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ABSTRACT

This paper studies a multilateral matching market in which each participant can sign contracts with
any other agents. This market subsumes the two-sided matching and the roommate problem as special
cases. We consider a hypergraph (I, C), with possible multiple (hyper)edges and loops, in which the
vertices i € I are interpreted as agents, and the edges c € C as contracts that can be concluded between
agents. The preferences of each agent i are given by a choice function f; possessing the so-called path
independent property. In this general setup we consider the notion of stable contract network.

The paper contains two main results. The first one is that a general stable contract problem for
(I, C,f) can be reduced to a special one in which preferences of the agents are given by weak orders, or,
equivalently, by utility functions. However, stable contract systems may not exist. Trying to overcome
this trouble, we introduce a weaker notion of meta-stability for contract systems. Our second result is
that meta-stable systems always exist. A proof of this result relies on an appealing theorem on the
existence of the so-called compromise function.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

In their lives, people often have to make joint actions and
organize groups in order to achieve some goals. We call such
cooperations contracts. Examples are: house exchange, purchase
or sale, marriage, loan or deposit of money, hiring, co-financing
society, cartel, military or economic union of countries. Contracts
can involve not only individuals, but also larger entities; for con-
venience, we call the parties of a contract agents or participants.
Some contracts include only two agents (we call such contracts
binary), but many other ones can include a larger number of
agents. Note also that agents are allowed to enter several different
contracts at once.

Contracts bring some benefits to the participants, but also
may require them to spend money, time or other expenses. It is
important for participants to know more precisely what they can
count on. For this purpose, the agreements should be as detailed
and formalized as possible, though not everything can be taken
into account. For example, a marriage contract may include how
much time the spouses can spend in the family and how much
‘outside’, how to share household efforts, how many children to
have, etc. The more all this is worked out in detail, the better
the participants represent the pros and cons and can compare
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different contracts. We further assume that each contract can be
unambiguously evaluated by each of its participants.

The information about the ‘preference’ of one or another con-
tract primarily affects the choice of contracts that will actually
be concluded (signed). Here we are based on the premise of
voluntariness of contracts. No one can force an agent to sign a
contract if the agent does not like to do this. On the other hand,
no one can forbid a group to sign a contract if its all members
agree. These two requirements lead to the concept of a stable
system (or network) of contracts, which will be the main topic
of our work. The concept of stability originally appeared in the
work of Gale and Shapley (1962) and gradually has become the
subject of extensive researches both theoretical and practical.
Gale and Shapley showed that in case of marriages, a stable
system always exists. They assumed the marriages to be monog-
amous and bipartite (heterosexual). Without these conditions,
stable systems may not exist. An example is the famous problem
of stable ‘roommates’, or ‘division into pairs’. Even to a greater
extent, this trouble concerns non-binary contracts.

One remark is needed to be mentioned here. When agents
are allowed to conclude many contracts, they should be able to
compare not only individual contracts, but also arbitrary subsets
of contracts. Therefore, it is not enough to attribute a value to
each contract only. Instead, we prefer to use the so-called choice
functions (CFs, for brevity), which tell us what groups of contracts
from the available list are ‘the best’ ones to be chosen for signing.
This approach was initiated by Kelso and Crawford (1982) who
revealed importance of the condition of ‘substitutability’ for the
existence of stable systems. Subsequently, a number of researches
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have shown that this condition is applicable to all problems with
‘bilateral’ contracts (see e.g. Fleiner, 2003; Hatfield and Milgrom,
2005). We show that in a more general setting, this condition on
agents’ CFs is also adequate.

The paper contains two main results. The first one is that a
general problem on stable contract systems is reduced to a more
special situation in which preferences of agents are described
by use of weak orders, or utility functions. Roughly speaking,
agents conclude contracts having the maximum utility and ignore
the rest. However, even in such situations the stability need not
exist. To overcome this trouble, we propose a weaker notion of
meta-stable contract system.

Roughly speaking, the notion of meta-stability differs from
that of stability by withdrawing one of the two defining axioms
for the latter (namely, the one of individual rationality); in the
end of Section 5 we briefly discuss justifications for the release of
this sort. An important fact (established in Proposition 4.1) is that
every stable contract system (if exists) turns out to be meta-stable
as well. Our second main result in this paper is that meta-stable
systems always exist. These appealing properties give a good
theoretical ground for studying meta-stable systems, which, to
our belief, would find interesting economic applications.

2. Basic definitions and settings

A general setup can be stated as follows. There are a finite set
of agents I and a finite set C of contracts which are available for
the agents to conclude. Each agent can conclude several contracts.
Each contract ¢ € C is shared by a nonempty set of participants
P(c) C I.If P(c) is a singleton {i}, the contract c is called autarkic;
this can be thought of not as a contract in reality, but rather as
an ‘activity’ available to i alone. Thus, the object that we deal
with can be described as a hypergraph, with possible parallel
hyperedges, and when needed, we may use the language of (hy-
per)graphs, interpreting the vertices as agents and (hyper)edges
as contracts. Equivalently, the input can be encoded as a bipartite
graph with the parties (color classes) I and C.

For S C C, let S(i) denote the set of contracts s € S such that i
is a participant of s.

As mentioned above, the quality of contracts can be expressed
in terms of ‘utility’, which brings benefits to their participants.
Guided by these utilities, agents conclude some contracts and
refuse other ones. So an evaluation of contracts via utilities is
an important part of the problem. The simplest way to define a
utility is to express it numerically, by assigning a (real or integer)
number u;(c) to each contract ¢ of C(i). However, this is not the
most general way to establish ‘preferences’ of agents. Since an
agent can conclude several contracts, it is often important for
him/her to know the utilities not only for individual contracts,
but also for their collections.

