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Abstract—The topic of stable matchings (marriages) in bipartite graphs gained popularity beginning
from the appearance of the classical Gale and Shapley work. In this paper, a detailed review of selected
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1. INTRODUCTION
Beginning from the classical work by Gale and Shapley [1], problems on stable matchings attracted the

attention of numerous researchers, and a lot of interesting results, both theoretical and practical, have
been obtained.

In the stable marriage problem (or, more precisely, on a stable matching in a bipartite graph), a bipar-
tite graph  is considered, in which, for every vertex , a linear order  is given, which deter-
mines preferences on the set of edges  incident to . Let  and  be the vertex parts in . In [1] and
in other works, the vertices in  and  were interpreted as persons of different sexes (males and females,
respectively), and the edges were interpreted as possible unions (marriages) between them: if, for two ver-
tices  (man) and its incident edges  and , it holds that , then this means that

 prefers the union with  to the union with . The interpretation for  (woman) with respect to the
order  is similar.

A matching in  is a subset of edges  in which no two edges have a common vertex; thus, we
may assume that  describes a set of monogamous marriages. The matching  is called stable if, for any
edge , at least one vertex  or  has an incident edge in  (which determines the
selected partner) and this edge is preferred to  for this vertex. A stable matching exists in any bipartite
graph  with arbitrary total orders  on , , which was originally proved by Gale and
Shapley [1] for complete bipartite graphs with parts of equal size and later generalized by other researchers
to arbitrary bipartite graphs.

Later, the development in the field of stability concerning graphs went in several directions. In one of
them, the concept of stability was extended to matchings in arbitrary graphs (here, the fundamental works
on stable roommates were published by Irving [2] and Tan [3]). In another direction, stability issues were
studied when considering variants of weight functions on the edges and vertices of a graph (we note, as one
of the most general, the stable allocation problem, which was introduced and studied by Baïou and
Balinski [4]).

A number of deep results were obtained within the framework of the theory of stable matchings for
bipartite graphs, and the purpose of this paper is to review selected and the most significant, in the
author’s opinion, known results in this theory. They are to a large extent interconnected and cover com-
binatorial, polyhedral, algorithmic, and other aspects. A number of problems covered in this review
describe structural properties of the set  of stable matchings in .

The paper is organized as follows.
Section 2 contains a description of the basic results and constructions. It begins with a reminder of the

classical results going back to Gale and Shapley’s work on the existence of a stable matching and the
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ON THE SET OF STABLE MATCHINGS IN A BIPARTITE GRAPH 1541
deferred acceptance method for constructing it. Then, it is explained that in the set  of stable match-
ings of an arbitrary bipartite graph  all matchings cover the same set of vertices (Proposition 2), and
operations on pairs of stable matchings are described that make it possible to define a partial order  on
the set  that represents it as a distributive lattice (Proposition 3).

Section 3 is devoted to a discussion of the key concept of rotation in stable matching. It was introduced
by Irving [2] in connection with the stable roommates problem on an arbitrary graph, but it turned out to
be very useful for studying the structure of the set of stable matchings in a bipartite graph . By rotation
in the graph  with a stable matching , we mean a cycle in  alternating with respect to  and its com-
plement. Among the main well-known results discussed in this section are the following: (a) a transfor-
mation along a rotation transforms a stable matching into a stable one (Proposition 4); (b) rotation trans-
formations correspond to immediate precedence relations in the lattice  (Proposition 6);
(c) in all maximal chains of the lattice , the set of rotations denoted by ( ) is the same,
(Proposition 7).

The discussion of issues related to rotations is continued in Section 4. Here a partial order  on the set
 is defined, and an alternative representation of the set of stable matchings  found by Irving and

Leather [5] is described; namely, the stable matchings in  are in one-to-one correspondence with the
ideals (or antichains) of the poset  (Proposition 8).

Section 5 considers a stronger, “cost”, version of the stable matching problem. Here, the set of edges
 of the bipartite graph is equipped with a real weight function , and it is required

to find a stable matching  that minimizes the total weight . In the special case when the
weight  of the edge  is equal to the sum of its ranks in the orders  and , we obtain the prob-
lem of egalitarian stable matching (in which the parts  and  are “equalized”) formulated in [6]. For arbi-
trary weights , the minimization (or maximization) problem is solved by an efficient combinatorial algo-
rithm developed in [7]. This is a consequence of the following facts: firstly, stable matchings are repre-
sented by ideals of the rotation poset , in which the number of elements  does not exceed the
number of edges ; secondly, the weight of a stable matching is expressed, up to a constant, by the weight
of the corresponding ideal (with appropriate rotation weights assigned); and thirdly, the problem of find-
ing the ideal (or “closed set”) of minimum weight in an arbitrary finite poset reduces to the problem of
the minimum cut of a directed graph, as shown by Picard [8].

Section 6 is devoted to polyhedral aspects. Here, the polyhedron of stable matchings  is
described in terms of a system of linear inequalities (close to the one proposed by Vande Vate [9]). Also,
following the polyhedral construction of Teo and Sethuraman [10], it is shown that, for an arbitrary set of
stable matchings  and any , we again obtain a stable matching by choosing in these match-
ings for each covered vertex in the part  an edge that has the order . In particular, when  is odd and

, the so-called median stable matching is determined for the given .
In the final Section 7, the result on the intractability ( -completeness) of the problem of determining

the number of stable matchings in a bipartite graph obtained in [7] is formulated. This answers Knuth’s
question [11] about the algorithmic complexity of computing such a number.

