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Abstract—We propose a new algorithm of finding a stable flow in a network with several sources and
sinks. It is based on the idea of preflows (applied in the 1970s for a faster solution of the classical max-
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1. INTRODUCTION

The field of theoretical and applied problems on stable contracts is a subject of an intensive study in
mathematical economics, game theory and combinatorial optimization, and numerous works has been
devoted to this field during last several decades. The classical work on stable marriages (SM) due to Gale
and Shapley [1] has served as a starting point of many subsequent researches.

According to one widespread formulation of that problem, one considers a bipartite graph G = (V, E),
and for each vertex v, there is given a (strict) linear order <, on its incident edges. (A bipartite graph con-
sidered in [1] is assumed to be complete, but this is not so important. In a popular old interpretation the
edges of G represent possible marriages between “men” and “women”, and the order <, indicates the
preferences of a person v, namely: foredgese = vu and e' = vw, ife <, e', then v prefers the alliance with
u to that with w.) In the problem one requires to find a matching M < E which is stable with respect to
all these orders. This means that for any edge e in £ — M, there exists an edge e' € M such that e and ¢'

share a vertex v and there holds e' <, e. It was shown that a stable matching in a bipartite graph (equipped
with linear orders on the vertices) always exists and that it can be constructed by a combinatorial algorithm
having a linear upper bound on the number of operations (viz. running time, complexity) O(n + m), where
n and m are the numbers of vertices and edges in G, respectively.

Subsequent works of many authors have explored various generalizations of problem SM. One can dis-
tinguish two ways of generalizations related to graphs (leaving aside settings where more than two “agents”
may be involved in a contract, or where the preferences could be given in a different manner, e.g. by use
of a choice function). One of them is to admit arbitrary, not necessarily bipartite, graphs G . The corre-
sponding analog of problem SM, called the stable roommates problem, was well studied by Irving in [2]
where a linear complexity algorithm was devised that either constructs a stable matching in G or proves
that there is none. Important additional structural and algorithmic results were presented in [3].

Another type of generalizations, which is more interesting for us here, remains the graph G = (V, E) to
be bipartite but adds numerical parameters. Among the problems of this type, a quite general one is the
so-called stable allocation problem (SA) introduced and studied by Baiou and Balinski [4]. Here “alloca-
tion” means an assignment to each edge e € F a value x(e) = 0 not exceeding a prescribed capacity c(e),
and at the same time, for each vertex v € V, the sum of assignments on the edges incident to v should not
exceed a prescribed “quota” g(v). (In case of SM, all c(e) and ¢g(v) are ones, and each x(e) takes value 0
or 1. In a general case of SA, the number x(e) on an edge e = uv can be meant, for example, as the share
of participation of the “worker” u in the “job” v.)

In [4] it is proved that SA is solvable for any nonnegative real-valued ¢, ¢ (and has an integral solution
x when ¢, g are integer-valued), and a strongly polynomial solution algorithm is proposed (i.e., an algo-
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rithm whose running time depends only on the graph size and is expressed by a polynomial in #, m). Dean
and Munshi [5] developed an improved version of the algorithm from [4] that constructs a solution in
O(nm) time; moreover, they showed that one can achieve even the better time bound O(mlog n) if one
applies, for a number of procedures, certain powerful data structures, such us dynamic and self-adjusting
trees elaborated by Sleator and Tarjan [6, 7]. (This gives a theoretical acceleration, but an algorithm using
such structures are cumbersome and could hardly be applied for practical purposes.)

In its turn, problem SA can be represented as a special case of the stable flow problem (SF). The latter
was stated by Fleiner [8] in 2010th (as an extension of Ostrovsky’s problem [9] concerning acyclic net-
works with unit capacities). Here one is given a network consisting of a directed graph G = (V, E) with
capacities c(e) = 0 of edges e € E and two distinguished vertices (“terminals™) s and 7. For each inner ver-
texv e V —{s,1}, two linear orders are given, one on the set of its entering (incoming) edges, and the other
on the set of its leaving (outgoing) edges. A (feasible) flow is a nonnegative real function f on the edges
satisfying the upper capacity constraints and having zero excesses at all inner vertices, where by an excess
at a vertex v one means the difference ex ;(v) between the total flow on the entering edges and that on the
leaving edges at v. (In applications an inner vertex can be interpreted as a “player” or “trader” or “agent”
who after having received some amount of goods through the entering edges, is sending this amount fur-
ther through the leaving ones, relying on his/her utility rule depending on the above mentioned orders.)
A flow is regarded as stable if, roughly speaking, it does not admit local improvements using “unsaturated
paths”; a precise definition will be given in Section 2.

There is a close relation between problems SA and SF. Indeed, problem SA with a bipartite graph
G = (V] U V,,FE)isreduced to problem SF with the graph obtained from G (whose edges are directed from
V, to V,) by adding two terminals s and 7, the edges (s,u) with the capacities g(u) for vertices u from the
part V;, and the edges (v,7) with the capacities g(v) for vertices v from the part V,.

On the other hand, Fleiner [8] showed that problem SF with a graph G = (V, E) can in turn be reduced
to problem SA with some graph obtained by splitting the vertices of G into pairs and adding O(|V|) new
edges. As a result, for any network, the existence of a stable flow was established (and an integral one when
¢ is integer-valued), and a possibility of constructing such a flow by use of algorithms for SA, yielding
complexity of a similar kind.

Subsequently there appeared direct algorithms of finding a stable flow (without appealing to SA).
Recently Cseh and Matuschke [10] proposed a direct algorithm for a network with one source and one
sink, which has complexity O(nm) and is based on a combination of ideas of Ford—Fulkerson’s method
for the maximal flow problem and the “deferred acceptance method” originated in Gale and Shapley [1].

