound on the excess allowed at . (As before, we impose condition
(2.1).)

Definition 4. A preflow in is called a -preflow if it satisfies the restrictions

(5.1)

M S F

P
Γ v0' (,)G f

…0 1 1' ' '' = (, , ,)P ev v

'P

'P P v v' =r i 'P
P 7 ∈s S ∈t T

7 v 'r
v0'' (,)G f

'P P 'P P

7 S 7'

Γ
Γ …7 71, , k S

�…7 71' ', , T G

f
+ + + + +

�

� �7 7 7 7
�

1 1' '| | | | ()
k

E E E E O n

≠� 0 Z 71'
71' 71' W Z ∈t T

71' W …1, , pw w jw
iw t <i j W f

−71' { }t

7'i 7 j

()O n M S
F G f

Γ (1)O
()O n

f = (= (,), , ,)N G V E S T c
()O nm f c

(log)O m n
Γ Γ

= (= (,), , ,)N G V E S T c
v +γ ∈v R() v

+→ R:f E N γ

≤ ≤ γ ∀ ∈ − ∪v v v0 ex () () ().f V S T
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol. 63 No. 3 2023

500 KARZANOV
In practical interpretations one can think of restrictions in (5.1) as a permission for each “agent” do
not send further all the goods delivered through the entering edges in , but store (or send “aside”)
a part of the goods not exceeding .

We call a -preflow stable if for each unsaturated directed – path , at least one of the following is
valid: (a) the vertex is inner and satisfies (2.3) (with), i.e., is dominated at ; or (b) the vertex

 is inner and is strongly dominated at , which means validity of (2.2) (with) and the absence of
excess at : . When , this turns into the definition of a stable f low.

A generalization of above results to -preflows is viewed as follows.

Proposition 3. For a network and a vector , a stable -preflow
exists and can be found in time.

Proof. The given problem is reduced to the stable f low one in an extended network with the graph
 formed from by adding for each inner vertex , a new edge of capacity ,

which is put as the last element of the order ; namely, for all . Here is a distin-
guished sink in . Let be a stable f low for , and its restriction to . Then is a -preflow and its
stability follows from that of . (Indeed, if is an unsaturated directed – path in which, being con-
sidered as a path in , is dominated at , then there holds , whence we obtain .)

We can further generalize the problem by introducing for each inner vertex , besides as above, a
bound on the value . In other words, we consider a feasible (w.r.t.) function

 satisfying

(5.2)

Such an is called a -quasi-flow. One may think of the restriction in (5.2) as a per-
mission for the “agent” to take from his reserve or attract from “outside” an amount of goods not
exceeding to send this further, together with the goods delivered through the entering edges (and, as
before, it is allowed to the “agent” to store or send “aside” a part of the goods not exceeding). Roughly
speaking, for a -quasi-flow , if the value is positive, then the “agent” stores
units of goods, while if it is negative, then the “agent” take from his reserve units. Q.E.D.

We call a -quasi-flow stable if for each unsaturated directed – path , at least one of the fol-
lowing is valid: (a) the vertex is inner and is strongly dominated at (relative to), in the sense that
(2.2) holds (with) and the excess at is nonpositive (and no less than); or (b) the vertex is
inner and is strongly dominated at (relative to), which means that (2.3) is valid (with) and the
excess at is nonnegative (and no more that). When , we obtain the definition of a stable
flow.

For this generalization, we obtain the following

Proposition 4. For a network and vectors , a stable -quasi-
flow exists and can be found in time .