For the completeness of our description, we, as a rule, accompany the presented statements with
proofs, often alternative to and shorter than the original proofs in the authors’ works. Note that wherever
we refer to [5], [7] and some others, the corresponding results in these papers were obtained for the case
of a complete bipartite graph  (with arbitrary orders ), but these results are also valid for an arbitrary
bipartite graph G.

2. DEFINITIONS AND BASIC FACTS

Throughout this paper, we consider a bipartite graph  with a partition of the set of vertices
 into subsets  and  (where each edge connects vertices from different subsets). Sometimes we will con-

sider the graph  to be directed with edges from  to . The edge connecting vertices  (man) and
 (woman) is denoted by . The set of edges incident to a vertex  is denoted by .

Each vertex  is equipped with a total order  that defines preferences on the set . Namely, if 
for edges , then the edge  is considered to be preferred to the edge  for ; sometimes it will
also be convenient to say that  is located earlier than  or to the left of it (and  is located later than  or
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1542 KARZANOV
to the right of it). If  is clear from the context then we may write . We usually include the order 
and the partition of  into the parts  in the graph description using the notation  or

.
A matching  in  is said to be stable if it does not have blocking edges. An edge  is

said to be blocking for  if the vertex  is either not covered by  or there is an edge  in  this incident
to  and is less preferred: ; the same holds for the vertex .

Below in this section, we present two groups of basic properties of stable matchings in .
I. The theory of stable matchings is based on the efficient algorithm for constructing a stable matching

that was proposed by Gale and Shapley [1] (for the case of a complete bipartite graph with parts  of
the same size : ). A recursive version of this algorithm, which is often called the deferred accep-
tance algorithm (DAA) was proposed in the work [6] by McVitie and Wilson (in this paper, an algorithm
for successive construction of the set of all stable matchings for  is also described). A short non-
constructive proof of the existence of a stable matching in the bipartite case can be found in [12], Section
18.5g.

The roles of the parts  and  in the DAA are different: one part makes proposals, and the other part
accepts or rejects the proposals. (Recall that at each step, the DAA arbitrarily selects a man  not
included in the current marriage that proposes to a woman  according to the best edge  from the
set  not yet used by this man; this proposal is immediately rejected if  already has a better proposal
from  (i.e., if ), and it is accepted otherwise while rejecting the previous proposal if any.)
The results are naturally generalized to the case of an arbitrary bipartite graph . This leads to the follow-
ing important property.

Proposition 1 (see [1, 6]). In the case when  makes proposals and  accepts or rejects them, the DAA finds
(in linear time ) the canonical stable matching, in which the selection of edges for the vertices in 
is the best one, and for the vertices in  it is the worst one over all stable matchings.

We denote this matching by . By symmetry, if the DAA is used in the version when 
makes proposals, then the algorithm builds a stable matching for which the selection of edges is the best
for  and the worst for ; we denote this matching by . To clarify the meaning of the
terms best–worst, consider any other stable matching  in . If the edges  and  have a com-
mon vertex , then ; and if they have a common vertex , then . Here we rely on
the invariance of the set of vertices covered by the stable matching (which is trivial in the case of a complete
bipartite graph , in which the stable matching is perfect, i.e., covers all the vertices). More precisely,
the following property proved in [13] holds.

Proposition 2. In any bipartite graph , all stable matchings cover the same set of vertices.
To prove this property, we will use the following definitions and notation, which also will be useful

below.
A path in a directed graph is a sequence , where  is the edge connecting the

vertices  and . For the path , we may also use the short notation in terms of the vertices 
and in terms of the edges . An edge  in  is called forward if  and backward if .
(We denote the edge outgoing from  and incoming to  by  instead of .) A path is said to be directed
if all its edges are forward, and it is called simple if all its vertices are different. A path from a vertex  to a
vertex  may be called a –  path. For a subset of edges , the set of vertices covered by  is denoted
by . For subsets  of the set , we write  instead of  ( ) and denote by

 the symmetric difference .
Let  be two stable matchings in the bipartite graph . Consider the subgraph  in  induced

by the set of edges . Note that

(2.1)

Indeed, let, for definiteness, . Then . If the inequality  were true, then the edge
 would be blocking for .
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Fig. 1. Two examples.
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Now, proceed to the proof of Proposition 2. Assume that . Then, at least one of the compo-
nents in  is a simple path . In this path, the edges from  and  alternate, and
the stability of  implies that . Without loss of generality, we assume that . Then 
and, since the edge  is not a blocking one for , then the inequality  must hold.

Therefore, by successively applying (2.1) to the triples of adjacent edges in , we conclude that
. Then, if  is odd, then the edge  is a blocking one for  (since , , and

); and if  is even, then the edge  is a blocking one for  (since , , and );
this is a contradiction.

We denote the set of vertices in  covered by a stable matching by . It is clear that when vertices in
 are removed, each stable matching in  remains stable for the resulting graph . However, new sta-

ble matchings can appear in  (and, therefore, the inclusion  can be strict), as is seen from
the simple example in the fragment panel in Fig. 1. Here, the preference relation is as follows: ,

, , and ; and it can be verified that there is only one stable matching, namely,
. Then, the vertex  is not covered by ; however, if it is removed (together with the edge ),

then the new stable matching  emerges.