In this work we present an alternative algorithm to find a stable flow in a network N = (G, S, T, ¢) with
arbitrary sets of sources .S and sinks 7, assuming (for simplicity) that there are no edges entering sources
or leaving sinks. This algorithm is direct and purely combinatorial (neither appealing to SA nor using
sophisticated data structures); it exploits the idea of preflows. Recall that a preflow in a network is a non-
negative function on the edges that is bounded by the capacities and has nonnegative excesses at all inner
vertices. (This notion was introduced in [11] and used in the max flow algorithm developed there.) Note
that preflows were used earlier in [12] to find a stable flow in a network with integral capacities in a
pseudo-polynomial time (i.e., with a time bound depending linearly on the sum of capacities).

Our algorithm has basic and modified (accelerated) versions. Both start with constructing a certain ini-
tial stable preflow, and on each subsequent iteration, the current stable preflow is updated with the aim of
getting rid of positive excesses in inner vertices. As soon as the excesses of all inner vertices become zero,
a required stable flow is constructed (and the flow is integral when the capacities ¢ are integer-valued).
The basic algorithm is finite for any nonnegative real capacities ¢. The modified algorithm is strongly
polynomial; it applies additional transformations and constructs a stable flow in O(nm) time (like the
algorithm in [10]).

Then we consider a more general problem in a network N = (G, .S,T,c) in which for each inner vertex
v, there are given two parameters 3(v) > 0 and y(v) > 0 and it is required to find a stable “quasi-flow” f
satisfying the constrains of the form —3(v) < ex ,(v) < y(v). (This turns into a stable flow when 3, y = 0.)
We show that such a “quasi-flow” does exist and it also can be found in O(nm) time. (In applications the
number y(v) can be thought of as the permission to the “agent” v to manage on his own a part of the
received goods not exceeding y(v), while the number B(v) as the permission to involve from “outside”
additional goods of the amount not exceeding B(v).)
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This paper is organized as follows. Section 2 contains basic definitions and exact formulations of prob-
lems SF and SA. In Section 3 we describe the basic algorithm of finding a stable flow in a network by use
of preflows and show its finite convergence (Proposition 1). The modified version of the algorithm, hav-
ing complexity O(nm), is described in Section 4. Section 5 generalizes the obtained results to stable pre-
flows and quasi-flows with restricted excesses (Propositions 3 and 4). In the final Section 6 we discuss
three additional properties, namely: (1) the maximum preflow value (i.e. the total excess in the sinks)
among the stable preflows is achieved by a stable flow; (2) all stable flows in a fixed network have the same
value; and (3) the stable flows form a lattice. (Properties 2 and 3 are shown in [8] via a reduction to the
corresponding properties for problem SA; we give simple proofs using direct constructions.)

2. DEFINITIONS AND SETTINGS

We consider a network N = (G, S,T,c) consisting of a directed graph G = (V, E) (without loops and
multiple edges), distinguished disjoint subsets of vertices .S (sources) and T (sinks), also called terminals,
and a function ¢ : £ — R, of capacities of edges. (Hereinafter R, and Z, are the sets of nonnegative reals

and integers, respectively.) For a vertex v € V, let Sin(v) and 8°"'(v) denote the sets of edges entering v and
leaving v, respectively. To simplify our description, we throughout assume that

d"(s)=Q@ VseS and "0)=Q Vrel. (2.1)

Definition 1. A function f : £ — R, is called feasible (with respect to ¢) if it satisfies the capacity con-
straints f(e) < c(e) for all edges e € E. Define the excess of f at a vertexv € V' by

ex (v):= Y. flo— D, fle)
ecd"(v) ec 8" (v)
A feasible function f is called a preflow in N (following terminology from [11]) if it has a nonnegative
excess ex ,(v) 2 0 ateach vertex v e V' — §. A flow (from § to T') is a preflow f having zero excesses at all
inner (nonterminal) vertices v € V' — (S U T'), and its value val(f) is defined to be ex ((T') := ZteTexf(t).
A path in G is a sequence P = (v, e, vy,...,¢.,V,), Where ¢; is an edge connecting vertices v, ; and v;.
An edge ¢; in P is called forward if e, = v,_,v,, and backward if e; = v,v,_,. (We usually denote an edge leav-
ing u and entering v as uv , rather than (i, v).) A path is called directed if all its edges are forward, and simple

if all its vertices are different. The reversed path (v,,e;,v,_,,...,€,,V,) is denoted as P~'. Apath from a vertex
u to a vertex v may be called a u—v path. Speaking of a path, unless otherwise is explicitly said, we assume
that it is nontrivial, i.e., it has at least one edge.

For a feasible function f, an edge e with f(e) = c(e) (f(e) < c(e); f(e) = 0) is called saturated (respec-
tively, unsaturated; free (of f)). A path is regarded as unsaturated if all its edges are such.

In the problem that we consider each inner vertex v of a network N is endowed with a linear (total
strict) order <, on the set 5" (v), and a linear order < on the set 5°"'(v). They are interpreted as “preference
relations”; namely, e <, e' means that the vertex (“agent”) v prefers the edge e to e'; in this case, we will
also say that e is located in " (v) before, or earlier than, or on the left from e', and accordingly, e' is after,

or later than, or on the right from e. In accordance with the order <, the set 5" (v) is arranged as a double-
linked list; thus, the first (last) element in the list is most (respectively, least) preferable. And similarly for

the order <.

