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Abstract—We propose a new algorithm of finding a stable f low in a network with several sources and
sinks. It is based on the idea of preflows (applied in the 1970s for a faster solution of the classical max-
imal f low problem) and has time complexity  for a network with  vertices and  edges. The
obtained results are further generalized to a larger class of objects, the so-called stable quasi-flows with
bounded deviations from the balanced relations in nonterminal vertices.
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1. INTRODUCTION
The field of theoretical and applied problems on stable contracts is a subject of an intensive study in

mathematical economics, game theory and combinatorial optimization, and numerous works has been
devoted to this field during last several decades. The classical work on stable marriages (SM) due to Gale
and Shapley [1] has served as a starting point of many subsequent researches.

According to one widespread formulation of that problem, one considers a bipartite graph ,
and for each vertex , there is given a (strict) linear order  on its incident edges. (A bipartite graph con-
sidered in [1] is assumed to be complete, but this is not so important. In a popular old interpretation the
edges of  represent possible marriages between “men” and “women”, and the order  indicates the
preferences of a person , namely: for edges  and , if , then  prefers the alliance with

 to that with .) In the problem one requires to find a matching  which is stable with respect to
all these orders. This means that for any edge  in , there exists an edge  such that  and 
share a vertex  and there holds . It was shown that a stable matching in a bipartite graph (equipped
with linear orders on the vertices) always exists and that it can be constructed by a combinatorial algorithm
having a linear upper bound on the number of operations (viz. running time, complexity) , where

 and  are the numbers of vertices and edges in , respectively.
Subsequent works of many authors have explored various generalizations of problem SM. One can dis-

tinguish two ways of generalizations related to graphs (leaving aside settings where more than two “agents”
may be involved in a contract, or where the preferences could be given in a different manner, e.g. by use
of a choice function). One of them is to admit arbitrary, not necessarily bipartite, graphs . The corre-
sponding analog of problem SM, called the stable roommates problem, was well studied by Irving in [2]
where a linear complexity algorithm was devised that either constructs a stable matching in  or proves
that there is none. Important additional structural and algorithmic results were presented in [3].

Another type of generalizations, which is more interesting for us here, remains the graph  to
be bipartite but adds numerical parameters. Among the problems of this type, a quite general one is the
so-called stable allocation problem (SA) introduced and studied by Baiou and Balinski [4]. Here “alloca-
tion” means an assignment to each edge  a value  not exceeding a prescribed capacity ,
and at the same time, for each vertex  the sum of assignments on the edges incident to  should not
exceed a prescribed “quota” . (In case of SM, all  and  are ones, and each  takes value 0
or 1. In a general case of SA, the number  on an edge  can be meant, for example, as the share
of participation of the “worker”  in the “job” .)

In [4] it is proved that SA is solvable for any nonnegative real-valued  (and has an integral solution
 when  are integer-valued), and a strongly polynomial solution algorithm is proposed (i.e., an algo-
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492 KARZANOV
rithm whose running time depends only on the graph size and is expressed by a polynomial in ). Dean
and Munshi [5] developed an improved version of the algorithm from [4] that constructs a solution in

 time; moreover, they showed that one can achieve even the better time bound  if one
applies, for a number of procedures, certain powerful data structures, such us dynamic and self-adjusting
trees elaborated by Sleator and Tarjan [6, 7]. (This gives a theoretical acceleration, but an algorithm using
such structures are cumbersome and could hardly be applied for practical purposes.)

In its turn, problem SA can be represented as a special case of the stable flow problem (SF). The latter
was stated by Fleiner [8] in 2010th (as an extension of Ostrovsky’s problem [9] concerning acyclic net-
works with unit capacities). Here one is given a network consisting of a directed graph  with
capacities  of edges  and two distinguished vertices (“terminals”)  and . For each inner ver-
tex , two linear orders are given, one on the set of its entering (incoming) edges, and the other
on the set of its leaving (outgoing) edges. A (feasible) flow is a nonnegative real function  on the edges
satisfying the upper capacity constraints and having zero excesses at all inner vertices, where by an excess
at a vertex  one means the difference  between the total f low on the entering edges and that on the
leaving edges at . (In applications an inner vertex can be interpreted as a “player” or “trader” or “agent”
who after having received some amount of goods through the entering edges, is sending this amount fur-
ther through the leaving ones, relying on his/her utility rule depending on the above mentioned orders.)
A flow is regarded as stable if, roughly speaking, it does not admit local improvements using “unsaturated
paths”; a precise definition will be given in Section 2.

There is a close relation between problems SA and SF. Indeed, problem SA with a bipartite graph
 is reduced to problem SF with the graph obtained from  (whose edges are directed from

 to ) by adding two terminals  and , the edges  with the capacities  for vertices  from the
part , and the edges  with the capacities  for vertices  from the part .