Thus, when we investigate the set of stable matchings for , we generally cannot exclude uncovered
vertices from consideration and leave only the subgraph  (where the parts

 and  have the same size and all stable matchings are perfect). Due to similar rea-
sons, if there are no uncovered vertices, the removal of an edge not included in any stable matching can
entail the emergence of a new stable matching. The right fragment in Fig. 1 shows an extension of the pre-
vious graph with similar preference relation for the new edges, i.e., , , , and .
Here, there are three stable matchings , , and . However, if we remove the
uncovered edge , the forth stable matching  emerges, for which there earlier was the blocking
edge .)

II. Next, consider an ordered pair  of stable matchings in . Proposition 2 implies that the graph
 induced by  decomposes into a set  of nonintersecting cycles. Assuming that  is

directed from  to , we also assume that each cycle  is directed in accor-
dance with the direction of the edges in , i.e. the forward edges in  belong to , and the backward edges
belong to . Due to (2.1), all preferences along  “have the same direction;” more precisely,

(2.2)

In this case, we say that  is an increasing (or right) cycle with respect to . Otherwise,  is called a
decreasing (or left) cycle. Denote by  and  the sets of right and left cycles for ,
respectively. If the matching  is obtained from  by replacing its edges along the cycle , then we write

 or ; similarly, we write  or  for the replacement of
the edges in  along . Note that if  is a right cycle with respect to , then the matching  is less pre-
frerred than  for all vertices in  (men) and more preferred for all vertices in  (women); for
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1544 KARZANOV

Fig. 2. Increasing cycle for . The matching  is shown in bold and  in thin lines. The vertices  belong to the
part .
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 and , the behavior is opposite. (In other words, when making a replacement along an increasing cycle,

we sort of move away from  and approach .) An increasing cycle is shown in Fig. 2.
We could expect that the matching  is stable. However, this is not always the case. For

example, consider the graph shown in the right fragment of Fig. 1 (with the preferences indicated above)
and consider the stable matchings  and . Then, the edges  form a
cycle  in ; however, the matching  obtained by replacing the edges in  along  is
not stable.

Nevertheless, the stability is preserved if the replacement is simultaneously made in all cycles in
 or in . In these cases, we write  and

, respectively.

Lemma 1 (see [11]). If  are stable matchings, then  is also a stable match-

ing. The same holds for .

Proof. It is clear that  is a matching. Assume that  includes a blocking edge  (where
). It is easy to verify that this is possible only if one of the vertices  belongs to a right cycle and

the other one belongs to a left cycle in . Without loss of generality, we may assume that  belongs
to a cycle , and  belongs to a cycle . Let the vertex  be incident to edges

 and  in , and  be incident to the edges  and  in . Then,  and 
(taking into account that  and ). Under the transformation , the matching 
includes the edges  and , and it should hold that  and  (since  blocks  by assumption).
However, then we obtain  (due to ), and, therefore,  blocks , which is a contradiction.

This lemma enables us to define a lattice on the stable matchings in . Note that, for ,
the replacement in  of the edges along all increasing cycles for  is equivalent to the replacement in 
of the edges along all increasing cycles for , i.e., . Similarly,

. Due to Proposition 1,  does not contain decreasing
cycles in the case  and does not contain increasing cycles in the case .

Proposition 3 (see [11]). For different , set  if  for each pair of edges  and

 that are incident to a vertex in  ( ) (and set the converse relation for the vertices in ). Then

 determines a distributive lattice on  with the minimal element  and the maximal element

, in which the meet  for  is , and the

join  is .

3. ROTATIONS
Since the set  is a lattice, we can, using two or more stable matchings, construct new matchings

by making reassignments in the corresponding cycles for pairs of matchings as indicated in Lemma 1.
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ON THE SET OF STABLE MATCHINGS IN A BIPARTITE GRAPH 1545
Another method related to the concept of rotation makes it possible to generate new stable matchings
using single elements in . This concept was introduced by Irving and Leather in [5] for the stable
marriage problem on the basis of the concept all-or-nothing cycle from Irving’s paper [2] devoted to the
stable roommates problem. Later, the concept of rotation was extended to other stability problems, such
as the stable b-matching problem, allocations, and others (e.g., see [14]. We also point out the recent
paper [15], in which a relationship between the convex hull of stable allocations in the absence of con-
straints on the edges and the order polytope of the poset of rotations is established). Note that even though
the case of the complete bipartite graph  was considered in [5], the constructs and results are
fairly easily extended to the arbitrary case; hence we will consider, as above, an arbitrary bipartite graph

.

Let  be a stable matching in .

Definition 1. The edge  (where ) is said to be feasible if  contains an edge 
incident to  that is preferred to  (i.e., ) and the vertex  is either uncovered or  includes an
edge  incident to  and this edge is less preferred than  (i.e. ). If the set of feasible edges  for
the vertex  is nonempty, then the first of them (the most preferred) is called active. We denote the
set of active edges for  by . The subgraph of  induced by the set of edges  is denoted by

 and is called the active graph.