A rather powerful method to describe preferences of contracts,
yielding sufficient flexibility and generality, attracts choice func-
tions. A choice function f on an (abstract) set of ‘alternatives’ X
selects a ‘good’ subset f(A) € A for any set (‘menu’) A C X. In
our case, the choice of agent i is taken within the set of available
contracts C(i).!

It light of this, the second important ingredient of the problem
consists of an appropriate set of choice functions f; on the sets
C(i) for agents i € I. We refer to such a set of choice functions

1 Here we default assume that an agent does not care of what contracts
are concluded without his participation. For example, in the situation of hiring
workers by firms, one assumes that it is important to the worker in which firms
he will work, but it does not matter to him who else works in these firms. On
the other hand, it is important to a firm who will work in it, but it does not
matter where else the employee works. In some situations, such an assumption
looks not realistic, but it can be accepted as a first approximation.
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representing preferences of agents as an equipment of the hyper-
graph G = (I, C). Using this, we now can talk about the stability
of a contract system (or network) S < C. Roughly speaking,
this is a system S such that nobody wants to change it, either
by renouncing some contract, or by concluding a new contract,
perhaps by breaking some existing ones in S. At the same time, it
is assumed that contracts are concluded voluntarily. This means
that any agent can refuse to conclude any contract, and that
any contract can be concluded only with the consent of its all
participants. The formal definition is as follows.

Definition. A network S is called stable if the following two
conditions hold:

S0. fi(S(i)) = S(i) for any i € I;
S*. If a contract b does not belong to S, then b ¢ f;(S(i) U b) for
some i € P(b).

(Hereinafter, for a set S and a singleton s, we may write S U s for
Su{s})

The first condition expresses the possibility of renouncing any
contract. The second one says that if a contract b is interesting to
its all participants, then it should be concluded. And the absence
of b in S indicates incompleteness of the process of building a
system of contracts. Sometimes one says that such a contract b
blocks the system S.

The main issue that we will be dealing with concerns the
existence of stable networks. The answer depends on both the
structure (‘geometry’) of the original network C and (to a greater
extent) the ‘preferences’ of agents. For example, if (I, C) is a bipar-
tite graph, then a stable network S C C exists under rather weak
conditions on preferences. And if all agents behave indifferently,
then already the original network C is stable. On the other hand,
even in case of binary contracts (in a non-bipartite graph) with
the best individual preferences, the stability may not take place.

We will focus on preferences without imposing preliminary
restrictions on the original network C. As is mentioned earlier,
preferences are given via choice functions. Note that a variety of
possible CFs is large, but a majority of them do not correspond
to an intuitive concept of 'reasonable choice’. To illustrate this
situation, we demonstrate two examples of CFs that are regarded
as ‘rational’.

Example 1. Let < be a preorder on a set X (that is, a reflexive and
transitive binary relation, admitting ‘equivalent’ elements). And
let f(A) consist of all maximal elements in A € X relative to <
(one often f is denoted as max<). A CF of this kind is considered
as rational, since a rational reason for including one or another
alternative in the choice is clearly seen, to be the lack of a better
alternative. Note that this choice is nonempty (when a menu A is
such).

Two special cases of this construction deserve to be men-
tioned. The first one is when < forms a weak order (a preorder
in which any two elements are comparable). The second one is
when < is a linear (total strict) order, or ranking. In the latter
case, the choice f(A) consists of a single element (if A # ¢J); in this
case we are talking about linear preferences, or linear equipment.

Example 2. Let < be a linear order, but the choice includes b
best items from menu. The number b is prescribed and can be
understood as a quota. Such a choice rule is viewed as rational
as well; it has been considered in many works on stable b-
matchings. See e.g. Cechlarova and Fleiner (2005), Fleiner (2003,
2010), Irving and Scott (2007) where generalizations (of type
‘many-to-many’) of stable marriages and roommates are studied.
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Both examples are special cases of the so-called path-indepe-
ndent choice functions. Such a function f satisfies the following
functional equation:

f(AUB) =f(f(A)UB).

This equation says that the answer does not change under
replacing a part of the menu by its best elements. Therefore, the
computation of f(-) can be performed step by step, by choos-
ing every time an arbitrary subset in the current domain, and
the answer does not depend on the choice of the path. This
condition was introduced by Plott (1973), and we call such CFs
Plottian or Plott functions. It turned out that this condition is
quite suitable for studying stability, and later on we will assume
throughout that all CFs in question are just Plottian. Such CFs have
been investigated extensively in the literature (especially the pa-
per (Aizerman and Malishevski, 1981) should be distinguished);
facts about Plott functions that are needed for us are contained
in Appendix C.

Note that when the equipment is given by Plott functions,
any stable network (if exists) is Pareto optimal. However, one
can address the question: how to understand the optimality if
preferences are given by CFs? We can do this in the following
way. Let f be a Plott function on a set X. One can associate with f
the following hyper-relation <==; (a relation on 2X introduced
by Blair (1988)), which is given by the expression:

A=<B if f(AUB)CB.

This hyper-relation is transitive and reflexive. If CF f is given by
a weak order <, then A < B implies max(A) < max(B). The
following fact is of use.

Proposition 2.1. Suppose that all f;’s are Plott functions and that
<; are the hyper-relations as above. Let S be a stable system, and let
T be a contract system satisfying condition SO. If S(i) <; T(i) holds
for each i, then S =T.

In other words, if the system T is not worse than S for all
agents, then S and T coincide (in particular, T is not better than
S).

Proof. The condition S(i) <; T(i) means that f;(S(i) U T(i)) < T(i).
Since

[ilSMUT(0)) = fi(SHUTHUT(i)) = filh(SEOUT()UT(1)) = fi(T(1))

(in view of fi(S(i) U T(i)) C T(i)), we have f;(S(i) U T(i)) = T(i).