On the other hand, Fleiner [8] showed that problem SF with a graph  can in turn be reduced
to problem SA with some graph obtained by splitting the vertices of  into pairs and adding  new
edges. As a result, for any network, the existence of a stable f low was established (and an integral one when

 is integer-valued), and a possibility of constructing such a f low by use of algorithms for SA, yielding
complexity of a similar kind.

Subsequently there appeared direct algorithms of finding a stable f low (without appealing to SA).
Recently Cseh and Matuschke [10] proposed a direct algorithm for a network with one source and one
sink, which has complexity  and is based on a combination of ideas of Ford–Fulkerson’s method
for the maximal f low problem and the “deferred acceptance method” originated in Gale and Shapley [1].

In this work we present an alternative algorithm to find a stable f low in a network  with
arbitrary sets of sources  and sinks T, assuming (for simplicity) that there are no edges entering sources
or leaving sinks. This algorithm is direct and purely combinatorial (neither appealing to SA nor using
sophisticated data structures); it exploits the idea of preflows. Recall that a preflow in a network is a non-
negative function on the edges that is bounded by the capacities and has nonnegative excesses at all inner
vertices. (This notion was introduced in [11] and used in the max flow algorithm developed there.) Note
that preflows were used earlier in [12] to find a stable f low in a network with integral capacities in a
pseudo-polynomial time (i.e., with a time bound depending linearly on the sum of capacities).

Our algorithm has basic and modified (accelerated) versions. Both start with constructing a certain ini-
tial stable preflow, and on each subsequent iteration, the current stable preflow is updated with the aim of
getting rid of positive excesses in inner vertices. As soon as the excesses of all inner vertices become zero,
a required stable f low is constructed (and the f low is integral when the capacities с are integer-valued).
The basic algorithm is finite for any nonnegative real capacities . The modified algorithm is strongly
polynomial; it applies additional transformations and constructs a stable f low in  time (like the
algorithm in [10]).

Then we consider a more general problem in a network  in which for each inner vertex
, there are given two parameters  and  and it is required to find a stable “quasi-flow” 

satisfying the constrains of the form . (This turns into a stable f low when .)
We show that such a “quasi-flow” does exist and it also can be found in  time. (In applications the
number  can be thought of as the permission to the “agent”  to manage on his own a part of the
received goods not exceeding , while the number  as the permission to involve from “outside”
additional goods of the amount not exceeding .)
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ON STABLE FLOWS AND PREFLOWS 493
This paper is organized as follows. Section 2 contains basic definitions and exact formulations of prob-
lems SF and SA. In Section 3 we describe the basic algorithm of finding a stable f low in a network by use
of preflows and show its finite convergence (Proposition 1). The modified version of the algorithm, hav-
ing complexity , is described in Section 4. Section 5 generalizes the obtained results to stable pre-
flows and quasi-f lows with restricted excesses (Propositions 3 and 4). In the final Section 6 we discuss
three additional properties, namely: (1) the maximum preflow value (i.e. the total excess in the sinks)
among the stable preflows is achieved by a stable f low; (2) all stable f lows in a fixed network have the same
value; and (3) the stable f lows form a lattice. (Properties 2 and 3 are shown in [8] via a reduction to the
corresponding properties for problem SA; we give simple proofs using direct constructions.)

2. DEFINITIONS AND SETTINGS
We consider a network  consisting of a directed graph  (without loops and

multiple edges), distinguished disjoint subsets of vertices  (sources) and  (sinks), also called terminals,
and a function  of capacities of edges. (Hereinafter  and  are the sets of nonnegative reals
and integers, respectively.) For a vertex  let  and  denote the sets of edges entering  and
leaving , respectively. To simplify our description, we throughout assume that

(2.1)

Definition 1. A function  is called feasible (with respect to ) if it satisfies the capacity con-
straints  for all edges . Define the excess of  at a vertex  by

A feasible function  is called a preflow in  (following terminology from [11]) if it has a nonnegative
excess  at each vertex . A flow (from  to ) is a preflow  having zero excesses at all
inner (nonterminal) vertices , and its value  is defined to be .

A path in  is a sequence , where  is an edge connecting vertices  and .
An edge  in  is called forward if , and backward if . (We usually denote an edge leav-
ing  and entering  as , rather than .) A path is called directed if all its edges are forward, and simple
if all its vertices are different. The reversed path  is denoted as . A path from a vertex

 to a vertex  may be called a –  path. Speaking of a path, unless otherwise is explicitly said, we assume
that it is nontrivial, i.e., it has at least one edge.

For a feasible function , an edge  with  ( ; ) is called saturated (respec-
tively, unsaturated; free (of )). A path is regarded as unsaturated if all its edges are such.