Taking into account the fact that not more than one active edge outgoes from any vertex in  (while
several active edges can be incoming into a vertex in ), any cycle in  must be alternating with respect to

 and . Moreover, each component  in  is either a tree or contains exactly one cycle. (Indeed,
otherwise  would contain a pair of cycles and a simple –  path  (all vertices in which, except for 
do not belong to cycles). The end edges of this path must belong to  and at least on of the vertices 
must belong to . This vertex has two incident edges in  (one on the path  and the other on the cycle),
which is a contradiction. If there is a cycle, we call the component  cycle-containing, the cycle itself we
denote by  and call it a rotation for . (Note that in [5] the rotation is meant to be not the cycle itself
but rather its intersection with .) The edges in  belonging to  are called matching edges, and the
other edges are said to be active. When edges are replaced along the rotation , there appears a matching
that is less preferred for the vertices in  compared with  and is more preferred to the vertices in

. (For the replacement operation along , the term rotation elimination is used in [5].) If  is a cycle
in , we may also say that the matching  admits the rotation .

Example. Figure 3 shows three stable matchings  (drawn in bold) in the graph 
as in Fig. 1b. Here, the part  consists of the vertices , the part , of the vertices , and
the preferences are defined as before, namely,

For the matching , all nonmatching edges  are feasible; however, only  of them
are active (since ). Therefore, the subgraph  is generated by  and has exactly
one component, which is cycle-containing with the cycle . The replacement along the rota-
tion  yields the matching  (which is stable according to Proposition 4 below). The feasible edges for

 in  are only  and  (while  are infeasible, because  and , taking into
account that  and ). Therefore, the active edges are  and , and the graph  con-
sists of three components generated by , , and . The first of them forms the cycle .
Finally, the replacement along the rotation  gives the stable matching . None of the edges in 
is feasible for it, and  is formed simply by the edges in . It is seen that  and

.

The following two propositions demonstrate important properties of .

Proposition 4 (see [5]). For any cycle (rotation)  in , the matching  is stable.
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Fig. 3. Graph with three stable matchings shown in bold:  (a),  (b), and  (c).
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Proof. Both  and  cover the same set of vertices . Suppose (for a contradiction) that  admits
a blocking edge . Note that  (taking into account that the edges in  cannot
be blocking for ). Two cases are possible.

Case 1: . Then, the vertex  is incident to the edges  and , and we have  (due
to blocking) and  (since in the case , the edge  lies in  and is feasible). Therefore, .
Then,  (otherwise,  would be blocking for ).

Let the vertex  be incident to the edges  and . Then, , and it should be 
(otherwise,  would be blocking for , taking into account that ). Therefore,  is feasible for 
and is preferred to the edge , which belongs to ; this is a contradiction.

Case 2: . Then . Let  be incident to the edges  and . Since  is a blocking
edge for  but not for , we have . But then  is a feasible edge and preferred to the active
edge , which is a contradiction.

Speaking about alternating (with respect to  and ) paths and cycles in  below, we assume that
the direction in them is chosen so that the edges in  be forward and the edges in  be backward.

Proposition 5. Let  be an edge in  belonging to a tree component  in . Then, for any stable
matching , either  or  belongs to a decreasing cycle in .

Proof. Suppose (for a contradiction) that the edge  in the tree component  belongs to an
increasing cycle  for some . Let  have the form  (using the notation in
terms of edges and taking into account the direction of ), and let . Take a maximal alternat-
ing path  (in terms of edges) in  that begins with . We may assume that none of
the edges in , except for , belong to the increasing cycle  (otherwise, we take it as the edge

). The edges  and  are incident to the vertex  and, since  is an increasing cycle, we have
 and . In addition,  and . Therefore,  is a feasible edge for , and 

contains an active edge , for which . This  coincides with the edge  in . In addi-
tion,  (otherwise,  and  in contrast to the condition on ).

We claim that  is a blocking edge for . This follows from the fact that  if  (in
this case, the end vertex  in  is uncovered), and if  and  (since  and ). Finally,
let . Then  belongs to the decreasing cycle . For the edge  in  that is incident to

 and different from , it holds that  and  (taking into account that  and the fact that
 is a decreasing cycle). Then,  and  imply that  blocks , which is a contradic-

tion.
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It is clear that the matching  obtained by the replacement along the rotation  in
 satisfies the relation , where  is a partial order in the lattice  (see Proposition 3). It

was proved in [5] (for ) that, beginning with  and using rotations, all  can be generated.

Definition 2. A route is defined as a sequence of stable matchings  in  such that
, , and each  ( ) is obtained from  by a replacement along one

rotation  in . The sequence of rotations  is denoted by .
Proposition 6. The routes cover the entire lattice .

Proof. It suffices to prove that, if matchings  satisfy , then there exists a rotation  for
 such that  satisfies . To build such a rotation, we take a vertex  for which

the incident edges  and  are different. Then  (due to ), and the
edge  is feasible for  (since there is an edge  incident to  for which  due to  and

). Therefore,  contains an active edge , and it holds that . Note that  (oth-
erwise, it would be , in which case , and  blocks ).

Therefore, there is an edge  and an edge  incident to . We claim that .
Indeed, in the case , we would have  and , and, therefore,  would block .

Now, from  we obtain , and, similarly,  in the initial situation. Continuing the
construction, we obtain an “unbounded” alternating path  in  with the sequence of edges

, , , ; and for each  there is an edge  that is
incident to  and different from . Then , and  contains the desired rotation .

The rank of a matching  is defined as the sum  of ordinal numbers of its edges  in the set
 (ordered according to ), where . It is clear that  and, if , then .

Therefore,

(3.1)

Propositions 4–6 imply the following result.