Definition 2. A flow f in a network N, with order equipments on the vertices as mentioned above, is
called stable if each unsaturated directed path P = (v,,e,,v,,..., €, v, ) satisfies at least one of the following
two conditions (where the case v, = v, is allowed):

the first vertex v, is inner and P is dominated at vy;

ou 2.2
this means that each edge e € 0 t(VO) later than e, is free of f; )

the last vertex v, is inner and P is dominated at v,; 2.3)
that is, each edge e € Si”(vk) later than e, is free of f. '
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In particular, there is no unsaturated directed path from § to 7. A preflow f is called stable in the analo-
gous case.

We are interested in the stable flow problem (SF): given a network N, find a stable flow in it. Fleiner [§]
established that this problem is always solvable, and furthermore, the property of integrality takes place: if

anetwork N = (G = (V, FE),S,T,c) is integral (in the sense that c € Zf), then there exists an integral sta-
ble flow.

This is proved in [8] by a reduction of problem SF in N to the stable allocation problem (SA) in a bipar-
tite graph G' = (V', E") with weights c'(e) = 0 on the edges e € E' and “quotas” g(v) = 0 on the vertices
v € V'. (Strictly speaking, [8] deals with the case when | U T'| = 2 and condition (2.1) is not imposed;
however, the above-mentioned facts are valid for our case as well.) Also the reduction is linear in the input
graph size, namely: |V'| = 2|V| and |E'| < |E| + 2|V|, and preserves the integrality: ¢' and ¢ are integral
when so is ¢. Problem SA was introduced and studied in [4] where the solvability for any bipartite network
and the integrality property were proved and a solution algorithm was devised.

As is mentioned in the Introduction, it is shown in [5] that by use of sophisticated data structures, the
so-called dynamic and self-adjusting trees, the stable allocation problem in a graph with » vertices and m
edges can be solved in O(m log n) time (but without using those, one can obtain O(nm) time). This, due to
the above-mentioned reduction, leads to a similar algorithmic complexity for problem SF as well. A direct
algorithm for SF in case |S| = | 7| = 1 proposed in [10] has complexity O(nm).

In the present paper we device an alternative direct algorithm of finding a stable flow in a network
N =(G,S,T,c) (subject to (2.1)) based on a preflow method. In the next section we describe the basic
version of our algorithm (finite for any ¢), and in Section 4, the modified version (with running time
O(nm)).

3. BASIC ALGORITHM

Our algorithm of finding a stable flow in a network N = (G = (V, E),S,T,c) consists of a sequence of
iterations; as a rule (but not always) an iteration has two phases: balancing and pushing (similar to the struc-
ture of a stage (“big iteration”) in the max flow algorithm in [11]). Each iteration transforms one blocking
preflow into another, and the process terminates when the current preflow becomes a flow. One should
emphasize that the term “blocking” here is borrowed from the language in [11] and has another meaning
compared with what is usually understood in problems on stability.

Definition 3. For a preflow f in a network N, let us say that a vertex v is excessive if ex ((v) > 0. A pre-
flow f is called blocking if every directed path from S to T has a saturated edge. If, in addition, any
directed path going from an excessive inner vertex to T has a saturated edge, then we call f fully blocking.

Remark 1. A fully blocking preflow is not necessarily stable, and vice versa. At the same time, any stable
flow is blocking (and automatically fully blocking). In general, already in the case of ranged acyclic net-
works, to find a stable flow looks a somewhat more complicated task than the problem of finding a block-

ing flow. The latter problem is solved on a stage of the algorithm in [11] in O(nz) time, which is faster than
the complexity O(nm) of the algorithm for SF in Section 4.

3.1. Initial Iteration

At this and subsequent iterations, we maintain two sets Old and New which are arranged as double-
linked lists and formed by excessive inner vertices of the current preflow. Also for each inner vertex v, there

is an element &(v) which either is void, denoted as é(v) = {{J}, or is a specified unsaturated edge in §°* (v),
called the active edge at v. In the beginning one puts Old := New := J, and foreachve V - (SuUT),

one assigns as the active edge the first (most preferable) edge in 8" (v).
The initial iteration consists of only the pushing phase, which starts with the trivial blocking preflow f,

defined as f(e) := c(e) foralledges e € 8°'(s), s € S, and f(e) := 0 for the remaining edges e. Each inner
vertex v connected by an edge e = sv with a source s € § is inserted in the list New (since the excess at v
became positive). Then we scan vertices of the current list New, as follows.
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For a current vertex v € New, we update £ on 8°"(v) so as either to reduce the excess at v to zero, or
to saturate all edges in 8°*'(v) (or both). More precisely, the edges e € §°*'(v) are handled following the

order <j (“from left to right”), starting from the active edge e = é(v). If the current excess A := ex ((v) is
still nonzero, then we update f(e) := min{c(e), f(e) + A}. If the new excess becomes zero, then the treat-
ment of v finishes; otherwise we proceed to the next edge in the list 8°"(v), and so on. Also when changing
f on the edge e = vw, if the vertex w (in which the excess increases) is contained neither in Old nor in
New, then we add w to the current list New.

Upon termination of the work with v, this vertex is deleted (maybe temporarily) from the list New, and
if the excess at v remains nonzero, then v is inserted in the list Old. The new active edge é(v) is assigned
to be the leftmost unsaturated edge in §°'(v), and if all edges in it are saturated (in particular, when
ex,(v) > 0), then one puts é(v) := {J}. Then we proceed to handling another vertex in New, and so on.
The iteration terminates when the set New becomes empty.

Note that during the iteration one and the same vertex v may appear and disappear several times in

New. However, we shall show later that the initial (and every subsequent) iteration always terminates. One
can see the following:

Upon termination of the initial iteration, the resulting function f is a fully
blocking preflow f possessing the property that: for each inner vertex v,

if é(v) = {@}, then all edges in 8°"(v) are saturated, whereas if é(v) # {QD)}, G1)
then all edges in 6°“t(v) earlier than e are saturated, but all edges after ’

e are free of f. Also all excessive inner vertices v (and only these) are

included in the list Old, and for such a v, we have é(v) = {J}.
From (3.1) it is easy to conclude validity of (2.2) for all unsaturated directed paths; therefore, the initial
preflow f is stable.