If the opposite inequality T(i) =<; S(i) holds for all i, then
fi(S(i) U T(i)) = fi(S(i)) = S(i), then S(i) = T(i), and we are done.
So we may assume that for some agent (denote it as 0) the set
T(0) = fo(S(0) U T(0)) is not contained in S(0). Then there is a
contract t belonging to T(0)—S(0). Let j be an arbitrary participant
of the contract t; so t € T(j) = fi(SG)UT()). Since t is chosen (by
the CF f;) in the larger set S(j) U T(j), this t is also chosen in the
smaller set S(j) Ut (by Heredity property, see Appendix C). So we
have t € fi(S(j) U t), which is true for any element j of P(t). Since
t does not belong to S, we obtain a contradiction to the stability
condition S*. O

The first main result of this paper is that the problem with
general Plott functions can be reduced to a problem in which the
preferences of agents are given by weak orders, as we explain in
the next section.

Remark. In the above definition of a stable contract network S,
condition S$* requires that no (individual) contract b in C — S
can block S. This matches usual non-blocking conditions in the
classical works on stability. In some last papers, a somewhat
stronger condition of stability was proposed, which forbids any
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blocking contract sets; see e.g. Rostek and Yoder (2020), Hatfield
and Kominers (2017). However, in the case of path-independent
choice functions, both conditions become equivalent; see Hatfield
and Kominers (2017).

3. The reduction theorem

Theorem 3.1. Suppose that the equipment of a hypergraph (I, C)
is given by Plott functions. Then there exist a hypergraph (I', C’)
equipped with weak orders and a mapping (hypergraph homomor-
phism) 7 : (I', C") — (I, C) such that:
(a) for any stable system S’ in C’, its image 7(S’) is stable in C;
(b) for any stable system S C C, there is a stable system S’ in C’
such that 7 (S’) = S.

This assertion is based on a theorem in Aizerman and Mal-
ishevski (1981) saying that any Plott function is representable
as the union of several linear CFs. We construct the desired
hypergraph (I’, C') by splitting each agent i € I into a set of its
‘subagents’ i;, which already have weak orders as preferences on
the contracts available to them. To simplify our description (and
make the construction more transparent), in suffices to describe
in detail only one step, consisting of a ‘splitting’ operation for one
agent, which is denoted as 0.

Let us assume that the CF f; of this agent is represented as the
union of several ‘simpler’ Plott functions fi, ..., f, (for example,
linearly or weakly ordered ones).>2 We even may assume that
¢ = 2, and accordingly ‘split’ the agent O into two new agents
0, and 0, which are denoted simply as 1 and 2. Each of them
has the same set C(0) of contracts, but their preferences differ
and are given by CFs f; and f,, respectively. More formally, the
new set of contracts C is arranged as follows:

C:=(C—C0)uC(1)uc),

where E(]) = C(0) x {1}, E(Z) = ((0) x {2} are two copies of
C(0). When this is not confusing, we will identify each of C(1) and
C(2) with C(0). In other words, each contract ¢ involving agent 0
is duplicated, turning into two contracts, ¢; and c;, concluded by
the same agents except for 0 which is now replaced by 1 and 2,
respectively. The mapping 7 sends agents 1 and 2 to 0, and sends
cyand ¢, to c.

We have already described the preferences of agents 1 and
2; namely, they are given by CFs f; and f,. For the other agents
(which will be usually denoted as j, j/, etc.), the contracts ¢; and
c, are equivalent (they perceive them as contracts with agent
0). More formally, agent j (con51dered as an element of the set
I = (I —{0})U{1,2}) chooses € from a menu A C C(]) if and only
if c = 7 (€) is chosen from 7 (A):

fiA) = AN 77 (f(wA)).

In Appendix C, we show thatf is a Plott CF as well.

Note that even if the old CF f; were linear, the new CF j} should
be given by a weak order in general, because the twins c¢; and
¢, for the agent j are equivalent (indifferent). This is the reason
why we are able to reduce the problem not to the linear case, but
merely to the weakly ordered one.

So, we have described the new system C of contracts, and
now we can formulate the first assertion; it will be proved in
Appendix A.

Proposition 3.2. For C and C as above, if S is a stable system in
C, then the system S = n(S) is stable in C.

2 Recall that the union fu
fi(A)U -+ - U fy(A).

--Ufy is given by the formula (fy U---Uf;)(A) =
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Let St(G) denote the set of stable networks for the equipped
hypergraph G, and St(G) a similar set for G. Then Proposition 3.2
determines the mapping

7 : St(G) — St(G)

that translates any stable system S into n(§). We claim that this
mapping is surjective, that is, for any stable system S in G, there
exists a stable system S in G such that 7(S) = S. Moreover, we
will build such a system S canonically.

Construction of S. If a contract s belongs to S and does not
contain agent 0, then s is lifted in C in a natural way and included
inS. Therefore, we only have to explain how to form S(1) and 5(2).
We put 5(1) := f1(5(0)) and S(2) := f>(S(0)) (identifying C(1) and
C(2) with C(0)).

Proposition 3.3. The system S constructed as above is stable.

The proof is given in Appendix A.

Now let us return to Theorem 3.1. A required mapping 7 :
G' — G is constructed by iterating the above splitting construc-
tion. The induction is proceeded by the number of vertices j in
(the current hypergraph) G for which CF f; is not weakly ordered.
If there are no such vertices, we are done. So let 0 be a vertex of
G for which CF fj is not weakly ordered. Discarding unnecessary
edges, we may assume that fy is not empty-valued. By Aizerman-
Malishevski’s theorem (see Appendix C), fy is representable as
fo=fAU---Uf,withall fi,...,f, implemented by weak orders
(and even by linear ones). Let G be the hypergraph constructed
as above, but with splitting 0 not into two vertices, but into £
ones. The proofs given above can be extended in a natural way to
this case as well. The CFs in the new vertices 1, ..., £ are already
weakly ordered. But what about the other vertices j? When f; was
weakly ordered, the new f; is again weakly ordered. Indeed (see
Appendix C), if f; was generated by a weak order <; on C(j), then
fi is generated by the weak order 7*(<;) on C(j), where r is the
projection of C(j) on C(j). O

Thus, we obtain a reduction of a general case (with Plottian
CFs) to the special case where the preferences of agents are given
by weak orders. And now it is reasonable to analyze this special
case.