Corollary 1. (i) The graph  is a forest (and there are no rotations for ).

(ii) The edges of the minimal stable matching  belonging to tree components of the
active graph  belong to all stable matchings in .

(iii)  has a single stable matching if and only if  is a forest.
The following proposition established in [5], despite the relative simplicity of its proof, is the most

important result concerning rotations.
Proposition 7. The set of rotations  is the same for all routes  in .

Proof. For , we define  to be the set of route segments (subroutes) beginning in  and
ending in . For such a subroute , the corresponding set of rotations is denoted by ; we
call the matching  singular if there are subroutes  and  with  in . We want to prove

that  is not singular.
Suppose that this is not the case, and consider a singular matching  of the maximum height, i.e., a

matching such that no matching  is singular if . Let  be the set of rotations in . Then,
for any subroute , the matching  is obtained from  by a
replacement along a rotation . Due to the maximality of , there exist rotations 
such that the matchings  and  are nonsingular and the sets of
rotations  and  are different for the subroutes  such that  passes  and 
passes .

Note that, since the rotations  and  do not intersect,  is a rotation in , and  is a rotation
in . Therefore,  contains subroutes  such that  begins with , and 
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begins with , and the subroutes  and  coincide after the matching
. However, , which is a contradiction.

This set of rotations , which is independent of the routes , is denoted by . Due to
(3.1), we obtain the following result.

Corollary 2. The number of rotations in  does not exceed .

There is one more useful property:

(3.2)

Indeed, if  is a matching edge in a rotation , where , then under the transformation in ,
the active edge  in  becomes the new matching edge in , and it holds that . In the fur-
ther steps along the route, the matching edges in  can move only to the “right”” (for similar reasons),
and there is no return to the edge .

In conclusion of this section, we discuss the components of the graph of the union of stable matchings
. To this end, denote by  the set of edges of the minimal matching  belonging to the tree com-

ponents of , and denote by  the subgraph of  that is the union of all rotations in . As indi-
cated in Corollary 1(ii),  belongs to all matchings in  (since the active graph  has no
decreasing cycles and taking into account Proposition 5); hence, we can conclude that each edge in 
forms a component in . At the same time, obviously, each rotation completely lies in  and, therefore,

. Moreover, since each stable matching is obtained from  by a sequence of rotational trans-
formations, we have the following result.

Corollary 3.  is the union  and . Each edge in  and each component in 
is a component in .

Thus,  is constructed efficiently (in time  due to the reasoning in the next section). Further-

more, each edge in  and each component  is a component in . In light of this, we may ask if there
are other components in ? If yes, then such components can be only edges from  that belong to
cycle-containing components  of the graph  but do not belong to the union of rotations . The
existence of such components is an open question for the author at the moment.

4. IDEALS OF THE POSET OF ROTATIONS AND STABLE MATCHINGS
As has been mentioned above, the natural partial order  on stable matchings turns the set  into

a distributive lattice (see Proposition 3). It is known that any distributive lattice is isomorphic to the lattice
of ideals of a poset (and conversely). Irving and Leather [5] provided an explicit construct for the lattice

.(Even though [5] and the subsequent work [7] deal with a complete bipartite graph , the
results obtained in these works can be easily extended to an arbitrary bipartite graph .) More precisely,
based on the key fact that the set of rotations associated with routes is invariant (see Proposition 7) and a
method of refining the structure of the poset on the set of rotations , a correspondence between stable
matchings and ideals in such a poset was demonstrated. This representation for  has important appli-
cations; in particular, it makes it possible to efficiently solve linear optimization problems for  and
to prove that the problem of calculating the number  is intractable, which will be discussed in Sec-
tions 6 and 7.

We begin with constructing of this poset on . Recall that, for the route , we
denote by  the sequence of rotations , where  is obtained from  by the replacement
along .

Definition 3. For rotations , we say that  precedes  and denote this relation as , if,
for each route  in , the rotation  occurs in the sequence  earlier than . In other words,
the transformation of a matching in  cannot occur earlier than the transformation in .

This binary relation is antisymmetric, transitive, and it induces a partial order on .
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To explain the relationship with matchings, consider . Let  be a route
containing , say, , and let . Then,  is obtained from  by the
sequence of transformations with respect to rotations . Proposition 7 easily implies that

(4.1)

According to the definition of , the relation  can hold only if . Moreover,  forms a
closed set or ideal in the poset  (i.e.,  and  imply ). This gives an injective
map  of the set  to the set of ideals in . Actually,  is a bijection as is shown in [5],
Theorem 4.1.

Proposition 8. The map  establishes an isomorphism between the lattice of stable matchings

 and the lattice  of ideals in .

Proof. Consider stable matchings  and , and let  and  be the sets of edges belonging to the

cycles in  and , respectively. It is clear that the subgraphs generated by these sets do not
intersect. It follows from the proof of Proposition 6 that  is the union of the set of rotations  required
for obtaining  from  (or, equivalently,  from ), and  is the union of the set of rotations

 required for obtaining  from  (equivalently,  from ). Therefore, the rotations  and
 “commute”: in order to obtain the matching  from , we may first apply  and then 

or conversely. This yields  and  (i.e.,  determines a
homomorphism of lattices). Now, the proposition easily follows from the fact that, for rotations

, the relation  does not hold if and only if there is a stable matching  such that
.

