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ABSTRACT

Let G =(VG, EG) and H =(VH, EH) be two undirected graphs, and VH ¢ VG.
We associate with G and H the (unbounded) polyhedron P(C, H) in Q¥¢ which
consists of all nonnegative rational-valued functions (vectors) ! on EG such that, for
each edge st in H, the distance between s and ¢ in the graph G whose edges e € EG
have the lengths I(¢e) is no less than 1. Let »(H) be the least positive integer k such
that each vertex of P(G, H) is 1/k-integral for any G with VG 2D VH [»(H) =0 if
such a k does not exist]. In other terms, v(H) is the least positive integer k such that
each problem dual to a maximum undirected multicommodity flow problem with the
“commodity graph” H has an optimal solution that is 1/k-integral. We prove that
v(H) can be only 1, 2, 4, or oo, and moreover, for each k =1,2,4, oo, we describe the
class of H’s with »(H) = k. Also results concerning extreme rays of cones related to
feasibility multicommodity flow problems are presented.

1. INTRODUCTION

Suppose that ¢ is a class of optimization problems:

(O): given SCQ" and g:S—Q, find an x €S with g(x) maximum (or
minimum),

or a class of feasibility problems:

(F): given SC Q" find some element in S.
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[Q is the set of rationals.] We define:

(i) where x € Q", (x) to be the least positive integer k such that x is
1/ k-integral, i.e., each component of the vector kx is integer-valued;

(ii) where P € X", @(P) to be the least positive integer k such that P has
an optimal (respectively, feasible) solution that is 1/k-integral; if P has no
optimal (feasible), solution we put @(P):= 0;

(iii) @(X¢") to be the least positive integer k (if it exists) such that each
problem P in ¢ with @(P)> 0 has an optimal (feasible) solution that is
1/ k-integral; if such a k does not exist, then @(.#") = co.

We call o(x) [p(P), ¢(X')] the fractionality of a vector x [a problem P,
a class XA7]; if (") =00, we say that ¥ has unbounded fractionality.

In the present work we mainly study the fractionality of classes of
problems dual to maximum undirected multicommodity flow problems.

We start with some definitions and conventions. Throughout the paper,
by a function we shall mean a function taking values in the set Q. of
nonnegative rationals. By a graph we mean a finite undirected graph without
loops and multiple edges; an edge with ends x and y may be denoted by xy.
If K is a graph, then VK denotes its vertex set and EK its edge set. A chain,
or an stchain, of a graph is a subgraph L in it such that VL = {s = v,
vy,..., 0, =t} (v, are distinct) and EL = {v,0;, :i=0,...,m —1}; we may
denote L also as vgv,...v,,.

Let G and H be two graphs with VH C VG, and ¢ be a function on EG;
we refer to ¢, H, and VH as capacities of edges of G, a (flow) scheme, and a
set of terminals, respectively. It is more convenient for our purposes to use
the “edge-chain” formulation for multicommodity flow problems, which is
equivalent to the usual “edge-vertex” one (see [5]). For s,t €V, let Z(C, st)
denote the set of st-chains in G. Let ¥ = #(G, H)be (Z(G, st): st € EH).
A multicommodity flow, or a multiflow, for G and H is a function fon £.
f is called c-admissible if

le)=Y (f(L):Le ¥, ecEL)<cle) forall e€EQG.

The value v( f)=Y(f(L): L € ¥) is called the total value of f.

The maximum multiflow problem, denoted by M(G, ¢, H), is: given G,
¢, and H as above, find a c-admissible multiflow f for G and H with v(f)
maximum; this maximum is denoted by v(G, ¢, H).

The problem M*(G,c, H) dual (in the linear-programming sense) to
M(G,c, H) is: tind a nonnegative function ! on EG minimizing cl:=
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Y(c(e)l(e): e € EQ) subject to
I(EL)>1  foreach L& %(G,H). (1)

[For h: X > Q and X’'C X, h(X') denotes Y(h(e): e € X’).] Denote by
M(G, H) the set of problems M(G,c, H) with fixed G and H and an
arbitrary nonnegative integer-valued function ¢: EG - Z_; let M(H):=
WM(G, H): G is a graph with VG D VH). Similarly define the sets of dual
problems M*(G, H) and M*(H). We denote p(M*(H)) also as »(H) and
call it the fractionality of H (with respect to the dual maximum multiflow
problems).