Proof. Consider the stable f low problem in the extended network with the graph
formed from by: (a) splitting each inner vertex into two copies and , where inherits the entering

edges from , and does the leaving edges from (keeping the capacities and orders on them);
(b) adding edge with a large capacity; and (c) adding edge of capacity and edge
of capacity , where each of and is assigned to be less preferable compared with the
edge and where and are distinguished source and sink, respectively. Let be a stable f low in ,
and its “image” in . One can check that is a -quasi-flow in and that its stability follows from
that of . Here the essential fact is that for each inner vertex at least one of two values and

 must be zero (which follows by considering the unsaturated path). Q.E.D.

v

∈ δin()e v

γ v()

γ u v P
v P v v=k P v

u P u v0 = u
u e () = 0fx u γ = 0

γ

= (= (,), , ,)N G V E S T c − ∪
+γ ∈R

()V S T γ
()O nm

'N
' = (, ')G V E G v vt γv v() := ()c t

δ v
out() +

v
v<e t ∈ δ v

out()Ge t
T 'f 'N f G f γ

'f P u v G
'G u '() = 0f ut e () = 0fx u

v γ v()
+β ∈v R() − vex() c

+→ R:f E

−β ≤ ≤ γ ∀ ∈ − ∪v v v v() ex () () ().f V S T

f β γ(,) −β ≤v v() ex ()f
v

β v()
γ v()

β γ(,) f Δ v v() := ex ()f v Δ v()
−Δ v()

β γ(,) u v P
u P u γ

v0 = u u −β()u v

P v β v v=k
v γ v() β γ= = 0

= (= (,), , ,)N G V E S T c − ∪
+β γ ∈R

(), V S T β γ(,)
()O nm

'N ' = (', ')G V E
G v v ' v '' v '

δ v
in() v '' δ v

out()
v v' '' v ' t γv v(') := ()c t v ''s

βv v('') := ()c s v ' t v ''s
v v' '' s t 'f 'N
f N f β γ(,) N

'f ∈ ,Vv v'('')f s
v'(')f t v v v v(', ' '', '')
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol. 63 No. 3 2023

ON STABLE FLOWS AND PREFLOWS 501
6. ADDITIONAL REMARKS
In this final section we discuss three additional interesting properties of stable f lows. As before, we con-

sider a directed network with linear orders on and for inner vertices
 (and subject to (2.1)).

(I) For a preflow in a network , we define the value of to be the total excess at the
sinks: . The following property is valid:

(6.1)

Indeed, if is not a f low (i.e., there is an excessive inner vertex), then is transformed into a stable f low
 by applying a sequence of iterations of the basic algorithm. Any balancing operation does not change

the values on the edges entering , but any pushing operation can only increase these values, yielding the
desired property (6.1).

(II) As to the values of stable f lows, note that, generalizing classical results on stable marriages, stable
bipartite -matchings, etc., Fleiner [8, Section 4] established that:

(6.2)

As a consequence, . Property (6.2) was proved in [8] (where two-terminus networks are
considered and arbitrary edges incident to terminals are allowed) by use of a reduction to the correspond-
ing property for stable allocations. One can give a direct and rather simple proof (considering our network

 as before).
For this purpose, let us associate with the function a decomposition on paths and cycles. More

precisely, since and have no excessive inner vertices, one can form a family consisting of simple
paths and cycles with weights such that:

(i) for each , the forward edges in satisfy , and the backward edges satisfy
;

(ii) for each , the sum of weights on the paths/cycles containing is equal to ;
(iii) each path in connects two different terminals and each cycle contains at most one terminal.

Suppose that and differ in some edge incident to a terminal and consider the case when leaves
a source (i.e.,). For definiteness, let . Then there is containing (as a
forward edge); moreover, either (a) is a path from to , or (b) is a path from to (possibly

).
In case (a), there is a sequence of vertices in (where is odd) such that the por-

tion of from to has only forward edges for odd, and only backward edges for even. Then

(6.3)

(Such paths form the concatenation of , where stands for the path
reversed to .) Let () denote the first (resp. last) edge in , and let () denote the first (resp. last)
edge in . One can see that

(6.4)

Now we apply (6.3) and (6.4), moving step by step in the sequence of paths . Since begins
at the source and is unsaturated for and since , from the stability of it follows that

= (= (,), , ,)N G V E S T c δ v
in() δ v

out()
∈ − ∪v ()V S T

f = (, , ,)N G S T c f

()∈
= val() := ex () ex ()f ft T

f T t

≤ ≤
for a stable preflow in , there is a stable flow ' in such that

() '() for all edges entering , and therefore, val() val(').
f N f N

f e f e T f f

f f
'f

T

b
for any two stable flows and in a networ , the values ()
and () coincide for each edge incident to a terminal.