In the rest of this section we first describe the balancing phase for a general iteration. Then we specify
the conditions to which a current preflow should satisfy at the moment of beginning the pushing phase.
Finally, we describe the pushing phase for a general iteration.

3.2. Balancing

This procedure is performed when the set Old of excessive inner vertices for the current preflow f is
nonempty (while New = ). It applies to one chosen vertex v € Old. Define A := ex ,(v) (>0) and let e

be the last (rightmost, least preferable) edge in 8" (v) with f(e) > 0. We decrease f on e by min{A, f(e)}.
If the excess at v becomes zero (in case A < f(e)), the procedure finishes. Otherwise (when A > f(e)) we
take the last edge ' with f(e") > 0 for the updated f and decrease f on e' in a similar way. And so on until
the excess at v becomes zero.

Foreach edge e = uv where f decreases under the balancing at v, we examine the vertex u. If u is inner
and not contained in Old, then we add it to the list New. (Thus, New is formed by the set of new excessive
vertices u appeared as a result of decreasing f on edges uv.) The leftmost (chronologically last) edge in

6i"(v) where f was decreased is called critical and denoted by é = é(v). This edge along with all edges
e =uv in Sm(v) after it are labeled as closed (to avoid any further increase only!). At the same time, if such
an edge e is the current active edge in 8°"(«), then we assign the new active edge in it to be the first after

e edge in §°"(u) that is not closed (under earlier balancing phases), and if it is absent, then one puts
é(u) := {J}.

Remark 2. During the algorithm one should maintain the values of excesses at the inner vertices (cor-
recting each of them in O(1) time whenever f changes).

We assume (by induction) that upon termination of the balancing phase at a vertex v, the current func-
tion f is a preflow, which need not be fully blocking but satisfies the following three properties.

(C1) Each unsaturated edge in §°"'(s), s € .S, is closed.
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(C2) If for an excessive inner vertex u, the set §°"' (1) contains an unsaturated edge which is not closed,
then u € New.

(C3) For each inner vertex u, there holds: (a) if the active edge in §°" (1) is not void: é(u) # {&}, then

this edge is unsaturated and not closed, and all edges in §°"'(v) after it are free of f, while each edge before
it is saturated or closed (becoming so after the last or earlier balancing); (b) if é(u) = {J}, then all edges in

8°"(u) are saturated or closed; and (c) if u has ever been balanced, then &(x) = {&}, and the set §" (1) pos-

sesses the critical edge é(u), which is unsaturated and all edges in 8" (u) after it are free of f.

3.3. Pushing (after Balancing at a Vertex v)

This phase consists in increasing the current preflow f on some edges, aiming to make it fully block-
ing; this is close to the construction of the initial preflow but has some features. The phase immediately
terminates when the beginning set New is empty. Otherwise it starts with choosing a vertex u € New, and

we try to reduce the excess at # as much as possible. To this aim, we handle edges in §°* () following the

order < and skipping the closed ones. This starts with the active edge é(u) # {J} (if é(u) = {D}, then we
simply transfer the vertex u from New to Old and the work with « finishes). Similar to the initial iteration,
for the current edge e = uw, we update f(e) := min{c(e), f(e) + A}, where A is the current excess at u, and
simultaneously add the vertex w to the set New unless it is already contained in Old U New (for the excess
at w increases). If the new excess at u is still nonzero, then we proceed to the next non-closed edge in
8°"'(u), and so on. If the excess becomes zero, then the work with « finishes and we delete u from New.
When all edges are already handled but the excess at u remains nonzero, then u is transferred from New

to Old. After finishing the work with « and properly updating the active edge é(u) in 8°" (1) (getting é(u)
which satisfies (C3a, C3b), we choose another vertex in the current New, and so on. The phase terminates
when the current set New becomes empty.

Upon termination of the pushing phase (which is finite by Prop. 1 below) the resulting f is again a pre-
flow, and one can see that f continues to satisfy properties (C1) and (C3), whereas (C2) is replaced by the
following property (cf. C3b).

(C2') Each excessive inner vertex u is contained in Old, and é(u) = {{J} takes place.

Lemma 1. The preflow f obtained in the pushing phase is stable and fully blocking.

Proof. Consider an unsaturated directed path P = (uy, e, u,,...,e,,u,). Suppose that either y, € S or P
is not dominated at u, (when y, is inner). Then the edge e, is closed (in view of (C1) and (C3)). This
implies that the vertex # was handled at some balancing phase, so it was excessive before that. Applying
(C2') and (C3Db) to the vertex , and preflow /' at the moment just before the balancing, we conclude that
the edge e, should be closed to this moment. Therefore, e, is closed for f as well. Arguing so, step by step,
we can conclude that the edges e;,...,e, are closed as well. (The case u, € T is impossible since at the
moment of balancing at u,_,, this vertex was excessive, and the situation that e, is unsaturated is impossi-
ble.) Since ¢, is closed, it must either occur in Si“(uk) after the critical edge é(u, ) or coincide with the latter.

Then it follows from (C3c) that all edges in §" (u,) after e, are free of f. Therefore, P is dominated at u,,
yielding (2.3). This implies that f is stable.

The fact that f is fully blocking is deduced from (C1), (C3), (C2') by similar reasonings. Q.E.D.

Using the above-mentioned properties of a preflow obtained at the pushing phase, one can conclude
that the balancing phase of the next iteration produces a preflow satisfying properties (C1)—(C3). This
implies the correctness of the basic algorithm.