4. Meta-stable contract networks

Stable networks need not exist even if the agent preferences
are given by linear orders. This depends, to a large extent, on
the structure of the hypergraph (I, C). In the literature there are
many papers containing results in this field, among those we
can mention (Aharoni and Fleiner, 2003; Fleiner, 2003; Irving,
1985; Tan, 1991). Below we propose a new concept of meta-
stable network, which, on the one hand, is close to the concept
of stable network and, on the other hand, such networks ‘always’
exist.

As before, we assume that the preferences of agents are given
by non-empty-valued Plott functions f; on C(i) for all i € I. To
introduce the meta-stability, we first need to specify the notion
of domination.

Let f be a non-empty-valued Plott function on an abstract set
X. Let us say that an element d € X dominates (in spirit of Scarf)
a set A C X if either A is empty or there is a € A such that
a ¢ f({a, d}). Intuitively, the dominance of an element d means
that d is somehow ‘better’ than the set A. In the case A = ¢, this
means that any contract is better than nothing. In the case A # ¢,
this means that there is at least one element of A that is ‘worse’
than d. Roughly speaking, we estimate a subset A according to the
worst case scenario, that is, we focus on guaranteed results.
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Definition. A contract set S C C is dominated by a contract d if
for each participant i of d, this contract dominates (relative to f;)
the set S(i).

The presence of a dominating contract d indicates some insta-
bility of the system S. All participants of d are tempted to add d
to S (if d ¢ S) and refuse the contracts worse than d. On the other
hand, if d does not dominate S, then at least one of its potential
participants is not interested in concluding d.

Definition. A network of contracts S is called meta-stable if there
is no contract dominating S.

Remark. Let S be meta-stable, and a participant i has an autarkic
contract a;. Then the set S(i) is nonempty. Since if S(i) = ¢, then
a; dominates S.

The concept of meta-stability is a weakening of the stability
one, as the following assertion shows.

Proposition 4.1. A stable contract network is meta-stable.

Proof. Suppose that a contract d dominates an individually
rational network S. We show that d blocks S. To see this, let i be an
arbitrary participant of d. We explain thatd ¢ S and d € f;(S(i)ud).
This is obvious if S(i) empty. So assume that S(i) # @ and let s;
be a contract from S(i) that is not selected from the pair {d, s;}.
Then, moreover, s; is not selected from the set S(i) U d, i.e, s; ¢
fi(8(i) U d). This is possible only if d € f;i(S(i) U d), for otherwise
fi(S(i) U d) = fi(S(i)) (by Outcast property, see Appendix C). By
SO, the last set is equal to S(i) and contains s;. So s; € fi(S(i) U d),
contrary to the assumption. Also d ¢ S. Thus, d blocks S, contrary
to condition $*. O

We see that the difference of meta-stability from stability
consists in rejection of individual rationality. That is, we admit
the possibility that S(i) consists not only of all ‘best’ contracts,
but may also include some ‘worse’ ones. Why does the agent not
refuse ‘bad’ contracts? One justification (though not convincing
enough) is as follows. It may happen that a contract s, which
agent i would like to get rid of, is unique for some other agent
j, ie, S(j) = {s}. If s is removed from S, then the agent j
remains without contracts at all. This forces him to agree to
some other contract ¢, which earlier was regarded by him as not
good enough. But then another participant k of the contract ¢
may refuse an earlier concluded contract, which now becomes
uninteresting for k due to the appearance of c. In a word, a cas-
cade of contract renegotiations may begin with an unpredictable
outcome for the ‘initiator’ i.

Let us illustrate this situation with a simple example. There
are three agents, say, 1,2,3, and six contracts, of which three are
autarkic (of the form {i, i}, where i = 1, 2, 3) and the other three
are 2-element ones, namely, {i,j} for i # j. The preferences of
agent i are arranged as follows: {i,i} < {i,i — 1} < {i,i + 1}
(letting 0=3 and 4=1). That is, agent i considers as most preferable
for him to have the contract with agent i + 1 (taken modulo 3),
and as least preferable to stay alone. In this example there is no
stable contract system. But there are meta-stable ones. One of
them consists of two contracts {1, 2} and {2, 3}. (It is easy to see
that the only contract that could pretend to dominate is {3, 1}, but
it is not better for agent 1 than the contract {1,2}.) Here agent 2
enters into two contracts, and the contract with agent 1 is worse
for him than the one with agent 3. Imagine that he breaks the
contract with agent 1. Then agent 1, who does not want to remain
alone, turns to agent 3. Agent 3 is glad to accept his offer, refusing
the old contract with agent 2. As a result, agent 2 looses both
contracts and is forced to get his autarkic contract, which is worse
than what he had before.
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Another, perhaps more interesting justification for the re-
jection of individual rationality, is as follows. Let us regard an
agent not as an ‘individual’, but rather as a ‘collective’ of several
subagents which are equivalent in terms of preferences. Some of
them succeed to conclude more profitable contracts, while the
others become less profitable ones. As in illustration, in the above
example one can split agent 2 into two subagents 2; and 23, and
consider the concluded contracts of the form {1, 2;} and {23, 3}.

5. Existence of meta-stable contract systems

We have seen that the meta-stability represents a weakened
concept of stability. The main advantage of this concept is that
a meta-stable contract system ‘always’ exists. Here, by saying
‘always’, we assume that all choice functions f; that we deal with
are non-empty-valued Plott ones.