f g k N f e
g e e

val() = val()f g

= (, , ,)N G S T c
−f g

f g #

C Δ() > 0C
∈ #C e C () > ()f e g e ′e

(') < (')f e g e

∈e E Δ()C C e −| () ()|f e g e
#

f g e e
∈s S ∈ δout()e s () > ()f e g e ∈ #C e

C s ∈t T C s ∈'s S
' =s s

v v v…0 1= , , , =ks t C k
C −v 1i vi i i

−

−

1

1

for odd, there is a directed path from to where exceeds
on all edges, and therefore, is unsaturated for and does not contain
edges free of ; in its turn, for even, there is a directed path from

to where exceeds , and

i i i

i

i

i i

i P f g
P g

f i Q
g f

v v

v v therefore, is unsaturated for and
does not contain edges free of .

iQ f
g

− − −
−⋅ ⋅ ⋅ ⋅ ⋅ ⋅…

1 1 1
1 2 3 4 1k kP Q P Q Q P C −1Q

Q ip 'ip iP jq ′jq

jQ

+ +∈ δ ∈ δv v
in out

1 1' ', () for each odd < , and , () for even.i i i i i ip q i k q p i

…1 2 3, , ,P Q P 1P
v0 = s g 2'() > 0g q g
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol. 63 No. 3 2023

502 KARZANOV
. Then from the facts that is stable, is unsaturated for , the inequality holds, and
 is not dominated at (since and is after), we obtain . And so forth. Coming to

the path , we obtain . But then the last directed path (which ends at the sink and
is unsaturated for) is not dominated at the beginning vertex , contrary to the stability of .

In case (b), the reasonings are similar. Here we deal with the concatenation of paths of the form
 (with even). Now the last directed path begins at the source , is unsatu-

rated for and not dominated at the end vertex (in view of and); this con-
tradicts the stability of . By symmetry reasons, the cases when and differ at an edge entering are
impossible as well. This completes the proof of (6.2).

(III) The previous construction can be extended. Namely, consider two stable f lows and in a net-
work . Let be the subgraph of induced by the edges in
and , and endow the edges in with the weights . By (6.2),
contains no terminal. Moreover, is decomposed into a nonnegative linear combination of the charac-
teristic functions of simple regular cycles (and therefore, may be regarded as a “circulation”).

Here we say that a (not necessarily simple) cycle in is regular (relative to) if all forward edges
in it belong to and the backward ones belong to . For a vertex in such a , we denote by the
set of pairs of consecutive edges incident to and following in the direction of the cycle. We call a pair

 especial if contains edges in both and (equivalently, both edges of either enter or leave
). In this case we say that a pair is left if is more preferable for than ; otherwise the pair is

called right. Arguing as in the proof of (6.2), from the stability of and one can conclude that

(6.5)

This property is extended to the components K of : all especial pairs occurring in regular cycles in a
component are simultaneously either left or right (this follows from the fact that any two such pairs π,
π' can be included in one (non necessarily simple) cycle in). According to this, we specify four types of
components . Namely, we say that: has type (type) if all edges of belong to the set (resp.);
and has type (type) if has edges in both sets and (in which case we call the component
rich) and the orientations of all especial pairs in are left (resp. right). Equivalently,

(6.6)

Using this, one can represent the set of stable f lows in as a lattice (which is done in [8] by use of a
reduction to the stable allocation problem and appealing to the corresponding result in [4]). More pre-
cisely, define the following functions on :

(6.7)

One can see that and are f lows. Also for each inner vertex , the f low dominates the f lows

on the set , and is dominated by these f lows on the set , whereas behaves conversely. (Here
for numerical functions on an ordered set , we say that dominates if either or there is

 such that , for , and for .)

Due to what is said above, one can obtain (we omit details here) that and are nothing else than the
flows and , respectively, that are pointed out in [8, Section 4]; in particular, both are stable.