3.4. Convergence of the Basic Algorithm
From Lemma 1 we obtain

Corollary 1. If for the current preflow f at an iteration, the excesses of all inner vertices become zero,
then f is a stable flow.
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In this case f is a required solution of the problem and the algorithm finishes. Since each application
of balancing or pushing can either decrease or increase the number of excessive inner vertices, in order to
establish the finiteness of the algorithm we need an additional analysis.

For a current f, let us call an edge e middle if it is neither free nor saturated: 0 < f(e) < c(e). Let
I' = (I, Er) denote the subgraph of G induced by the middle edges. In particular, I" contains all non-free
critical edges. We also add to I" each free active edge (recall that any active edge is non-closed and unsat-
urated). We can observe the following.

(1) For an edge e = uv, let us call the moment when e becomes saturated the event S, and the moment
when e becomes free (after reducing a positive value of f to zero) the event F. The changes at e are of “sin-
gle-peak character”: at a first stage f(e) is monotone increasing under pushing at u, and after the first
decrease of f(e) the edge e becomes closed and further f(e) can only decrease (under balancing at v).

(2) An edge e can be added to the graph I" at most two times: first when e becomes active, and second
when e becomes critical.

Let o, 0, o), denote, respectively, the numbers of events S, events F, and events M consisting of
changes of the graph I". From the observations above it follows that

each of the numbers o, 0f, O, is estimated as O(m). (3.2)

Thus, to analyze the convergence of the algorithm, one should estimate the number of consecutive itera-
tions when none of the events .S, F and M happens. To this aim, we notice the following.

(3) During the algorithm, for each inner vertex v, the active edge in 8°m(v) can be shifted only to the

right (when pushing at v), whereas the critical edge in o" (v) only to the left (when balancing at v); also
the status of such edges changes: for the old active edge, the event .S happened or the edge became closed,

and for the old critical edge, the event F did. In view of this, denoting by E* = E*(f) and E~ = E (f)
the sets of active and critical edges in I", respectively, we obtain that
as a result of a balancing or pushing operation, the graph I

3.3
preserves if and only if none of the sets £” and E~ changes. (3-3)

One can also see that these sets give a partition of Ey:
E"UE =E. and E NnE =0
(taking into account (C3) and the fact that a critical edge e = uv becomes closed and could no longer be

active in 8*"'(u)). Therefore, in case of preserving I" together with preserving the same partition (E*, E7)
on consecutive iterations, any change of the preflow f on an iteration consists in only one decrease at
some critical edge, or in one or more increases at some active edges (which preserve). Note also that an
active edge can be turned into a critical one, but not conversely. These facts together with properties (3.2)
and (3.3) allow us to obtain the following

Proposition 1. The above basic algorithm of finding a stable flow in a network N = (G, S,T,c) is finite, and
in case of integer-valued capacities c, it finds an integral stable flow.

Proof. One should show the finiteness of a sequence of consecutive iterations on which both £ and

FE preserve. Let € be the minimal positive excess among inner vertices in the beginning of this sequence.
Assume by induction that before a change of the preflow f on an iteration of this sequence, the set
Old U New of excessive vertices is nonempty and (*): each of them has the excess at least €. If at this

moment the balancing operation at a vertex v takes place, then, in view of keeping £, this operation is
reduced only to decreasing f by the value A := ex (v) > € at the critical edge é(v) = uv. This turns the
excess at v to zero and causes growing the excess at the vertex u by the same amount A ; therefore, property
(*) is valid for the updated f (in case u € S the set Old U New simply decreases by one element v). And
in case of performing the pushing operation at some inner vertex u with the active edge é(u) # &, then, in

view of keeping E”, this operation is reduced to increasing f on &(u) = uw by the value A := ex(u) > €.
This turns the excess at u to zero and increases the excess at the vertex w by A; therefore, property (*) con-
tinues to hold for the new f (in case w € T the set Old U New decreases by one element u).
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Thus, any change of f consists in decreasing it by >¢ at one edge in £~ or increasing by >¢ at one edge
in E*. Hence the number of iterations in the given sequence does not exceed ¢(E~ U E ")/, implying the
finiteness of the algorithm.

In case of integral ¢ any operation changes the preflow value at an edge by an integer amount, and
therefore, the resulting stable flow is integral as well. Q.E.D.

In spite of the finiteness of the basic algorithm, the number of iterations in it can be very large, as the
next example shows.

Example. Let G contain vertices u, v, w and edges uv, vw and uw such that uv <: uw and uw <, vw.
Assume that the edge vw is critical in Sm(w), the edge uv is critical in Si"(v), and the edge uw is active in

8°" (u). We assume that the values f(uv), f(vw) and c(uw) — f(uw) are sufficiently large, that the excess
A at w is positive and sufficiently small, and that the excesses at # and v are zero. The work of the algo-
rithm can happen as follows: first f(vw) decreases by A, second f(uv) decreases by A, third f(uw)
increases by A. So we come to the starting vertex w with the same excess A (and with ex(u) = ex(v) = 0),
and then we move along the same cycle w — v — u — w again, and so many times.

In the next section we explain how to modify the above algorithm in order that it could lead to a faster
solution.

4. MODIFIED ALGORITHM

In the above algorithm the number of consecutive iterations on which the auxiliary graph I" is not
changed can be very large (as Example in Section 3 shows); for convenience hereinafter we include the

partition (E*, E7) in the description of T". In this section we describe a modified version for which the

number of changes of the current preflow f without changing I' = (Vp; E¥, E7) is of order O(n). This is
equivalent to the fact that O(n) changes of f lead to the event .S, F, or M (including the case when some
active edge is getting closed and critical).