In the problem that we consider each inner vertex  of a network  is endowed with a linear (total
strict) order  on the set , and a linear order  on the set . They are interpreted as “preference
relations”; namely,  means that the vertex (“agent”)  prefers the edge  to ; in this case, we will

also say that  is located in  before, or earlier than, or on the left from , and accordingly,  is after,

or later than, or on the right from . In accordance with the order , the set  is arranged as a double-
linked list; thus, the first (last) element in the list is most (respectively, least) preferable. And similarly for
the order .

Definition 2. A f low  in a network N, with order equipments on the vertices as mentioned above, is
called stable if each unsaturated directed path  satisfies at least one of the following
two conditions (where the case  is allowed):

(2.2)

(2.3)
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494 KARZANOV
In particular, there is no unsaturated directed path from  to . A preflow  is called stable in the analo-
gous case.

We are interested in the stable flow problem (SF): given a network N, find a stable f low in it. Fleiner [8]
established that this problem is always solvable, and furthermore, the property of integrality takes place: if
a network  is integral (in the sense that ), then there exists an integral sta-
ble f low.

This is proved in [8] by a reduction of problem SF in  to the stable allocation problem (SA) in a bipar-
tite graph  with weights  on the edges  and “quotas”  on the vertices

. (Strictly speaking, [8] deals with the case when  and condition (2.1) is not imposed;
however, the above-mentioned facts are valid for our case as well.) Also the reduction is linear in the input
graph size, namely:  and , and preserves the integrality:  and  are integral
when so is . Problem SA was introduced and studied in [4] where the solvability for any bipartite network
and the integrality property were proved and a solution algorithm was devised.

As is mentioned in the Introduction, it is shown in [5] that by use of sophisticated data structures, the
so-called dynamic and self-adjusting trees, the stable allocation problem in a graph with  vertices and 
edges can be solved in  time (but without using those, one can obtain  time). This, due to
the above-mentioned reduction, leads to a similar algorithmic complexity for problem SF as well. A direct
algorithm for SF in case  proposed in [10] has complexity .

In the present paper we device an alternative direct algorithm of finding a stable f low in a network
 (subject to (2.1)) based on a preflow method. In the next section we describe the basic

version of our algorithm (finite for any ), and in Section 4, the modified version (with running time
).

3. BASIC ALGORITHM

Our algorithm of finding a stable f low in a network  consists of a sequence of
iterations; as a rule (but not always) an iteration has two phases: balancing and pushing (similar to the struc-
ture of a stage (“big iteration”) in the max flow algorithm in [11]). Each iteration transforms one blocking
preflow into another, and the process terminates when the current preflow becomes a f low. One should
emphasize that the term “blocking” here is borrowed from the language in [11] and has another meaning
compared with what is usually understood in problems on stability.

Definition 3. For a preflow  in a network N, let us say that a vertex  is excessive if . A pre-
flow  is called blocking if every directed path from  to  has a saturated edge. If, in addition, any
directed path going from an excessive inner vertex to  has a saturated edge, then we call  fully blocking.

Remark 1. A fully blocking preflow is not necessarily stable, and vice versa. At the same time, any stable
flow is blocking (and automatically fully blocking). In general, already in the case of ranged acyclic net-
works, to find a stable f low looks a somewhat more complicated task than the problem of finding a block-
ing f low. The latter problem is solved on a stage of the algorithm in [11] in  time, which is faster than
the complexity  of the algorithm for SF in Section 4.

3.1. Initial Iteration

At this and subsequent iterations, we maintain two sets  and  which are arranged as double-
linked lists and formed by excessive inner vertices of the current preflow. Also for each inner vertex , there
is an element  which either is void, denoted as , or is a specified unsaturated edge in ,
called the active edge at . In the beginning one puts , and for each ,
one assigns as the active edge the first (most preferable) edge in .

The initial iteration consists of only the pushing phase, which starts with the trivial blocking preflow f,
defined as  for all edges , , and  for the remaining edges . Each inner
vertex  connected by an edge  with a source  is inserted in the list  (since the excess at 
became positive). Then we scan vertices of the current list , as follows.
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ON STABLE FLOWS AND PREFLOWS 495
For a current vertex , we update  on  so as either to reduce the excess at  to zero, or
to saturate all edges in  (or both). More precisely, the edges  are handled following the
order  (“from left to right”), starting from the active edge . If the current excess  is
still nonzero, then we update . If the new excess becomes zero, then the treat-
ment of  finishes; otherwise we proceed to the next edge in the list , and so on. Also when changing

 on the edge , if the vertex  (in which the excess increases) is contained neither in  nor in
, then we add  to the current list New.

Upon termination of the work with , this vertex is deleted (maybe temporarily) from the list , and
if the excess at  remains nonzero, then  is inserted in the list . The new active edge  is assigned
to be the leftmost unsaturated edge in , and if all edges in it are saturated (in particular, when

), then one puts . Then we proceed to handling another vertex in , and so on.
The iteration terminates when the set New becomes empty.