As a consequence,  is bijective to the set  of antichains in . (Recall that an antichain

in the poset  is a set  of pairwise incomparable elements. It determines the ideal
 and is determined by this ideal, being the set of its maximal elements.)

We complete this section by explaining how the relation  can be efficiently checked. Note that if 
are rotations for the same stable matching  (and, therefore, transformations in  and  may be carried
out in an arbitrary order), then they do not satisfy this relation; in this case,  and  lie in different com-
ponents of , and, therefore, . On the other hand, if  and  have a common vertex ,
then they are comparable with respect to .

Indeed, the matching edges incident to  are different for  and , the order of  and  in any route
is the same, and it is determined by the order  for these edges (see the explanation of property (3.2)).
Generally, the set of rotations  containing a fixed vertex  is ordered with respect to , say,

, and this order is easily determined, since it agrees with the order in  if 
and with the reverse order if .

There is one more local reason for which two rotations  must be comparable with respect to .
Namely, assume that

(4.2)

Then . Indeed, since , the edge  becomes infeasible after the transformation in .
On the other hand, if  preceded  in some route, then  would be active in  and included in
the rotation.

The example in Section 3 is precisely this: here, after the replacement along the rotation , the edge
 becomes infeasible due to  and  (in this case,  is the first edge in  after
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). In this example, the poset consists of two rotations  satisfying , and there are exactly three

ideals , , and  corresponding to the stable matchings , , and  (while
 is not an ideal).

Note that, in order to find the set of rotations , it suffices to determine  and then construct an
arbitrary route by making transformations on rotations in the current matchings. (This is done using a nat-
ural algorithm in time . In [16], an algorithm for building  in time  was proposed.)

In turn, the following important fact was established in [7], Section 5: for an efficient description of
the order , it is sufficient to consider the intersections of rotations and take into account (4.2). Namely,
let us form the directed graph  whose edges are the pairs of rotations  such that either

 and  or (4.2) holds (this graph can be easily constructed in time ; with some
ingenuity the time ca be reduced to ). It can be shown that

(4.3)

The graph  is acyclic and, if a vertex  in  is reachable by a directed path from , then . The
converse is true.

Proposition 9. If , then there is a directed path from  to  in . Therefore, the reachability rela-

tion for the vertices of  coincides with .

Proof. Let  be the set of ideals in the poset for ; then . We should prove that .
Suppose that this is not the case, i.e., there exists an , that is not an ideal in . Let, in addi-
tion,  be chosen so that the number of elements  be maximal. We also choose an ideal  such
that  and  is maximal under this property. By Proposition 8,  for some sable matching

. Take a feasible rotation  for . Due to the maximality of , the element  must be outside of .
Then  is an ideal in  (corresponding to the matching  obtained from  by the
replacement along ). We also have .

Due to the maximality of , we have . Since  and both  are ideals in ,
the set  contains an element (rotation)  such that . At the same time,

 is not an ideal in ; otherwise, due to , we would obtain a contradic-
tion with the maximality of  (if ) or with the condition imposed on  (if ).

Thus, we have arrived at a situation in which , , , but
. Then the rotation  is infeasible for the matching , but it becomes feasible immedi-

ately after the replacement along the rotation  in . This exactly implies that the graph  contains the
edge ; cf. (4.3). However, such an edge leads from  to , contrary to the fact that  belongs
to .

It can be shown that the edges  of the graph , as in (4.3), determine the immediate precedence
relations in the poset , namely, the validity of  and the absence of any rotation  between

 and  (i.e., ).
Remark 1. Let us consider stable matchings  and  in a bipartite graph  such that , and

let  denote the set (“interval”) of stable matchings  for which . (As special cases,

we may consider  or .) We would like to know if it is possible to “clear”  by remov-
ing a part of its edges so that the set of stable matchings for the resulting graph  exactly coincides with
the interval  for . To attempt answering this question, consider an arbitrary route  passing both

 and consider the set of rotations used on the route segment from  to , i.e., , see (4.1).
(The route  and the set  are constructed efficiently; cf. the proof of Proposition 6.) Then, the inter-
val  consists exactly of those  that are obtained from  by applying a sequence of rota-
tions from the set . Therefore, the graph  to be found must include  and the union of all rota-
tions from . However, it also must respect the structure of the graph  (see (4.3)) to avoid the
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appearance of “superfluous” matchings that use rotations from . Therefore, we must add edges as
in (4.2) (of the form ) to guarantee the preservation of the relation  mentioned in (4.2) for the
corresponding rotations  in . A conjecture: a subgraph  does exist, and it is obtained from 
by removing the other edges.

5. OPTIMAL STABLE MATCHINGS

In this section, we consider the situation when the bipartite graph  is equipped with a real
weight (or cost) function of edges . We are interested in the problem on stable matching of mini-
mum weight:

(5.1)

(Since all stable matchings in  have the same size, adding a constant to the function  does not actually
affect the problem; therefore, we may assume that  is a nonnegative function. If  is replaced by , we
obtain the problem of maximizing the weight .)

In an important special case of this problem known as the optimal stable matching problem (see [6]),
the weight  of an edge  is defined as

(5.2)

where  is the ordinal number of the edge  in the ordered (according to ) list  and, similarly,
 is the number of the list . (This setting was widely discussed in the literature, in particular, in [11],

[17]. In it, the matching to be found is the most favorable in terms of total (or average) preferences for all
“persons” (while the deferred acceptance algorithm gives the best solution only for one set among 
and ).) In [7], the problem with a weight function as in (5.2) is also called the egalitarian stable matching
problem.