Throughout the paper we shall assume that EH+# @ and H has no
isolated vertex, i.e., each vertex of H has at least one incident edge [clearly,

removing an isolated vertex (if any) from H does not change any problem
M(G,c, H) or its dual].

DerFiniTiON. We say that a scheme H has property (P) if ANB=
BN C=CnN A holds for any three distinct pairwise intersecting anticliques
A, B, and C in H.

[An anticlique of a graph is a maximal (with respect to inclusion)
independent set of its vertices.] For example, if H consists of two disjoint
complete graphs H, and H,, then the set of anticliques of H is {{s,t}:s€&
VH,, t € VH,}, and H has property (P).

The following two theorems are central in the paper.

Tueorem 1. If a scheme H has property (P), then v(H) is 1, 2, or 4.

TueoreM 2.  If a scheme H does not have property (P), then v(H) = 0.

Theorems 1 and 2 will be proved in Sections 3 and 4. They can be
reformulated in polyhedral terms. A polyhedron P (possibly unbounded) in
Q" is said to be 1/k-integral, where k is a positive integer, if each of its
facets contains a 1/k-integral point. For G and H as above, let P(G, H)
denote the (unbounded) polyhedron in Q¢ formed by the nonnegative
functions (vectors) ! on EG satisfying (1); we refer to P(G, H) as a dual
flow polyhedron. Obviously, for any c & QZC, there is a vertex [ of P(G, H)
such that ¢l <cx for all x € P(C, H), and, on the other hand, for an
arbitrary vertex [ of P(G, H), there is c € ZE“ such that ¢l <cx for all
x € P(G, H) ~ {I}. Thus, Theorems 1 and 2 are equivalent to the following
theorems.



296 A. V. KARZANOV

THEOREM 1’. If a scheme H has property (P), then, for any graph G
with VG 2 VH, the polyhedron P(G, H) is {-integral.

TueoOREM 2. If a scheme H does not have property (P), then, for any
positive integer k, there exists a graph G with VG 2 VH such that the
polyhedron P(G, H) is not 1/k-integral.

The values v(H) are already known for a number of schemes H. For
example, »(H) =1 if |[EH| = 1, by the max-flow min-cut theorem of Ford and
Fulkerson [3], or if |EH|= 2, by the max-two-commodity-flow min-cut theo-
rem of Hu [7]. Section 5 contains a refinement of Theorem 1 which describes
completely the classes of schemes H with »(H) =1 and v(H) = 2 (Theorem
4). Thus, Theorems 1, 2, and 4 give the values v( H) for all schemes H.

Theorem 2 enables us to state unbounded fractionality of the class M(H)
of “primal” maximum multiflow problems for each H not having property
(P). To this end we use the following statement, similar to one occurred in [6]
for polyhedra with 0, 1 vertices (and to one known for the totally dual
integral system; see [4]).

StareMeNT 1.1.  Let P be a polyhedron {x €Q":x >0, Ax > b}, where
A is a nonnegative m X n matrix and b is an integral m-component col-
umn vector, and let k be a positive integer. Let the program D(c):=
max{yb:y >0, yA<c} have a 1/k-integral optimal solution for each
n-component integral row vector ¢ > 0 whenever D(c) has an optimal solu-
tion. Then P is 1 /k-integral.