Note that during the iteration one and the same vertex  may appear and disappear several times in
. However, we shall show later that the initial (and every subsequent) iteration always terminates. One

can see the following:

(3.1)

From (3.1) it is easy to conclude validity of (2.2) for all unsaturated directed paths; therefore, the initial
preflow  is stable.

In the rest of this section we first describe the balancing phase for a general iteration. Then we specify
the conditions to which a current preflow should satisfy at the moment of beginning the pushing phase.
Finally, we describe the pushing phase for a general iteration.

3.2. Balancing
This procedure is performed when the set  of excessive inner vertices for the current preflow  is

nonempty (while ). It applies to one chosen vertex . Define  ( ) and let 

be the last (rightmost, least preferable) edge in  with . We decrease  on  by .
If the excess at  becomes zero (in case ), the procedure finishes. Otherwise (when ) we
take the last edge  with  for the updated  and decrease  on  in a similar way. And so on until
the excess at  becomes zero.

For each edge  where  decreases under the balancing at , we examine the vertex . If  is inner
and not contained in , then we add it to the list . (Thus,  is formed by the set of new excessive
vertices  appeared as a result of decreasing  on edges .) The leftmost (chronologically last) edge in

 where  was decreased is called critical and denoted by . This edge along with all edges
 in  after it are labeled as closed (to avoid any further increase only!). At the same time, if such

an edge  is the current active edge in , then we assign the new active edge in it to be the first after
 edge in  that is not closed (under earlier balancing phases), and if it is absent, then one puts

.
Remark 2. During the algorithm one should maintain the values of excesses at the inner vertices (cor-

recting each of them in  time whenever  changes).
We assume (by induction) that upon termination of the balancing phase at a vertex , the current func-

tion  is a preflow, which need not be fully blocking but satisfies the following three properties.

(C1) Each unsaturated edge in , , is closed.
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496 KARZANOV
(C2) If for an excessive inner vertex , the set  contains an unsaturated edge which is not closed,
then .

(C3) For each inner vertex , there holds: (a) if the active edge in  is not void: , then
this edge is unsaturated and not closed, and all edges in  after it are free of , while each edge before
it is saturated or closed (becoming so after the last or earlier balancing); (b) if , then all edges in

 are saturated or closed; and (c) if  has ever been balanced, then , and the set  pos-
sesses the critical edge , which is unsaturated and all edges in  after it are free of f.

3.3. Pushing (after Balancing at a Vertex )

This phase consists in increasing the current preflow  on some edges, aiming to make it fully block-
ing; this is close to the construction of the initial preflow but has some features. The phase immediately
terminates when the beginning set  is empty. Otherwise it starts with choosing a vertex , and
we try to reduce the excess at  as much as possible. To this aim, we handle edges in  following the
order  and skipping the closed ones. This starts with the active edge  (if , then we
simply transfer the vertex  from  to  and the work with  finishes). Similar to the initial iteration,
for the current edge , we update , where  is the current excess at , and
simultaneously add the vertex  to the set  unless it is already contained in  (for the excess
at  increases). If the new excess at  is still nonzero, then we proceed to the next non-closed edge in

, and so on. If the excess becomes zero, then the work with  finishes and we delete  from .
When all edges are already handled but the excess at  remains nonzero, then  is transferred from 
to . After finishing the work with  and properly updating the active edge  in  (getting 
which satisfies (C3a, C3b), we choose another vertex in the current , and so on. The phase terminates
when the current set  becomes empty.

Upon termination of the pushing phase (which is finite by Prop. 1 below) the resulting  is again a pre-
flow, and one can see that  continues to satisfy properties (C1) and (C3), whereas (C2) is replaced by the
following property (cf. C3b).

(C2') Each excessive inner vertex  is contained in , and  takes place.
Lemma 1. The preflow  obtained in the pushing phase is stable and fully blocking.
Proof. Consider an unsaturated directed path . Suppose that either  or 

is not dominated at  (when  is inner). Then the edge  is closed (in view of (C1) and (C3)). This
implies that the vertex  was handled at some balancing phase, so it was excessive before that. Applying
(C2') and (C3b) to the vertex  and preflow  at the moment just before the balancing, we conclude that
the edge  should be closed to this moment. Therefore,  is closed for  as well. Arguing so, step by step,
we can conclude that the edges  are closed as well. (The case  is impossible since at the
moment of balancing at , this vertex was excessive, and the situation that  is unsaturated is impossi-
ble.) Since  is closed, it must either occur in  after the critical edge  or coincide with the latter.
Then it follows from (C3c) that all edges in  after  are free of . Therefore,  is dominated at ,
yielding (2.3). This implies that  is stable.