Problem (5.1) can be formulated as a linear program with a (0, ±1) matrix of size  (this
will be discussed in the next section); therefore, it can be solved using a universal strongly polynomial
algorithm (by a strengthened version of the ellipsoid method [18]). However, the representation of 
as the set of ideals in the poset of rotations  described in the previous section makes it possible to
solve problem (5.1) much more efficiently and simpler. This method was proposed by Irving, Leather, and
Gusfield in [7], and below we describe this method as applied to an arbitrary bipartite graph ).

For the given weight function  and an arbitrary rotation  in , where  are
matching edges and  are active edges, we define the weight of  by

(5.3)

When the transformation with respect to the rotation  is carried out, the weights of the active edges
are added to the weight of the current matching, and the weights of the matching edges in  are subtracted
from it. Therefore, the weight of any stable matching  is represented by

where  is the ideal in  corresponding to  (i.e., the set of rotations occurring in the segment
of (any) route from  to ).

Thus, (5.1) is equivalent to the problem of finding an ideal of minimum weight. In a general case, such
a problem looks as follows:

(5.4)

(Recall that a set  is called closed if there are no edges going from  to . In particular, closed sets
are  and . Without loss of generality, we may assume that the graph  is acyclic, since a directed cycle
cannot be divide by a closed set, and it can be contracted into a single vertex of the total weight.)
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The solution of problem (5.4) proposed by Picard [8] is based on the reduction to the minimum cut
problem in the directed graph  with the edge capacities , , defined as follows.

Set  and . The graph  is obtained from  by adding

two vertices—“source”  and “sink”  and the set of edges  going from  into  for all  and the
set of edges  going from  into  for all . The capacities of these edges  are given by

For a set  such that , denote by  the set of edges in  going from  to  (it is
called an –  cut); the quantity  is considered to be the capacity of this cut.

Lemma 2 [8]. A subset  is a closed set of minimum weight in  if and only if 

is an –  cut of minimum capacity in .

Proof. Note that  is a closed set if and only if the cut  does not contain

edges of infinite capacity or, equivalently, if  is included in . For such a cut consisting of edges
 for  and edges  for , the capacity is

Therefore, the weight of a closed set differs from the capacity of the corresponding cut by a constant
, whence we obtain the desired assertion.

Thus, problem (5.1) is reduced to the problem of minimum two-terminal cut in the network with
 vertices and  edges. (Taking into account that, instead of the entire poset ,

it suffices to consider the graph  generating it, which has  edges, see Proposition 9. Using fast algo-
rithms for the maximum flow and minimum cut problems (e.g., see review [12], Section 10.8), it is possi-
ble to obtain the time bound . In [7], an implementation of an algorithm

solving problem (5.1) in time  is given.)

Remark 2. In [19], the intractability of some variants of the closed set problem was proved. Using one
of them and the fact that any transitively closed graph can be implemented as a poset of rotations (which
will be mentioned in Section 7), the NP-hardness of the following strengthening of problem (5.1) can be
proved: for a bipartite graph , functions  and a number , find a stable
matching  minimizing  under the condition . (Here  may be interpreted
as a profit and  as a cost of organizing unions (or contracts) in .)

6. POLYHEDRAL ASPECTS AND MEDIAN STABLE MATCHINGS

As has been mentioned above, for a bipartite graph , there is a polyhedral char-
acterization of the polyhedron of stable matchings  expressed by a linear (in ) number of

equalities. Here,  is the convex hull of the set of characteristic vectors  of stable matchings  in
the space . The first description of  (in the case ) was given in the work by Vande Vate
[9] (also see [20]). Below, we give a description (which is somewhat different in form but close to that in
[9]) and a proof on the basis of the exposition in [12], Section 18.5g.
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For the edges , we write  if they have a common vertex  and it holds that  (i.e., if
 is preferred to ). For , denote by  the set of edges  such that  (in particular, ).

Recall that the polyhedron of matchings in the bipartite case is described by the system of linear
inequalities

(6.1)

(6.2)

In the case of stable matchings, one more type of inequalities is added:

(6.3)

Proposition 10. System (6.1)–(6.3) describes exactly the set of vectors  belonging to .

Proof. It is easy to verify that, or any stable matching , the vector  satisfies (6.1)–(6.3).
Therefore, it suffices to prove that, if  is a vertex of the polyhedron  defined by (6.1)–(6.3), then  is
an integer-valued vector.

Set  and denote by  the set of vertices in  covered by . For ,
denote by  the best edge in  with respect to the order . The following property holds:

(6.4)

Indeed, by setting , we have

Here, all inequalities must turn into equalities. This gives  and ,
which implies (6.4).

Form the sets  for  and  for . For any vertex
, the best edge in  belongs to , and the worst edge and only this edge belongs to 

(due to (6.4)); for the vertices in , the behavior is converse. This implies that both  and  are
matchings. Each edge  forms a component in the subgraph ; this gives  (due to
(6.2) and (6.3)). In particular,  is integer if .