Theorem 5.1. For choice functions as above, a meta-stable
contract system does exist.

The proof consists of two parts. In the first one, we prove the
theorem in the special case when the preferences of all agents
are given by linear orders. To do this, we use a certain general
‘theorem on compromise’ whose formulation and proof are left
to Appendix B. In the second part, we reduce a general case to
the linear one.

Linear case. Here we assume that the preferences of each agent
i are given by a linear order <; on C(i) C C. Add for each agent i
a ‘dummy’ autarkic contract a;, which is worse than the others
elements of C(i). Below we shall show that in this ‘extended’
system with C = C U {{a;}, i € I} there exists a meta-stable set S
with all S(i) nonempty. R

Relying on this, we assert that S = S N C is meta-stable in the
initial problem.

Suppose, for a contradiction, that there is a contract d € C
dominating S and let i be an arbitrary participant of d. We claim
that d dominates S(i) for i, thus contradicting the meta-stability
of S. Indeed, if S(i) = @, then S(i) = {a;}, and since a; <; d, the
contract d dominates S(i) for i. And if S(i) # ¢, then the element in
S(i) which is worse than d will be worse than d in S(i) as well. So
in all cases d dominates S(i). Since this is true for any participant
of d, we obtain that d dominates S, contrary to the supposition.

In light of the proof, we can additionally assume that each
agent has an autarkic contract.

Let u; : C(i) — R denote a utility function on C(i) representing
the order <;. Using this, each contract ¢ € C can be considered
as a ‘partially defined’ function (keeping the same notation c) on
I, given by the rule

c(i) :== u;(c).

The domain of this function is the set P(c) C I of participants of
c. By the theorem on compromise that we discuss in Appendix B,
there exists a ‘compromise’ function x, already defined on the
whole I, which possesses two properties:

(1) any c € C is smaller than or equal to x at some point i in
the domain P(c) of c;

(2) for any i € I, there exists ¢ € C(i) which is not smaller
(strictly) than x within the whole domain P(c) of c.

When such a function x is available, we define the set S as

S:={c e C: x < c within the domain of c}.
Note that, due to property 2, the sets S(i) are nonempty for all
iel

Claim. The set of contracts S is meta-stable.
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Proof. Suppose that some contract d dominates S. Since all sets
S(i) are nonempty, this means that for any i € P(d), there is a
contract s; € S(i) (regarded as a function) such that s;(i) < d(i).
Since s; € S, we have x(i) < s;(i); then x(i) < d(i) for any i from
the domain of d. But this contradicts property 1. O

Linearization. Let f be a choice function on a set X. Let us say
that a linear order < on X respects f if for any nonempty A C X,
the maximal (relative to <) element in A belongs to f(A). If f is
a non-empty-valued Plott function, then there are ‘a lot of linear
orders respecting f. Here ‘a lot of means that for any a € f(A),
there is a linear order < respecting f such that a is the largest
element in A. For more information, see Appendix C.

Recall that an element d dominates a nonempty set A (relative
toa CFf)ifa ¢ f(a, d) for some a € A. The following assertion is
easy.

Lemma 5.2. Let f be a non-empty-valued Plott function on X, and
let a linear order < respect f. If d dominates A C X relative to f,
then d dominates A relative to <.

Proof. If d dominates A relative to f, then there is a € A such
that a ¢ f(a, d). But then a < d for any order < respecting f. O

Let us go back to our problem with agents I and Plott functions
fi. Consider a new problem (an equipment) in which each Plott
function f; is replaced by a linear order <; which respects f;.
In the ‘linearized’ problem (I, C, {<;,i € I}) there is a meta-
stable contract system S. We assert that S is meta-stable in the
initial problem as well. To see this, we have to check that there
are no dominating contracts. But if d dominates S relative to f;
(where i is in P(d)), then, by Lemma 5.2, d dominates S relative
to <;, which contradicts to meta-stability of S in the problem with
linear orders.

This completes the proof of Theorem 5.1 (assuming validity of
the theorem on compromise).

6. Minimal meta-stable networks

In this section we assume that each agent has an autarkic
contract.

The concept of meta-stable networks is not rigid enough. Let
S be a meta-stable contract system, and T € S some subsystem
in it. If T(i) is not empty for every agent i, then the system T is
also meta-stable. Note that stable networks do not allow a similar
possibility; namely, if S is stable, then any proper subsystem in it
is already unstable. This justifies the following notion.

Definition. A meta-stable system is called minimal if it is minimal
by inclusion, that is, any proper subsystem in it is not meta-stable.
There is a simple criterion of the minimality. Let S be a system of
contracts. Let us say that agent i is monogamous’ if S(i) consists
of a single contract. This situation is typical in classical marriage
or roommate problems.

Proposition 6.1. A meta-stable system S is minimal if and only if
any contract s of S contains a monogamous participant.

Proof. It follows from the obvious fact that if s is a contract
without monogamous participants, then the system S — {s} is also
meta-stable. O

3 The term monogamous is appropriate if ‘yano¢’ (marriage) is understood
as a contract.
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Similar reasonings show that any meta-stable contract system
is a union of minimal meta-stable ones. Therefore, in principle, we
can restrict ourselves by studying minimal meta-stable networks.
Especially since such systems provide the largest guaranteed
utility.

Linearization. Due to the reduction Theorem 3.1, we may as-
sume that the preferences of agents are given by weak orders.
Let <; be a weak order of agent i on the set C(i), and let <; be a
linear order extending <; on the same set. (Then ¢ <; ¢’ implies
¢ =<; C/, that is, strict preferences preserve while equivalences
are eliminated. In terms of utilities, the original utility functions
are slightly perturbed.) So, preserving the hypergraph (I, C), we
strengthen the initial preferences of agents to get linear orders <.