The fact that  is fully blocking is deduced from (C1), (C3), (C2') by similar reasonings. Q.E.D.
Using the above-mentioned properties of a preflow obtained at the pushing phase, one can conclude

that the balancing phase of the next iteration produces a preflow satisfying properties (C1)–(C3). This
implies the correctness of the basic algorithm.

3.4. Convergence of the Basic Algorithm
From Lemma 1 we obtain
Corollary 1. If for the current preflow  at an iteration, the excesses of all inner vertices become zero,

then  is a stable f low.
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ON STABLE FLOWS AND PREFLOWS 497
In this case  is a required solution of the problem and the algorithm finishes. Since each application
of balancing or pushing can either decrease or increase the number of excessive inner vertices, in order to
establish the finiteness of the algorithm we need an additional analysis.

For a current , let us call an edge  middle if it is neither free nor saturated: . Let
 denote the subgraph of  induced by the middle edges. In particular,  contains all non-free

critical edges. We also add to  each free active edge (recall that any active edge is non-closed and unsat-
urated). We can observe the following.

(1) For an edge , let us call the moment when  becomes saturated the event S, and the moment
when  becomes free (after reducing a positive value of  to zero) the event F. The changes at  are of “sin-
gle-peak character”: at a first stage  is monotone increasing under pushing at , and after the first
decrease of  the edge  becomes closed and further  can only decrease (under balancing at ).

(2) An edge  can be added to the graph  at most two times: first when  becomes active, and second
when  becomes critical.

Let , ,  denote, respectively, the numbers of events , events , and events  consisting of
changes of the graph . From the observations above it follows that

(3.2)

Thus, to analyze the convergence of the algorithm, one should estimate the number of consecutive itera-
tions when none of the events  and  happens. To this aim, we notice the following.

(3) During the algorithm, for each inner vertex , the active edge in  can be shifted only to the
right (when pushing at ), whereas the critical edge in  only to the left (when balancing at ); also
the status of such edges changes: for the old active edge, the event  happened or the edge became closed,
and for the old critical edge, the event  did. In view of this, denoting by  and 
the sets of active and critical edges in , respectively, we obtain that

(3.3)

One can also see that these sets give a partition of :

(taking into account (C3) and the fact that a critical edge  becomes closed and could no longer be
active in ). Therefore, in case of preserving  together with preserving the same partition 
on consecutive iterations, any change of the preflow  on an iteration consists in only one decrease at
some critical edge, or in one or more increases at some active edges (which preserve). Note also that an
active edge can be turned into a critical one, but not conversely. These facts together with properties (3.2)
and (3.3) allow us to obtain the following

Proposition 1. The above basic algorithm of finding a stable flow in a network  is finite, and
in case of integer-valued capacities , it finds an integral stable flow.

Proof. One should show the finiteness of a sequence of consecutive iterations on which both  and
 preserve. Let  be the minimal positive excess among inner vertices in the beginning of this sequence.

Assume by induction that before a change of the preflow  on an iteration of this sequence, the set
 of excessive vertices is nonempty and ( ): each of them has the excess at least . If at this

moment the balancing operation at a vertex  takes place, then, in view of keeping , this operation is
reduced only to decreasing  by the value  at the critical edge . This turns the
excess at  to zero and causes growing the excess at the vertex  by the same amount ; therefore, property
( ) is valid for the updated  (in case  the set  simply decreases by one element ). And
in case of performing the pushing operation at some inner vertex  with the active edge , then, in
view of keeping , this operation is reduced to increasing  on  by the value .
This turns the excess at  to zero and increases the excess at the vertex  by ; therefore, property ( ) con-
tinues to hold for the new  (in case  the set  decreases by one element ).
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498 KARZANOV
Thus, any change of  consists in decreasing it by  at one edge in  or increasing by  at one edge

in . Hence the number of iterations in the given sequence does not exceed , implying the
finiteness of the algorithm.

In case of integral  any operation changes the preflow value at an edge by an integer amount, and
therefore, the resulting stable f low is integral as well. Q.E.D.

In spite of the finiteness of the basic algorithm, the number of iterations in it can be very large, as the
next example shows.

Example. Let  contain vertices  and edges ,  and  such that  and .

Assume that the edge  is critical in , the edge  is critical in , and the edge  is active in
. We assume that the values ,  and  are sufficiently large, that the excess

 at  is positive and sufficiently small, and that the excesses at  and  are zero. The work of the algo-
rithm can happen as follows: first  decreases by , second  decreases by , third 
increases by . So we come to the starting vertex  with the same excess  (and with ),
and then we move along the same cycle  again, and so many times.

In the next section we explain how to modify the above algorithm in order that it could lead to a faster
solution.

4. MODIFIED ALGORITHM
In the above algorithm the number of consecutive iterations on which the auxiliary graph  is not

changed can be very large (as Example in Section 3 shows); for convenience hereinafter we include the
partition  in the description of . In this section we describe a modified version for which the
number of changes of the current preflow  without changing  is of order . This is
equivalent to the fact that  changes of  lead to the event , , or  (including the case when some
active edge is getting closed and critical).