Proof. Let x be a vertex in P, and x; be a component of the vector x. It
follows from nonnegativity of A that there exists ¢ =(c},...c,) € Z" so that
any ¢’ € Q" with ||¢’~ ¢, <1 satisfies

c’x=max{yb:y>0, yA<c’'}

[lla|,, is the norm max{|a,:i=1,...,n} of a vector a =(a,,...,a,)]. Put
¢/=c;+land ¢/=¢; jE {1,....,n} = {i}. Let y and y’ be 1/k-integral
optimal solutions of D(c¢) and D(c’), respectively. Then

kx,=kc'x — kex = ky'b — kyb,

whence the value kx; is integral. [ ]
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Applying Statement 1.1 to a matrix A whose rows are the characteristic
vectors of the sets EL for L € #(G, H) and to the all-unit vector b, we
obtain

StaTeMENT 1.2. @(M(G, H)) = ¢(M*(G, H)) for any G and H with
VG D> VH.

CoroLrLary 1.3 (to Statement 1.2 and Theorem 2). If a scheme H does
not have the property (P), then p(M(H)) = cc.

It should be noted that Theorem 1 gives no possibility of determining
whether or not @(M(H)) is finite for H having the property (P) [in
particular, the converse to Statement 1.1 is, in general, false]. Studying
fractionality of M(H) for such H’s has turned out to be more difficult than
for M*(H), and I shall return to this subject in a forthcoming paper.

In Section 6 another popular kind of muitiflow problems will be consid-
ered. This is the feasibility multiflow problem, denoted by F(G,c, H,d):
given G, ¢, H as above and a demand function d on EH, find a c-admissible
multiflow f for G and H satisfying

o(f,st)=2 (f(L):Le #(G,st))=d(st) foreach steEH. (2)

By Farkas’s lemma, we have (see {14])

StateMENT 14. The problem F(G,c, H,d) is solvable (i.e., a required
multiflow f exists) if and only if

cl—dg=0
holds for all functions l on EG and q on EH satisfying
I(EL)>q(st)  forall st EH and L %(G,st). (3)
Let C(G, H) be the cone of vectors (I, q) € Q& x QEH satisfying (3); we
refer to C(G, H) as a dual flow cone (slightly different cones were consid-
ered in [15, 16]). According to Statement 1.4 we may define the problem
F*(G,c,H,d) dual to F(G,c, H,d) as: find (I,q)<s C(G, H) such that
(2, @)l =1 and
cl—dg <0. (4)

Thus, the alternative is: F(G, ¢, H, d) is solvable if and only if F*(G, ¢, H,d)
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is not. Let F*(G, H) [F*(H)] be the set of problems F*(G,c, H,d) with
fixed G and H [H] and arbitrary ¢ and d [G, ¢, and d].

THEOREM 3.

(i) If a scheme H contains no matching with three edges, then o(F*(H))
is 1, 2, or 12.

(ii) If a scheme H contains a matching with three edges, then o( F*(H))
= 00.

[A matching in a graph is a set of its edges such that no two meet the
same vertex.] This theorem will be proved in Section 6; its proof uses
Theorem 1 and known results for special cases of H’s. In fact we give there
the exact values @(F*(H)) for all schemes H.

One more type of multicommodity flow problems is known. This is the
minimum-cost maximum-multiflow problem: given G, ¢, H as above and an
edge-cost function @ on EG, find a c-admissible multiflow F whose “total
cost” Y(a(e){(e):e € E) is minimum, subject to the value o(f) being
maximum.

Let CS(H) be the set of such problems with fixed H and with arbitrary
graph G and integer-valued ¢ and a, and let CS*(H) be the set of problems
dual (in the linear-programming sense) to the problems in CS(H ). According
to a multiterminal version of the minimum-cost maximum-flow theorem of
Ford and Fulkerson [5], ¢(CS(H))=@(CS*(H))=1 if H is a complete
bipirtite graph, i.e., EH= {st:s€S, t€VH ~ S} for some S C VH. It
was proved in [9] that CS(H)= CS*(H)=2 if H is a complete graph with
r > 3 vertices; this result is easily extended to an arbitrary complete r-partite
graph H, ie., EH= {st:s€S§, t €5, i <j} for some partition {S,,..., S}
of VH. On the other hand, it was shown in [12] that ¢(CS(H)) = ¢(CS*(H))
= oo for all other schemes H.