Let us call a path in I" regular if all active edges in it are forward while all critical edges are backward. A
maximal sequence of iterations with a fixed I" will be called a big iferation. It starts with choosing an exces-
sive vertex v, in (G, f), and the order of handling the vertices in it is now refined as follows (assuming that
v, belongs to T').

(A) When balancing at an excessive vertex v, which consists in decreasing f at the critical edge uv
(which keeps in '), if we see that the vertex  is inner and its active edge is void (whence all edges in 8" (u)

are saturated or closed (see (C3b), implying that pushing at « is impossible), then we proceed to balancing
at the vertex u.

(B) When pushing at a vertex u, which consists in increasing f at the active edge e = uw, if we see that
the vertex w is inner and has a non-void active edge wz, then we proceed to the pushing operation at w;

whereas if &(w) = {&}, then we go to balancing at w. At this balancing, if the critical edge in 8" (w) turns
out to be the same edge e = uw, then this edge becomes closed and no longer active at u; this implies that
the graph I" changes and the big iteration finishes.

From these refinements it follows that the sequence of handled vertices and edges forms a regular path
P = (vy,e,vy,...,6,v,,...). For a current vertex v, in P, the following especial situations are possible:

(Q1) v, coincides with an earlier vertex v;;
(Q2) v, is a terminal.

Consider these situations in detail. Note that as a result of updating f on e,...,e,, the excesses of all
vertices in P, except for v, , become zero.

(1) Incase (Q1), we extract the simple regular cycle C = (v;,e,,,,...,V,). Similar to what used to be done
with rotations in known algorithms for stable o-matchings, allocations, etc., we uniformly update f along

C by “pushing” the amount A equal to the minimum of values f(e) for ee E. N E~ and values

ce)— f(e)fore'e E-NE ", that is, by increasing f by A in the forward edges and decreasing by A in
the backward edges of the cycle C. As a result, at least one edge in C becomes saturated or free, implying
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that event M (along with S or F') happens, completing the big iteration. Also the excesses of all vertices
preserve and one can see that the updated preflow f continues to be stable and fully blocking.

(2) In case (Q2), we store P (where now the excesses of all inner vertices are zero) and, in the assump-
tion of preserving I', we continue the big iteration, by choosing a new excessive vertex v, in (G, f) and con-
structing a new regular path P' = (v,, e, v;,...). Consider possible variants.

(a) If the path P' generates a cycle, than we act as described in part 1 above and complete the big iter-
ation.

(b) If P' meets the previous path P (going to a terminal) in a vertex v, = v;, then we combine P’ with
P, obtaining a tree J (having its root at some source s € .S or “anti-root” at some sink 7 € 7°); here all
inner vertices occurring in J, except for v,, have zero excess. We continue the big iteration with a new
excessive vertex vy in (G, f).

(c) If P’ enters a terminal different from the terminal in P, then we store P' (as well as P) and continue
with a new excessive vertex.

(d) In a general case, every new constructed path, unless it contains a cycle or enters a new terminal,

meets either a tree J rooted in .S oratree J' “anti-rooted” in 7, and we combine this path with the given
tree.

As aresult, when I” preserves (in particular, when no cycle arises), we obtain the following situation: in

I" there are constructed several pairwise disjoint regular trees J ,...,J , with the roots in § and trees
J1,...,T", with the anti-roots in 7', and all inner vertices of G not contained in these trees have zero
excesses.

Note also that the number of wupdates of the preflow f is equal to
|Eg—l| 4ot |Egk| +|Eg|+ -+ |Eg,| = O(n). It remains to explain how to get rid of these trees.

Suppose that ¢ # 0 and let Z be the set of excessive vertices in J', (which is exactly the set of branching
points in ). Scanning I, we extract in it the minimal subtree W containing Z and the anti-rootte T
of J', and enumerate the edges of W in a topological order, say, w,...,w, (so that if w; lies on the path
connecting w; and 7, then i < j). Scanning the edges of W in this order, we update f in a natural way,

obtaining one of the following two situations: either (i) the excesses of all vertices in J| — {f} become zero,
or (ii) some intermediate edge becomes saturated or free, thus completing the big iteration.

We act with the other trees J; and J ; in a similar way.

Thus, the total work with the trees takes O(n) time and finishes either with event M (along with .S or
F) or with elimination of all excessive inner vertices in G, and therefore, obtaining a stable flow f. During
the big iteration, each edge in I" is handled O(1) times. Therefore, the complexity of the big iteration is
O(n). This together with (3.2) leads to the following result.

Proposition 2. The modified algorithm finds a stable flow f in a network N = (G = (V,E),S,T,c) in
O(nm) time (and f is integral when so is ¢).

Remark 3. With a sufficient certainty one can think that the above algorithm can be accelerated to
attain the time bound O(mlog n), by using data structures as in [6, 7] to make operations on the current

graphs I" (such as extracting and rearranging components and cycles in I', updating the preflow on cycles
and trees, etc.), in a similar spirit as analogous procedures on the subgraph of “weak edges” are acceler-
ated in the algorithm for the allocation problem in [5]. We omit elaboration of such technical details in
this paper, trying to keep a sufficient simplicity and possible practical applications of the above method.

5. GENERALIZATIONS

The stable flow problem in a network N = (G = (V, E),S,T,c) can be generalized by introducing for
each inner vertex v, an upper bound y(v) € R, on the excess allowed at v. (As before, we impose condition

2.1).)
Definition 4. A preflow f : E — R, in N is called a y-preflow if it satisfies the restrictions

0<ex, (V) <Yv) VveV —(SuUT). (5.1)
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In practical interpretations one can think of restrictions in (5.1) as a permission for each “agent” v do

not send further all the goods delivered through the entering edgesine e Si"(v) , but store (or send “aside”)
a part of the goods not exceeding y(v).