Let us call a path in  regular if all active edges in it are forward while all critical edges are backward. A
maximal sequence of iterations with a fixed  will be called a big iteration. It starts with choosing an exces-
sive vertex  in , and the order of handling the vertices in it is now refined as follows (assuming that

 belongs to ).
(A) When balancing at an excessive vertex , which consists in decreasing  at the critical edge 

(which keeps in ), if we see that the vertex  is inner and its active edge is void (whence all edges in 
are saturated or closed (see (C3b), implying that pushing at  is impossible), then we proceed to balancing
at the vertex .

(B) When pushing at a vertex , which consists in increasing  at the active edge , if we see that
the vertex  is inner and has a non-void active edge wz, then we proceed to the pushing operation at ;
whereas if , then we go to balancing at . At this balancing, if the critical edge in  turns
out to be the same edge , then this edge becomes closed and no longer active at ; this implies that
the graph  changes and the big iteration finishes.

From these refinements it follows that the sequence of handled vertices and edges forms a regular path
. For a current vertex  in P, the following especial situations are possible:

(Q1)  coincides with an earlier vertex ;
(Q2)  is a terminal.
Consider these situations in detail. Note that as a result of updating  on , the excesses of all

vertices in , except for , become zero.
(1) In case (Q1), we extract the simple regular cycle . Similar to what used to be done

with rotations in known algorithms for stable -matchings, allocations, etc., we uniformly update  along
 by “pushing” the amount  equal to the minimum of values  for  and values

 for , that is, by increasing  by  in the forward edges and decreasing by  in
the backward edges of the cycle . As a result, at least one edge in  becomes saturated or free, implying
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ON STABLE FLOWS AND PREFLOWS 499
that event  (along with  or ) happens, completing the big iteration. Also the excesses of all vertices
preserve and one can see that the updated preflow f continues to be stable and fully blocking.

(2) In case (Q2), we store  (where now the excesses of all inner vertices are zero) and, in the assump-
tion of preserving , we continue the big iteration, by choosing a new excessive vertex  in  and con-
structing a new regular path . Consider possible variants.

(a) If the path  generates a cycle, than we act as described in part 1 above and complete the big iter-
ation.

(b) If  meets the previous path  (going to a terminal) in a vertex , then we combine  with
, obtaining a tree  (having its root at some source  or “anti-root” at some sink ); here all

inner vertices occurring in , except for , have zero excess. We continue the big iteration with a new
excessive vertex  in .

(c) If  enters a terminal different from the terminal in , then we store  (as well as ) and continue
with a new excessive vertex.

(d) In a general case, every new constructed path, unless it contains a cycle or enters a new terminal,
meets either a tree  rooted in  or a tree  “anti-rooted” in T, and we combine this path with the given
tree.

As a result, when  preserves (in particular, when no cycle arises), we obtain the following situation: in
 there are constructed several pairwise disjoint regular trees  with the roots in  and trees

 with the anti-roots in , and all inner vertices of  not contained in these trees have zero
excesses.

Note also that the number of updates of the preflow  is equal to
. It remains to explain how to get rid of these trees.

Suppose that  and let  be the set of excessive vertices in  (which is exactly the set of branching
points in ). Scanning , we extract in it the minimal subtree  containing  and the anti-root 
of , and enumerate the edges of  in a topological order, say,  (so that if  lies on the path
connecting  and , then ). Scanning the edges of  in this order, we update  in a natural way,
obtaining one of the following two situations: either (i) the excesses of all vertices in  become zero,
or (ii) some intermediate edge becomes saturated or free, thus completing the big iteration.

We act with the other trees  and  in a similar way.
Thus, the total work with the trees takes  time and finishes either with event  (along with  or

) or with elimination of all excessive inner vertices in , and therefore, obtaining a stable f low . During
the big iteration, each edge in  is handled  times. Therefore, the complexity of the big iteration is

. This together with (3.2) leads to the following result.
Proposition 2. The modified algorithm finds a stable flow  in a network  in

 time (and  is integral when so is ).
Remark 3. With a sufficient certainty one can think that the above algorithm can be accelerated to

attain the time bound , by using data structures as in [6, 7] to make operations on the current
graphs  (such as extracting and rearranging components and cycles in , updating the preflow on cycles
and trees, etc.), in a similar spirit as analogous procedures on the subgraph of “weak edges” are acceler-
ated in the algorithm for the allocation problem in [5]. We omit elaboration of such technical details in
this paper, trying to keep a sufficient simplicity and possible practical applications of the above method.

5. GENERALIZATIONS

The stable f low problem in a network  can be generalized by introducing for
each inner vertex , an upper bound  on the excess allowed at . (As before, we impose condition
(2.1).)