Now, let . Obviously, for any edge  in  or in , it holds that
. Therefore, we can choose a sufficiently small  such that the vectors

 satisfy (6.1) and (6.2). Let us check that both  and  also satisfy (6.3).
To this end, consider an edge  with  and suppose that . This is possible

only if , where  and . In this case, it must be either (i) ,
or (ii) , and  is preferred to any edge in  (otherwise, such an edge would made a positive
contribution into , whence ). However, in these cases, the equality 
(due to (6.4)) and the inequality  imply

which is impossible. Similarly, (6.3) holds for .
Thus, . But  and . This contradicts the fact that  is a vertex in .
There is one more useful property proved in [21]; we give a somewhat different but equivalent formu-

lation.
Lemma 3. Let , and let  be an edge in  for which . Then
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Proof. Represent  as , where  is a stable matching, , and
. Define . Since , the edge  belongs to some . Then

. Similar equalities also hold for any matching  not containing e.
Indeed, since  and  cover the same set of vertices (due to Proposition 2),  contains an edge 
incident to  and an edge  incident to . Moreover, by considering the pair  and using (2.1), we
obtain either  or . In both cases exactly one edge from  belongs to ;
therefore, . Now, the assertion follows from the equality .

This lemma helps us obtain an interesting result of TEo and Seturaman.

Proposition 11 [10]. Let  be stable matchings in . For each , denote by  the list

(with possible repetitions) of edges in  belonging to these matchings and ordered according to ;

furthermore, let  denote the th element in , . Similarly, for each , let  be the

th element in the list  of edges in  belonging to these matchings and ordered according to ,

. Then, for any , the set of edges  coincides with the set

 and forms a stable matching in .

Proof. Set . Then  belongs to the polyhedron  (it is a so-called “frac-

tional stable matching”).

We first assume for simplicity that all edges in  are different. Then, for , the list  con-
sists of  different edges, and the edge  is the th element in . Lemma 3 applied to  and 
implies that the set  consists of  elements. Then  is exactly the th element in the list 
(which, by assumption, consists of  different edges) and, therefore, .

Thus, , which implies that  is a matching in . To prove the stability of ,
consider an arbitrary edge  in . We should verify that  does not block  or, equiva-
lently, that .

At least one of the endpoints of  (say, ) belongs to  (and is covered by ); otherwise, we would
have  for  and  contrary to (6.3). If , then , and the inequality 
implies that, for all edges  (including ), it holds that . This gives the desired

.

Now, let . Due to , the number of edges  in  for which  is not less than
. Then, at least one of the inequalities  and  must hold, which again implies

.

If there are common edges in , we can consider the multigraph obtained from  by replacing
each edge  with  by  parallel edges . In this case, the extension of the
order  to these edges is assigned to be opposite to the extension of the order , say,  and

. The desired assertion for this general case is obtained by repeating (with minor refine-
ments) the reasoning for the case on nonintersecting matchings considered above.

Corollary 4. If  is odd, then for , the set consisting of the kth elements in the ordered
lists of edges  incident to  and belonging to  for all vertices  is a stable matching.

Such a matching is called the median matching for . In [10], the question was raised about the
possibility of efficiently finding a median stable matching among all stable matchings in  (or an “almost
median matching” when the number of stable matchings is even). It seems to me that this is hardly possi-
ble, because the problem of calculating the number  is intractable, which will be discussed below.

7. COUNTING THE NUMBER OF STABLE MATCHINGS

Knuth in [11] provided examples in which the number of stable matchings in a bipartite graph is expo-
nentially large compared with the graph size, and he posed the question about the complexity of finding
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the exact number of these matchings. An answer was given by Irving and Leather in [5], who proved that
this problem is intractable (by considering the graphs ). Below, we outline the idea of their proof.

Recall some concepts (their exact definitions can be found in [22] or [23], Section 7.3). Without going
into full logical rigor, one can understand that the description of one or another enumeration problem 
consists of an infinite family of finite sets , and for each , there is a family  of subsets in 
(“objects”). In problem  it is required to find the number  for a given . The problem  is
said to be a -problem (or -problem in terminology of some authors), if the recognition of an object
takes polynomial time, i.e., if there is an algorithm that, for any  and , determines in a poly-
nomial time of  if the given set  belongs to the family . The -problem  is
said to be -complete (or universal in the class ) if any other -problem  is
reduced to the former problem in a polynomial time (i.e., there is a map  such that for each

 the number  is determined from  in a polynomial time of ).
In the problem of our interest, the role of the family  is played by the collections of edge sets  of

bipartite graphs , and the role of the family  ( ) is played by the corresponding set
of stable matchings in . The problem of finding  is indeed a -problem, since, for any subset

, one can find out if  is a stable matching in time .
Note that the -analog of any -complete problem is intractable (since in the latter problem it is

required “only” to determine whether the corresponding family of objects  is not empty (e.g., does
the given graph contain at least one Hamiltonian cycle?), while in the former one it is necessary to find
the number of objects). However there are -problems whose enumeration analogs are -complete.
The problem of determining  is just one of this sort. This is a consequence of the following two
results.

Proposition 12. The problem of finding the number of antichains in a finite poset is -complete.

Proposition 13. Let  be a poset on  elements. There exists a bipartite graph  such that

its rotation poset  is isomorphic to ; and it can be constructed in a polynomial time of n. Therefore

(due to Proposition 8), the number  of stable matchings in  equals the number of antichains (or the

number of ideals) in the poset .

Proposition 12 was proved by Provan and Ball in [24]. Proposition 13 was proved in [5], Section 5 by
explicitly constructing the desired graph  for the given poset .
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