2. METRICS

In this section we establish elementary properties of solutions of the
abovementioned problems as well as some facts about vertices of polyhedra
P(G, H) and extreme rays of cones C(G, H).

Let V be a finite set with |V | > 2. Denote by [V] the set of all unordered
pairs of distinct elements of V; thus, (V,[V]) is the complete graph with the
vertex set V. By a metric on V we mean a function on [V] satisfying the
triangle inequality m(xy)+ m(yz) > m(xz) for any x, y, z € V; we assume by
definition that m(vo)=0for v € V.
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Let K be a connected graph with VK = V. Two metrics associated with K
are distinguished:

(a) the distance function m; induced by a function ! (of lengths of
edges) on EK, ie., m(xy)=min{{(EL): L € #(K,xy)} forx,y € V;

(b) the metric myg induced by K, defined to be m; for the all-unit
function ! on EK.

Let U be a subset of [V] and [ be a function on EK. For x,y €V, an
xy~chain L in K is called a geodesic, or an xy-geodesic, of I if I( EL) = m(xy),
i.e., L is a shortest chain in the graph K with the lengths [ of edges. An
xy-geodesic is U-geodesic if xy € U. The set of U-geodesics of [ is denoted by
(L, U). If 1 is the all-unit function, we apply the term “a U-geodesic of K”
and the symbol T['(K,U).

We say that a function I’ on EK U-decomposes 1 if there is a rational
A > 0 such that the function [ :=1— Al’ is nonnegative and

m(st)=m,(st)+m,.(st) forall steU.

l is called U-primitive if (i) m,(st) > 0 for some st € U unless U=@, and (ii)
each ' which U-decomposes [ is proportional to 1, i.e.,, I’= Al for some
A>0. K is called U-primitive if the all-unit function on EK is primitive.
Obviously, ! is @-primitive if and only if |Z(l)| > |EK|— 1, where Z(1):=
{e€ E:l(e)=0)}.

One popular kind of U-primitive functions for U#@ give functions
induced by certain cuts of K. More precisely, for X C VK, let 86X = 8§, X be
the set of edges of K with just one end in X; X # @ is called a simple cut of
K if there is no Y C VK such that @+ 8Y € 8X. Denote by pX = p X the
characteristic function (on EK) of 8X. It is easy to check that, for X € V and
U+#@, pX is U-primitive if and only if | X N{s,t}|=1 for some st €U and
8X is a simple cut of K.

The following describes elementary properties of U-primitive functions
(similar statements for metrics occur, for example, in [16, 8)).

StaTeMenT 2.1.  Let I be a function on EK and @+ U C [V].

(i) Iflis U-primitive, then l(e) = m(e) for all e € EK, and each e € EK
with l(e) > 0 belongs to some U-geodesic of I. In particular, any U-primitive
function on [V] is a metric.

(ii) A function I’ on EK U-decomposes 1 if and only if Z(1) c Z(1") and
IFQ,Uyc T, U). In particular, any U-primitive function [ is determined
uniquely up to proportionality by the sets Z(l) and T(l,U), and K is
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U-primitive if and only if each function I’ on EK with T(K,U)CT'(I',U) is
constant.

(iii) There exists a finite sequence 1',..., 1" of functions on EG such that
each l' is U-primitive or &-primitive, | =1'+ --- + 1", and m/(st) = mp(st)
+ - +my(st) forall st €U.

(iv) If | is U-primitive, then the metric m, is U-primitive (m, is related
to [V]).

In [15] and [2] a number of classes of primitive graphs were found. One of
them is described as follows. For K and U as above, two edges ¢ and ¢’ in K
are said to be vis-g-vis if there exists a circuit C of K such that (i) r := |VC] is
even, (ii) ¢ and ¢’ are opposite edges in C (i.e., a minimal chain in C
containing e and ¢’ has 1+ r/2 edges), and (iii) each chain in C with r/2
edges is a part of some geodesic in I'(K,U). [A circuit of a graph is a
connected subgraph C in it each vertex of which has valency 2 in C.]