Definition 4. A preflow  in  is called a -preflow if it satisfies the restrictions

(5.1)
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500 KARZANOV
In practical interpretations one can think of restrictions in (5.1) as a permission for each “agent”  do
not send further all the goods delivered through the entering edges in , but store (or send “aside”)
a part of the goods not exceeding .

We call a -preflow stable if for each unsaturated directed –  path , at least one of the following is
valid: (a) the vertex  is inner and  satisfies (2.3) (with ), i.e.,  is dominated at ; or (b) the vertex

 is inner and  is strongly dominated at , which means validity of (2.2) (with ) and the absence of
excess at : . When , this turns into the definition of a stable f low.

A generalization of above results to -preflows is viewed as follows.

Proposition 3. For a network  and a vector , a stable -preflow
exists and can be found in  time.

Proof. The given problem is reduced to the stable f low one in an extended network  with the graph
 formed from  by adding for each inner vertex , a new edge  of capacity ,

which is put as the last element of the order ; namely,  for all . Here  is a distin-
guished sink in . Let  be a stable f low for , and  its restriction to . Then  is a -preflow and its
stability follows from that of . (Indeed, if  is an unsaturated directed –  path in  which, being con-
sidered as a path in , is dominated at , then there holds , whence we obtain .)

We can further generalize the problem by introducing for each inner vertex , besides  as above, a
bound  on the value . In other words, we consider a feasible (w.r.t. ) function

 satisfying

(5.2)

Such an  is called a -quasi-flow. One may think of the restriction  in (5.2) as a per-
mission for the “agent”  to take from his reserve or attract from “outside” an amount of goods not
exceeding  to send this further, together with the goods delivered through the entering edges (and, as
before, it is allowed to the “agent” to store or send “aside” a part of the goods not exceeding ). Roughly
speaking, for a -quasi-flow , if the value  is positive, then the “agent”  stores 
units of goods, while if it is negative, then the “agent” take from his reserve  units. Q.E.D.

We call a -quasi-flow stable if for each unsaturated directed –  path , at least one of the fol-
lowing is valid: (a) the vertex  is inner and  is strongly dominated at  (relative to ), in the sense that
(2.2) holds (with ) and the excess at  is nonpositive (and no less than ); or (b) the vertex  is
inner and  is strongly dominated at  (relative to ), which means that (2.3) is valid (with ) and the
excess at  is nonnegative (and no more that ). When , we obtain the definition of a stable
flow.

For this generalization, we obtain the following

Proposition 4. For a network  and vectors , a stable -quasi-
flow exists and can be found in time .

Proof. Consider the stable f low problem in the extended network  with the graph 
formed from  by: (a) splitting each inner vertex  into two copies  and , where  inherits the entering

edges from , and  does the leaving edges from  (keeping the capacities and orders on them);
(b) adding edge  with a large capacity; and (c) adding edge  of capacity  and edge 
of capacity , where each of  and  is assigned to be less preferable compared with the
edge  and where  and  are distinguished source and sink, respectively. Let  be a stable f low in ,
and  its “image” in . One can check that  is a -quasi-flow in  and that its stability follows from
that of . Here the essential fact is that for each inner vertex  at least one of two values  and

 must be zero (which follows by considering the unsaturated path ). Q.E.D.
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6. ADDITIONAL REMARKS
In this final section we discuss three additional interesting properties of stable f lows. As before, we con-

sider a directed network  with linear orders on  and  for inner vertices
 (and subject to (2.1)).

(I) For a preflow  in a network , we define the value of  to be the total excess at the
sinks: . The following property is valid:

(6.1)

Indeed, if  is not a f low (i.e., there is an excessive inner vertex), then  is transformed into a stable f low
 by applying a sequence of iterations of the basic algorithm. Any balancing operation does not change

the values on the edges entering , but any pushing operation can only increase these values, yielding the
desired property (6.1).

(II) As to the values of stable f lows, note that, generalizing classical results on stable marriages, stable
bipartite -matchings, etc., Fleiner [8, Section 4] established that:

(6.2)

As a consequence, . Property (6.2) was proved in [8] (where two-terminus networks are
considered and arbitrary edges incident to terminals are allowed) by use of a reduction to the correspond-
ing property for stable allocations. One can give a direct and rather simple proof (considering our network

 as before).
For this purpose, let us associate with the function  a decomposition on paths and cycles. More

precisely, since  and  have no excessive inner vertices, one can form a family  consisting of simple
paths and cycles  with weights  such that:

(i) for each , the forward edges  in  satisfy , and the backward edges  satisfy
;

(ii) for each , the sum of weights  on the paths/cycles  containing  is equal to ;
(iii) each path in  connects two different terminals and each cycle contains at most one terminal.