−
v12 1' '<q p f 2Q f 3() > 0f p

2Q v1 1'() > 0f p 1'p 2'q +
v23 2<p q

−1kQ
−

+
−v 1 1<

kk kp q kP v =k t
g −v 1k g

− −
−…

1 1
1 2 1, , , ,k kP Q P Q k kQ v = 'k s

f −v 1k −1'() > 0kf p
−

−
−v 1 1' '<

kk kq p
f f g T

f g
= (= (,), , ,)N G V E S T c H G := { : () > ()}A e f e g e

:= { : () > ()}B e g e f e e H ω −() := | () ()|e f e g e H
ω

ω

C H (,)A B
A B v C Π v()C

v

π ∈ Π v()C π A B π v

v π = (, ')e e e v 'e
f g

for any regular cycle , all especial pairs occurring in have the same
orientation, in the sense that all are left or all are right.

C C

H
K

K
K K A B K A B

K L R K A B K
K

δ
δ

in

out

a rich component has type if for any vertex of admitting an

especial pair, in the set () the edges from precede (more preferable

than) the ones from , and in the set () the edges from precede
the ones from ; in case of type the s

K L K

A

B B
A R

v

v

v

ituation is opposite.

N

�,h E

�

�

coincides with on the components of types and , and coincides
with on the components of types and , while is defined conversely;
for the remaining edges , one puts () := () := () = ().

h f A R
g B L

e h e e f e g e

h � v h ,f g

δ v
out() δin()v �

,a b ≺(,)S a b =a b
∈e S () > ()a e b e ≥(') (')a e b e ≺'e e ≤('') ('')a e b e ≺ ''e e

h �

∨f g ∧f g �,h
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol. 63 No. 3 2023

ON STABLE FLOWS AND PREFLOWS 503
ACKNOWLEDGMENTS
The author thanks the referee for a useful analysis of the initial version of this paper and pointing out the works

[10, 12] that were unknown to him in the period of writing this version.

CONFLICT OF INTEREST
The author declares that he has no conflicts of interest.

REFERENCES
1. D. Gale and L. S. Shapley, “College admissions and the stability of marriage,” Am. Math. Mon. 69 (1), 9–15

(1962).
2. R. W. Irving, “An efficient algorithm for the 'stable roommates' problem,” J. Algorithms 6, 577–595 (1985).
3. J. Tan, “A necessary and sufficient condition for the existence of a complete stable matching,” J. Algorithms 12,

154–178 (1991).
4. M. Baiou and M. Balinski, “Erratum: The stable allocation (or ordinal transportation) problem,” Math. Oper.

Res. 27 (4), 662–680 (2002).
5. B. C. Dean and S. Munshi, “Faster algorithms for stable allocation problems,” Algorithmica 58 (1), 59–81

(2010).
6. D. D. Sleator and R. E. Tarjan, “A data structure for dynamic trees,” J. Comput. Syst. Sci. 26 (3), 362–391

(1983).
7. D. D. Sleator and R. E. Tarjan, “Self-adjusting binary search trees,” J. ACM 32 (3), 652–686 (1985).
8. T. Fleiner, “On stable matchings and flows,” Algorithms 7, 1–14 (2014).
9. M. Ostrovsky, “Stability in supply chain networks,” Am. Econ. Rev. 98, 897–923 (2006).

10. Á. Cseh and J. Matuschke, “New and simple algorithms for stable f low problems,” Algorithmica 81 (6), 2557–
2591 (2019).

11. A. V. Karzanov, “Determining the maximal f low in a network by the method of preflows,” Sov. Math. Dokl. 15
(2), 434–437 (1974).

12. Á. Cseh, J. Matuschke, and M. Skutella, “Stable f lows over time,” Algorithms 6, 532–545 (2013).
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol. 63 No. 3 2023

	1. INTRODUCTION
	2. DEFINITIONS AND SETTINGS
	3. BASIC ALGORITHM
	3.1. Initial Iteration
	3.2. Balancing
	3.3. Pushing (after Balancing at a Vertex)
	3.4. Convergence of the Basic Algorithm

	4. MODIFIED ALGORITHM
	5. GENERALIZATIONS
	6. ADDITIONAL REMARKS
	REFERENCES