We call a y-preflow stable if for each unsaturated directed u—v path P, at least one of the following is
valid: (a) the vertex v is inner and P satisfies (2.3) (with v, = v), i.e., P isdominated at v; or (b) the vertex
u isinner and P is strongly dominated at u, which means validity of (2.2) (with v, = u) and the absence of
excess at u: ex,(u) = 0. When y = 0, this turns into the definition of a stable flow.

A generalization of above results to y-preflows is viewed as follows.

Proposition 3. For a network N = (G = (V,E),S,T,c) and a vector 'y IRK_(SUT), a stable y-preflow
exists and can be found in O(nm) time.

Proof. The given problem is reduced to the stable flow one in an extended network N' with the graph
G' = (V,E') formed from G by adding for each inner vertex v, a new edge vt of capacity c(vt) := y(v),

which is put as the last element of the order 8°"(v); namely, e <! vz for all e € 85" (v). Here ¢ is a distin-
guished sink in 7. Let f" be a stable flow for N', and f its restriction to G. Then f is a y-preflow and its
stability follows from that of f'. (Indeed, if P is an unsaturated directed u—v path in G which, being con-

sidered as a path in G', is dominated at u, then there holds f"(ur) = 0, whence we obtain ex (u) = 0.)

We can further generalize the problem by introducing for each inner vertex v, besides y(v) as above, a
bound B(v) € R, on the value —ex(v). In other words, we consider a feasible (w.r.t. ¢) function
[ E > R, satisfying

By) <ex;(v)<vv) VvelV -(SuUT). 5.2)

Such an f is called a (B, y)-quasi-flow. One may think of the restriction —B(v) < ex (v) in (5.2) as a per-
mission for the “agent” v to take from his reserve or attract from “outside” an amount of goods not
exceeding B(v) to send this further, together with the goods delivered through the entering edges (and, as
before, it is allowed to the “agent” to store or send “aside” a part of the goods not exceeding y(v)). Roughly
speaking, for a (B,y)-quasi-flow f, if the value A(v) := ex ,(v) is positive, then the “agent” v stores A(v)
units of goods, while if it is negative, then the “agent” take from his reserve —A(v) units. Q.E.D.

We call a (B, y)-quasi-flow stable if for each unsaturated directed u—v path P, at least one of the fol-
lowing is valid: (a) the vertex u is inner and P is strongly dominated at u (relative to y), in the sense that
(2.2) holds (with v, = u) and the excess at u is nonpositive (and no less than —3(x)); or (b) the vertex v is
inner and P is strongly dominated at v (relative to ), which means that (2.3) is valid (with v, = v) and the

excess at v is nonnegative (and no more that y(v)). When § = vy = 0, we obtain the definition of a stable
flow.

For this generalization, we obtain the following

Proposition 4. For a network N = (G = (V,E),S,T,c) and vectors 3,y € [R{K_(SUT), a stable (B,7y)-quasi-
Sflow exists and can be found in time O(nm).

Proof. Consider the stable flow problem in the extended network N' with the graph G' = (V', E")
formed from G by: (a) splitting each inner vertex v into two copies v' and v", where v' inherits the entering

edges from Si"(v), and v" does the leaving edges from §°"(v) (keeping the capacities and orders on them);
(b) adding edge v'v" with a large capacity; and (c) adding edge v'# of capacity c(v'¢) := y(v) and edge sv"
of capacity c(sv") := B(v), where each of v'# and sv" is assigned to be less preferable compared with the
edge v'v" and where s and ¢ are distinguished source and sink, respectively. Let /' be a stable flow in N',
and £ its “image” in NV . One can check that f isa (B, y)-quasi-flow in N and that its stability follows from
that of f'. Here the essential fact is that for each inner vertex v € V, at least one of two values f'(sv") and

v

f'(v't) must be zero (which follows by considering the unsaturated path (v',v'v",v")). Q.E.D.
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6. ADDITIONAL REMARKS
In this final section we discuss three additional interesting properties of stable flows. As before, we con-

sider a directed network N = (G = (V, E), S, T, ¢) with linear orders on 8" (v) and 8°*(v) for inner vertices
veV —(SuT) (and subject to (2.1)).

(I) For a preflow f in a network N = (G, S,T,c), we define the value of f to be the total excess at the
sinks: val(f) := ex (T (= ZH ex f(t)). The following property is valid:

for a stable preflow f in N, there is a stable flow f'in N such that

f(e) £ f'(e) for all edges entering 7', and therefore, val(f) < val(f"). 6.1)

Indeed, if f is not a flow (i.e., there is an excessive inner vertex), then f is transformed into a stable flow
f' by applying a sequence of iterations of the basic algorithm. Any balancing operation does not change

the values on the edges entering 7, but any pushing operation can only increase these values, yielding the
desired property (6.1).

(IT) As to the values of stable flows, note that, generalizing classical results on stable marriages, stable
bipartite »-matchings, etc., Fleiner [8, Section 4] established that:

for any two stable flows f and g in a network N, the values f(e) 6.2)
and g(e) coincide for each edge e incident to a terminal. '

As a consequence, val(f) = val(g). Property (6.2) was proved in [8] (where two-terminus networks are
considered and arbitrary edges incident to terminals are allowed) by use of a reduction to the correspond-
ing property for stable allocations. One can give a direct and rather simple proof (considering our network
N =(G,S,T,c) as before).

For this purpose, let us associate with the function f — g a decomposition on paths and cycles. More
precisely, since f and g have no excessive inner vertices, one can form a family ‘€ consisting of simple
paths and cycles C with weights A(C) > 0 such that:

(i) for each C e 6, the forward edges e in C satisfy f(e) > g(e), and the backward edges e’ satisfy
fe) < gle);
(ii) for each e € E, the sum of weights A(C) on the paths/cycles C containing e is equal to [f(e) — g(e)|;

(iii) each path in ‘6 connects two different terminals and each cycle contains at most one terminal.