StareMent 2.2 [15, 2]. K is U-primitive if, for any two edges e and e’
in K, there is a sequence e = ¢,, e,,...,e, = ¢’ of edges of K such that each
two edges e, and e, | are vis-a-vis.

We list several examples of graphs K whose primitivity follows from (2.2)
(a verification is left to the reader). These graphs will be used in further
sections.

ExampLE 1. Let K be the graph drawn in Figure 1. Then K is
U-primitive for U= {s,8,, $,8;, $551, 5485, $58¢, 5654 }- This example was
pointed out to the author by V. P. Grishuhin.

ExampLE 2. Where T, and T, are disjoint sets with [1;[ > 3, i =1,2, let
K be the graph with vertex set T\,UT,U{x :s€T,, teT,}U{v}, whose
edges are sx_,, ix,, and vx, for all s €T, and ¢t € T,. Then K is U-primitive
for U=[T,]V[T,].

Fic. 1.
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X3k-1
Sl =X3J X3k=55
S3=Xa X2k =84
32 =X11 Xlkzse

Fic. 2.

ExampLE 3. Where k > 2, let K be the graph shown in Figure 2. Then
K is U-primitive for U= {58, 5585, 538¢ }-

ExampLE 4. Where p,q,7 > 2, let K be the graph with vertex set
{x;u:i=L...,p, j=1...,q, k=1,...,7} in which vertices x,; and x,
are joined by an edge if and only if either |i —i'|+|j — j'|+ |k —k’|=1 or
i'—i=j—j=k—k=1 Put s;:=x,,, s{=1x,, $=1,, =1
$3:=1%x,,, s5=x ... Then K is U-primitive for U= {s,s{, 5553, 5355 }.

plr>
rql’

An important feature of the U-primitive functions is that they generate
extreme rays of dual flow cones. More precisely, consider a cone C = C(G, H).
Where G is connected, [ is a function on EG and U C EH, let m = m[l, U]
be the function on EH defined by m(e)=m,e) for e€U and 0 for
¢ € EH - U. Clearly the cone C is polyhedral and pointed (i.e., 2 € C and
a + 0imply — a & C). a € C is an extremal vector of C if a=a' + a2, where
a' € C, implies that a! = Aa for some A > 0.

STAaTEMENT 2.3. Let G be connected. The following are equivalent:

(1) (1, q) is an extremal vector of C(G, H),
(ii) 1 is a U-primitive function on EG and q = m[l, U] for some U C EH.

Proof. (ii) — (i) is trivial. For the converse, let us show that an arbitrary
vector (I, g) in C is the sum of some vectors (U, ¢’) as in (ii). We proceed by
induction on |W(q)|, where W{q):= {st € EH: q(st)>0}. If W(q)=2,
then (1, q) is the sum of the vectors (,,0), ¢ € EG, and 1, the unit basis
vector of ¢ in QF®, is & -primitive. Thus, one may assume that W(q)+93.
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Let b be the maximum of A > 0 such that m,,(st) < g(st) for all st € W(q).
Put I''=0bl, I”:=1-0, ¢'=m[l', W(q)] and q"=¢q — q’. Clearly, !’ and
q” are nonnegative, (I’, q"), (1", q"") € C, and W(q) strongly includes W(q").
By induction, (I, q”") is the sum of some vectors as in (ii). By Statement
2.1(iii), the same is true for (I’, qg"). n

Remarx 2.4. This statement is easily generalized to an arbitrary (not
necessarily connected) graph G. Let G,,...,G, be the components of G,
U= EHN[VG,], and U= EH — (U, U «-- UU,). One can see that C(G, H)
is the direct product of the cones C(G,, H,), i=1,...,r, and C,,:=Q{*"),
st € Uy, so a vector (1, q) in C(G, H) is extremal if and only if it is the direct
product of an extremal vector of one of these cones and the zero vectors of
the others. By analogy with the case of a connected graph, the function [ for
such an (1, q) is called U-primitive (for corresponding U').