Suppose that  and  differ in some edge  incident to a terminal and consider the case when  leaves
a source  (i.e., ). For definiteness, let . Then there is  containing  (as a
forward edge); moreover, either (a)  is a path from  to , or (b)  is a path from  to  (possibly

).
In case (a), there is a sequence  of vertices in  (where  is odd) such that the por-

tion of  from  to  has only forward edges for  odd, and only backward edges for  even. Then

(6.3)

(Such paths form the concatenation  of , where  stands for the path
reversed to .) Let  ( ) denote the first (resp. last) edge in , and let  ( ) denote the first (resp. last)
edge in . One can see that

(6.4)

Now we apply (6.3) and (6.4), moving step by step in the sequence of paths . Since  begins
at the source  and is unsaturated for  and since , from the stability of  it follows that
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502 KARZANOV
. Then from the facts that  is stable,  is unsaturated for , the inequality  holds, and
 is not dominated at  (since  and  is after ), we obtain . And so forth. Coming to

the path , we obtain . But then the last directed path  (which ends at the sink  and
is unsaturated for ) is not dominated at the beginning vertex , contrary to the stability of .

In case (b), the reasonings are similar. Here we deal with the concatenation of paths of the form
 (with  even). Now the last directed path  begins at the source , is unsatu-

rated for  and not dominated at the end vertex  (in view of  and ); this con-
tradicts the stability of . By symmetry reasons, the cases when  and  differ at an edge entering  are
impossible as well. This completes the proof of (6.2).

(III) The previous construction can be extended. Namely, consider two stable f lows  and  in a net-
work . Let  be the subgraph of  induced by the edges in 
and , and endow the edges  in  with the weights . By (6.2), 
contains no terminal. Moreover,  is decomposed into a nonnegative linear combination of the charac-
teristic functions of simple regular cycles (and therefore,  may be regarded as a “circulation”).

Here we say that a (not necessarily simple) cycle  in  is regular (relative to ) if all forward edges
in it belong to  and the backward ones belong to . For a vertex  in such a , we denote by  the
set of pairs of consecutive edges incident to  and following in the direction of the cycle. We call a pair

 especial if  contains edges in both  and  (equivalently, both edges of  either enter  or leave
). In this case we say that a pair  is left if  is more preferable for  than ; otherwise the pair is

called right. Arguing as in the proof of (6.2), from the stability of  and  one can conclude that

(6.5)

This property is extended to the components K of : all especial pairs occurring in regular cycles in a
component  are simultaneously either left or right (this follows from the fact that any two such pairs π,
π' can be included in one (non necessarily simple) cycle in ). According to this, we specify four types of
components . Namely, we say that:  has type  (type ) if all edges of  belong to the set  (resp. );
and  has type  (type ) if  has edges in both sets  and  (in which case we call the component 
rich) and the orientations of all especial pairs in  are left (resp. right). Equivalently,

(6.6)

Using this, one can represent the set of stable f lows in  as a lattice (which is done in [8] by use of a
reduction to the stable allocation problem and appealing to the corresponding result in [4]). More pre-
cisely, define the following functions  on :

(6.7)

One can see that  and  are f lows. Also for each inner vertex , the f low  dominates the f lows 

on the set , and is dominated by these f lows on the set , whereas  behaves conversely. (Here
for numerical functions  on an ordered set , we say that  dominates  if either  or there is

 such that ,  for , and  for .)

Due to what is said above, one can obtain (we omit details here) that  and  are nothing else than the
flows  and , respectively, that are pointed out in [8, Section 4]; in particular, both  are stable.
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= ( = ( , ), , , )N G V E S T c H G := { : ( ) > ( )}A e f e g e

:= { : ( ) > ( )}B e g e f e e H ω −( ) := | ( ) ( )|e f e g e H
ω

ω

C H ( , )A B
A B v C Π v( )C

v

π ∈ Π v( )C π A B π v

v π = ( , ')e e e v 'e
f g

for any regular cycle , all especial pairs occurring in have the same
orientation, in the sense that all are left or all are right.

C C

H
K

K
K K A B K A B

K L R K A B K
K

δ
δ

in

out

a rich component has type if for any vertex of admitting an

especial pair, in the set ( ) the edges from precede (more preferable

than) the ones from , and in the set ( ) the edges from precede
the ones from ; in case of type the s

K L K

A

B B
A R

v

v

v

ituation is opposite.

N

�,h E

�

�

coincides with on the components of types and , and coincides
with on the components of types and , while is defined conversely;
for the remaining edges , one puts ( ) := ( ) := ( ) = ( ).

h f A R
g B L

e h e e f e g e

h � v h ,f g

δ v
out( ) δin( )v �

,a b ≺( , )S a b =a b
∈e S ( ) > ( )a e b e ≥( ') ( ')a e b e ≺'e e ≤( '') ( '')a e b e ≺ ''e e

h �

∨f g ∧f g �,h
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