Suppose that f and g differ in some edge e incident to a terminal and consider the case when e leaves

asource s € S (i.e., e € 8°"(s)). For definiteness, let f(e) > g(e). Then there is C € € containing e (as a
forward edge); moreover, either (a) C isa path from s tor € T, or (b) C isa path from s to s' € .S (possibly
s'=9).
In case (a), there is a sequence s = v, v,,...,v, =t of vertices in C (where k is odd) such that the por-
tion of C from v,_, to v; has only forward edges for i odd, and only backward edges for i even. Then
for i odd, there is a directed path P. from v, ; to v; where f exceeds g
on all edges, and therefore, P, is unsaturated for g and does not contain
edges free of f; in its turn, for i even, there is a directed path Q, from (6.3)
v; to v,_; where g exceeds f, and therefore, O, is unsaturated for f and
does not contain edges free of g.

(Such paths form the concatenation P, -Q;' - P,-Q,' -...-Q;', - P, of C, where Q"' stands for the path
reversed to Q.) Let p; (p;) denote the first (resp. last) edge in £, and let g, (q;-) denote the first (resp. last)
edge in Q;. One can see that

P.q. € 8" (v;) for each odd i < k, and g, p;,, € 8"(v,) for i even. (6.4)

Now we apply (6.3) and (6.4), moving step by step in the sequence of paths B, Q,, P, .... Since P, begins
at the source v, = s and is unsaturated for g and since g(g;) > 0, from the stability of g it follows that
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¢, <,, pi- Then from the facts that f is stable, O, is unsaturated for f, the inequality f(p,) > 0 holds, and

0, is not dominated at v, (since f(p}) > 0 and pj is after g}), we obtain p, <! g,. And so forth. Coming to
2 1 1 1 2 3 v, 12

the path Q,_,, we obtain p, <:H gi_,- But then the last directed path P, (which ends at the sink v, = r and

is unsaturated for g) is not dominated at the beginning vertex v,_,, contrary to the stability of g.
In case (b), the reasonings are similar. Here we deal with the concatenation of paths of the form

PI,Q{',..., Pk_l,Qk_' (with k£ even). Now the last directed path Q, begins at the source v, = s', is unsatu-
rated for f and not dominated at the end vertex v,_, (in view of f(p;_;) > 0 and g, <,  p;_,); this con-
tradicts the stability of f. By symmetry reasons, the cases when f and g differ at an edge entering 7" are
impossible as well. This completes the proof of (6.2).

(ITT) The previous construction can be extended. Namely, consider two stable flows f and g in a net-
work N = (G = (V,FE),S,T,c). Let H be the subgraph of G induced by the edgesin 4 := {e : f(e) > g(e)}
and B := {e : g(e) > f(e)}, and endow the edges e in H with the weights o(e) := |[f(e) — g(e)|- By (6.2), H
contains no terminal. Moreover, o is decomposed into a nonnegative linear combination of the charac-
teristic functions of simple regular cycles (and therefore, ® may be regarded as a “circulation”).

Here we say that a (not necessarily simple) cycle C in H is regular (relative to (A4, B)) if all forward edges

in it belong to 4 and the backward ones belong to B. For a vertex v in such a C, we denote by I1.(v) the
set of pairs of consecutive edges incident to v and following in the direction of the cycle. We call a pair

1t e 11.(v) especial if m contains edges in both 4 and B (equivalently, both edges of &t either enter v or leave
v). In this case we say that a pair T = (e, e") is left if e is more preferable for v than e'; otherwise the pair is
called right. Arguing as in the proof of (6.2), from the stability of f and g one can conclude that

for any regular cycle C, all especial pairs occurring in C have the same

6.5
orientation, in the sense that all are left or all are right. 6.5

This property is extended to the components K of H : all especial pairs occurring in regular cycles in a
component K are simultaneously either left or right (this follows from the fact that any two such pairs &,
7' can be included in one (non necessarily simple) cycle in K'). According to this, we specify four types of
components K . Namely, we say that: K has fype A (type B) if all edges of K belong to the set A (resp. B);
and K has fype L (type R) if K has edges in both sets 4 and B (in which case we call the component K
rich) and the orientations of all especial pairs in K are left (resp. right). Equivalently,

a rich component K has type L if for any vertex v of K admitting an

especial pair, in the set Sm(v) the edges from A precede (more preferable 6.6)
than) the ones from B, and in the set 8°"'(v) the edges from B precede '

the ones from A; in case of type R the situation is opposite.

Using this, one can represent the set of stable flows in N as a lattice (which is done in [8] by use of a
reduction to the stable allocation problem and appealing to the corresponding result in [4]). More pre-
cisely, define the following functions 4, £ on E:

h coincides with f on the components of types A and R, and coincides
with g on the components of types B and L, while / is defined conversely; 6.7)
for the remaining edges e, one puts A(e) := l(e) := f(e) = g(e).

One can see that 4 and ¢ are flows. Also for each inner vertex v, the flow # dominates the flows f, g

on the set §°"'(v), and is dominated by these flows on the set Si"(v), whereas ¢ behaves conversely. (Here
for numerical functions a, b on an ordered set (5, <), we say that a dominates b if either a = b or there is
e € § such that a(e) > b(e), a(e') = b(e") fore' < e, and a(e") < b(e") fore < e".)

Due to what is said above, one can obtain (we omit details here) that /# and ¢ are nothing else than the
flows f v g and f A g, respectively, that are pointed out in [8, Section 4]; in particular, both 4, ¢ are stable.
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