Proposition 6.2. (1) If S is a meta-stable network with respect to
linear orders <, then S is meta-stable for the original weak orders <
as well.

(2) Conversely, if S is a minimal meta-stable network for <, then
there are corresponding linear extensions < of < such that S is
meta-stable with respect to <.

Proof. Assertion (1) is easy. We only need to check that S is non-
dominated for the weak orders <. Suppose this is not so, that is,
there is a contract ¢ such that u;(c) > u;(S) for any participant
i of c. But then ii;(c) > u;(S) for all i € P(c), which contradicts
the meta-stability of S with respect to < (where i stands for the
utilities for <).

To see (2), let S be a meta-stable system for the weak or-
ders <;. The ‘splitting of ties’ of non-marginal contracts is not
important in essence, so we can focus on marginal ties. Fix a
participant i and denote by M(i) the set of contracts ¢ € C(i)
such that u;j(c) = u;(S). Such contracts are divided into two
groups. The group of those belonging to S is denoted by M, (i),
and the rest by M_(i). The first group is certainly nonempty.
Choose some contract s; in it, remain its utility unchanged, and
slightly increase the utilities &i; of the other members of M_(i).
Also slightly decrease the utilities of contracts in M_(i).

Doing so for all agents, we eventually obtain a system with
linear orders <; extending the original weak orders <;. We assert
that this system is meta-stable.

Indeed, let ¢ be an arbitrary contract, and suppose that for its
all participants i, there holds @i;(c) > u;(S). Then ui(c) > uy(S).
Such inequalities cannot be strict for all i, in view of the meta-
stability of S. So there is i for which the equality u;(c) = u;(S) is
fulfilled; then ¢ € M(i). If c € M_(i), then its perturbed utility &; is
slightly less than the utility of marginal contract s;, contrary to the
supposition ti;(c) > 1;(S). Hence ¢ € S. Now, since ii;(c) > u;(S),
the contract c is not unique in S(i), for all i € P(c). This contradicts
the minimality of S. O

We obtain that when dealing with minimal meta-stable net-
works, one may assume, w.l.o.g., that the preferences of all partic-
ipants are given by linear orders. In other words, all contracts for
any agent i are comparable and non-equivalent. In this situation,
we have a closer relationship between the stability and minimal
meta-stability, as follows.

Proposition 6.3. Suppose that the preferences of all agents are
given by linear orders. If S is a stable contract network, then S is a
minimal meta-stable one.

Proof. The meta-stability has already been established. It re-
mains to check that any contract s € S is unique for some
of its participants i. (Equivalently, any contract s € S has a
monogamous participant.) This follows from the fact that (in
the case of linear preferences) each set S(i) consists of a single
contract. O
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Note that when the preferences are linear and the original
network C is binary (viz. (I, C) is a graph), a minimal meta-
stable network is split into connected components that are either
isolated vertices or have the shape of ‘dandelions’:

ST

O

O

Here there is a central agent (the dark vertex), and several
monogamous agents associated with it. The marginal contract
of the central agent is represented by a two-sided arrow. In a
particular case, this structure degenerates into a single binary
contract.

Declaration of competing interest

No conflict of interest exists. We wish to confirm that there
are no known conflicts of interest associated with this publication
and there has been no significant financial support for this work
that could have influenced its outcome.

Data availability

No data was used for the research described in the article.

Acknowledgments

We thank the anonymous reviewers for meticulously reading
the original version of this paper and many useful suggestions.

Funding

All of the sources of funding for the work described in this
publication are acknowledged below: Grant RFFI 20-010-00569-A

Appendix A. Proofs of Propositions 3.2 and 3.3

To prove these propositions, we use the following lemma,
where 5(1) = =(5(1)), S(2) = #(5(2)), and S(j) = =(S()) for
j#0,1,2.

Lemma A.1.

(a) fi(S()) = S(j) for each agent j different from 0.
(b) f1(S(1)) = f1(S(0)), and similarly f,(S(2)) = f>(S(0)).

Proof (a). Let s € S(j). If all participants of the contract s are
different from 0, then s = 7(s) for a single (actually, equal to
s) contract s from S. By condition S0,s € f;(S(j)); then s € fi(S(j)).
Therefore, we may assume that 0 is one of the participants of s.
The contract s is a projection of some s from S, and 1 or 2 is a
participant of 5. Let for definiteness S = s; € S(1); then s; € S(j).
By condition SO, for S we have the equality f;(S(j)) = S(j). Thus,
s1 € fi(S(j)). By definition of f;, this means that s = 7 (s;) belongs
to £((S())) = £(SG).
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(b) Recall that S(0) = S(1) U S(2). It is enough to show
that f1(S(0)) < S(1), since then Outcast property (defined in
Appendix C) gives the desired equality.

Suppose, for a contradiction, that some contract s of f;(S(0))
does not belong to S(1). Since s is selected from the larger set
5(0), it is also selected from the smaller set S(1) U s, yielding
s € fi(S(1) U s). Then sy € fi(S(1) U sq). This_shows that the
contract sy is not autarkic. Since in this case s; € S(1)and s € S(1),
contrary to the supposition.

Now let j be another participant of the contract s (or s;). We
assert that s; € fj(S(J) Usy). To show this (see the definition ofjj)
we have to make sure that 7(s;) = s belongs to jj(n(S(]) u 51))
fi(S() U s). Note that s, € S( ); then s, € 5(]) and s € S(j). S
S()Us = S(), and f;(S(j) U's) is equal to S(j) and contains s.

Thus, s; belongs to both fl(S(l) U sq) and j}(S(]) U sq) for any
participant j # 1 of s;. By condition S*, we obtain s; € S(l) and
s € 5(1), yielding a contradiction. O

Proof of Proposition 3.2. One has to verify properties SO and S$*
for the system S.

We first check SO for agent 0, that is, fo(S(0)) = S(0). Let
s € 5(0); one may assume that s € S(1). Since S(1) = f1(5(1))
(according to SO for S at the vertex 1), s belongs to f1(5(1)), which
is equal to f1(S(0)) (by Lemma A.1(b)), and therefore s belongs to
fo(5(0)). For other agents j, the needed equality is established in
Lemma A.1(a).

Next we check S*. Suppose that there is a blocking contract b
for S. Thatis, b ¢ S, but b € f(S(i)UDb) for any i € P(b).If 0 ¢ P(b),
then b also blocks S. Therefore, we may assume that 0 € P(b).

In this case, b € fp(S(0) U b). This means that b lies either in
f1(S(0)Ub) or in f,(S(0) U b). Let b € f1(S(0) U b). Due to Heredity
property of CF fi, we have b € f1(S(1) U b). Then b; € fi(S(1)Ub),
where by = (b, 1).

Now let us examine the inclusion b € f(S() U_b), where
Jj € P(b) — {0}. By the definition of f;, we have by € fi(S(j) U by)
since n(S(] YUby) =S3)Ub.

Finally, b, does not belong to S since b ¢ S. Then the contract
b is blocking for S, contrary to the stability of S. o

Proof of Proposition 3.3. Recall how the ‘covering’ Sis arranged.
If s belongs to S and does not contain 0 as a participant, then s
is lifted in C in a natural way and is included in S. As to S(1)
and 5(2) they are defined as S(1) : (5(0)) and S( ) := f>(5(0))
(where we identify C( ) and C(2 ) w1th C(0)). Since f1(S(0)) U
f2(5(0)) = fo(S(0)) = S(0) (by condition S0), we have

7(S(1)U'S(2)) = S(0).

Similar equalities hold for vertices j different from 0. We need
two additional lemmas.

Lemma A.2. Let a vertex j be different from 0. Then n(§0)) = S(j).

Proof. Lets € S(j). We have to show that s appears from E(i). This
is immediate from the construction if agent 0 does not participate
in the contract s. So assume that 0 € P(s). Then s € 5(0), and by
condition S0, the contract s is selected from S(0) either by CF f
or by CF f;. Assume that s € fi(S(0)); then s; € S(1). Therefore,
s = 7(s1) belongs to 7(S), whence s € 7(S(j)).

Conversely, let s = 7(5) for s € S(j), and let for definiteness
1 € P(S). Since’ s € S(1), we have s € fi(S(0)) < S(0), which
means that s belongs to S(j). O

Corollary A.3. n(g) =S.

Lemma A4. Each c € C(0) satisﬁesf]@(l) Ucy) =f1(S(0)Uc).

Journal of Mathematical Economics 108 (2023) 102888
Proof. §(1) = f1(5(0)). Thereforefl( (1)Ucl) fi(fi(S(0)Uc¢)) =
fi(sOUc). O

Now we are ready to finish the proof of Proposition 3.3. One
has to verify properties SO and S* for S. N
Verification of S0. We have to show thatf,( ( )) = S(i) for any

vertex i of the hypergraph GN
For vertex 1, we have S(1) = fi(S(0)) = fi(fi(5(0)) =
f1(8(1)) = fl( ( )). Similarly for vertex 2.

Now let j be different from 1 and 2. Let Se 50) We have to
show that S is selected (by CFfJ) from S(]) This is obvious if none
of 1 and 2 occurs among the participants of s. Assume that agent 1
participates in’s, that is, S = s; for some edge s of f;(S(0)) < S(0).
But then s € S() = £(S(G)), by S*. And since s = m(sq) is
selected (by CF f;) from S(j) = 7 (S(j)) (see Lemma A.2), we have
s1 € fj(S(l)) (by the definition offj)

Verification of S*. We show that there are no blocking con-
tracts for S. Suppose, for a contradiction, that such a contract b
exists. If neither 1 nor 2 occurs among the participants of b, then
its projection b = m(b) blocks S, which contradicts the stability
of S. Therefore, we may assume that agent 1, say, participates in
b.

Assume that_1 is the unique participant of b (that is, b is
autarkic). Then b does not belong to S(1), ancl b = n(b) does not
belongs to f1(S(0)). If b € S(0), then b ¢ f1(S(0)Ub) = f1(S(0)). But
due to Lemma A4, f1(S(0)U b) = f1(S(1) U b1). So b = by is not
blocking, contrary to the supposition. Therefore, we may assume
that b ¢ S(0). Since S is stable, b ¢ fo(S(0) U b) and, moreover, b
does not belong to f1(S(0) U b). This contradicts the stability of S.

Now consider a participant j in P(b,) different from 1. Since b,
blocks S, we have

(1) by ¢ S(1);

2) by € f3i(S(1)U by), and

(3) by € fi(SG) U by).

The first relation can be rewritten as b ¢ f1(S(0)).

The second relation can be rewritten as b € f1(S(0) U b) (in
view of Lemma A.4). This together with the first relation implies
that b ¢ S(0).

The third relation (with the definition offj) givesb € fi(w (S(]

b)) = fi(S(j) U b) (by Lemma A.2).

As a consequence, we obtain that b blocks S, contrary to the

stability of S. This completes the proof of Proposition 3.3. O

Appendix B. Theorem on compromise

As in Section 5, we will think of each contract c as a partially
defined real-valued function on the set of agents I. The definition
domain Dom(c) of this function coincides with P(c), the set of
participants of ¢, and the value at i € Dom(c) is defined to be
u;(c). Thus, C is a finite set of partially defined functions on I. We
assume that for each i, the set C contains an ‘autarkic’ function
defined only at the point i.

Definition. A function x : I — R is called compromise for C if the
following two properties are satisfied:

(1) no function c in C can be strictly greater than x within its
domain; in other words, for any ¢ € C, there exists i € Dom(c)
such that c(i) < x(i);

(2) for any participant i € I, there exists ¢ € C such that
i € Dom(c) and x < c (within the domain of c).

The first property is something like a coalition rationality: the
coalition Dom(c) refuses the ‘distribution’ x if ¢ gives strictly more
than x to every participant of the coalition. In particular, x is
no worse than any autarkic contract. The second condition says
that x cannot be too large: the ‘payment’ to any agent i must be
‘justified’ by its participation in some ‘good’ contract (which gives
at least x(i) to all participants i of the contract).
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Theorem B.1. A compromise function x does exist.

To show this, one could appeal to Scarf lemma; yet we prefer
to give a direct and concise proof inspired by Danilov (1999).
We will construct a correspondence F (of the form x — F(x))
whose fixed points coincide with the compromises. The existence
of fixed points will follow from Kakutani’s theorem.

Construction of the correspondence F. Take a ‘big cube’ X =
[N, N7 in the space R! (where N is large compared with the
maximal value of functions in C) and construct a convex-valued
correspondence F : X = X. To do this, one needs to define
the ‘image’ F(x) of any point x € X. This set F(x) is constructed
as a parallelepiped of the form x(Fi(x):i € I), where Fi(x) is a
closed segment in [—N, N]. Moreover, Fi(x) is assigned as either
the whole segment [—N, N] or one of its ends.

To do this, fix i and consider the set C(i) = {c € C:i € Dom(c)}.
We define

{N}, if there exists ¢ € C(i) such that
X < ¢ on the domain of c.

Fi(x)={ {—N}, if every function c in C(i) is
strictly less than x at some point j.
[N, N] otherwise.

Lemma B.2. x € F(x) if and only if x is a compromise function for C.

Proof. Let us check property 1 in the compromise definition.
Suppose this is not valid, namely, there is a function c strictly
greater than x (within Dom(c)). Then for any i € Dom(c), we have
Fi(x) = {N} and x(i) = N. But then c(i) = N, which contradicts
the definition of N.

Next we check property 2. Suppose, for a contradiction, that
there is i such that every function c in C(i) is somewhere less than
x (that is, c(j) < x(j) for some j € Dom(c)). Then F;(x) = {—N} and
x(i) = —N. In particular, an autarkic function q; is defined only at
the set {i} and, therefore, it is less that x, a;(i) < x(i) = —N. This
again contradicts the definition of N.

The existence of fixed points of F follows from Kakutani's
theorem. Indeed, the images of F are convex and nonempty.
Therefore, it suffices to show that the graphic of each correspon-
dence F; is closed. This is a consequence of the fact that if F;(x) is
{N} or {—N}, then so is for the points X' close to x as well. The
converse assertion is trivial. O

Appendix C. Plott choice functions

In this section, we assume (for simplicity) that X is a finite
set. Recall that a CF on X is a mapping f : 2¥ — 2% such that
f(A) C A for any ‘menu’ A C X. Such a CF is called a Plott function
if the following equality holds for any menus A and B:

f(AUB) = f(f(A)UB).
This immediately gives f(A U B) = f(f(A) U f(B)), as well as
f(F(A)) =f(A).

Let us fix some Plott CF f. A subset N C X is called null (or
insignificant) if f(N) = @. It can be seen that the union N* of all
null sets is a null set as well (the largest null set). Adding any
null set to a menu does not change the choice. So, by removing
N* from X, we may assume that ¢ is the only null set, that is,
assume that f is a ‘non-empty-valued’ CF.

Plott functions have two characteristic properties.

Heredity (or substitutability): if A C B, then f(B)NA C f(A). In
other words, if a € A is chosen in a larger set B, then a is chosen
in A as well.

Corollary. If A C f(B), then f(A) = A. Outcast (or independence
from rejected alternatives, IRA): if f(A) C B C A, then f(A) = f(B).
Conversely, it can be shown that holding Heredity and Outcast
properties implies that the CF is Plottian.
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It is easy to check that the union of (two or more) Plott func-
tions is again Plott function. Aizerman and Malishevski (1981)
showed that any (non-empty-valued) Plott function can be rep-
resented as the union of several linear CFs.

Let f be a CF on a finite set X. Let us say that a linear order <
on X respects f if for any (nonempty) A C X the largest (relative
to <) an element of A belongs to f(A). If such an order exists,
f is non-empty-valued. In the case of a non-empty-valued Plott
function, there are a lot of linear orders respecting f. This is a
reformulation of the Aizerman-Malishevski theorem.

The next assertion has been encountered earlier. Let 7 : X —
Y be a mapping of sets, and g a CF on Y. Define the CF f = 7*(g)
on X by the following formula:

f(A)=ANnn~Yg(n(A) forACX.

In other words, a is chosen from A if 7(a) is chosen from 7 (A). In
particular, (f(A)) = g(mr(A)).

Proposition C.1. The CF f is Plottian if g is Plottian.
Proof. Let us check that f satisfies Heredity and Outcast.

To see Heredity, let A € B, a € A and a € f(B). Then
w(a) € g(mx(B)). Since w(A) € m(B), by Heredity for g, we get
m(a) € g((A)), that is, a € f(A).

To see Outcast, it suffices to show that if f(B) C A C B, then
f(A) C f(B) (the converse inclusion follows from Heredity). Let
a € f(A); then w(a) € g(mw(A)). Applying 7 to the inclusions
f(B) € A C B, we get g(7(B)) = n(f(B)) € 7(A) < 7(B). From
Outcast for g, we get g((A)) € g((B)). Then w(a) € g(x(B)),
implying a € f(B). O

Obviously, for m

X
a weak order <y, then f
<x=nm"(<Zy).

— Y as above, if CF g is given by
= n*(g) is given by the weak order
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