Standard linear-programming arguments show that, on the one hand, if a
problem F(G, ¢, H, d) has no solution, then there is an extremal vector (1, q)
in C(G, H) such that ¢l < dq, and on the other hand, each extremal vector
(1.q) # 0 with [|(1, g)||, =1 is essential in the sense that, for any ¢ > 0, there
exists an unsolvable problem F(G,c, H,d) such that cl <dq but ¢!’ > dq’
for any (I',q')€ C(G, H) with |(1,q)l,=1 and ((1,q)~ (V. q)ll,>e.
Thus, by Statement 2.3 and Remark 2.4, ¢(F*(G, H)) is the least positive
integer k such that k(§) is integral for all £ = (I, m[l,U]) with |£]| =1,
where [ is a U-primitive function on EG for some U C EH.

Now consider a problem M(G,¢, H) and its dual problem. Let f and
[ be feasible solutions of M(G,c, H) and of M*(G,c, H), respectively
[i.e., f is c-admissible and ! satisfies (1)]. Note that (1) can be rewritten as

my(st)>1  foreach steEH (5)

[m, is defined as above assuming that m(st):=oc if L(G,st)=0J,ie,if s
and t are in different components of (G]. By the linear-programming duality
theorem applied to these problems, f and [ are optimal if and only if the
following (complementary slackness) relations hold:

e € EG, I(e) > 0 imply that f saturates e, i.e., {(e) = c(e); (6)

L e Z(G,st), st € EH, f(L)> 0 imply that L is a geodesic of [ (7)
having length 1, ie., I(EL)=m(st)=1.

We distinguish one kind of capacity functions and multiflows. Let I' C
L(G, H). For e € EG, define c(e) to be the number of chains in T
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containing e, and for L € #(G, H), define f{L)to be 1 if LET and 0
otherwise. These f and ¢ are called the capacity function (for G) and the
multiflow (for G and H) generated by T, respectively. Clearly f saturates
each edge in G. Note also that the relation (7) can be rewritten for f and a
function !/ on EG satisfying (5) as

I(EL)=1 forall LeT. (8)

One possible way to prove that the fractionality of a certain scheme H is
more than k is as follows. Suppose we succeed in constructing a graph G
with VG 2 VH, a subset U C EH, and a function 1° on EG that is not
1/k’-integral for any k’'=1,..., k so that

mp(st)>1 forall s €EH and mp(st)=1 forall st€U, (9)

and the system (8) for I':=TI(I°,U) has a unique solution. Then [° is the
unique solution of M*(G,c, H), where ¢ is the capacity function for G
generated by T, whence v(H) > k. Indeed, let f be the multiflow for G and
H generated by T. By (9), 1° is a feasible solution of M*(G, ¢, H). Since (6)
and (8) hold for f and 1%, f is optimal. Now if ! is an optimal solution of
M*(G,c, H), then | must satisfy (8), and the result follows.

Such an approach will be applied in Section 5 to prove that »(H) > 2 for
some schemes H. Note also that uniqueness of the solution of (8) is ensured
whenever we take for G a U-primitive graph such that m(st) is a constant b
for st €U, and for [° the function on EG taking identically the value 1/b.

Now we explain a relation between vertices of a polyhedron P(G, H) and
metrics. We shall identify an edge in H and an edge in G if they have the
same ends.

STaTEMENT 2.5. Let | be a vertex of a polyhedron P(G, H). Then
l(e)=mye) <] foreach e € EG.

Proof. Define I’ by l'(¢)=min{1,m,(e)} for e € EG, and let I”:=
21l —l'. Clearly I’< 1< 1" and I’ satisfies (5); hence I’ and " are contained in
P(G, H). Now since ! is a vertex in P(G, H), we have [ =1'=1". ]

CoRoOLLARY 2.6 (to Statement 2.5). If G is complete and 1 is a vertex of
P(G, H), then l is a metric and I(st) =1 for each st € EH.

STATEMENT 2.7. Let | be a vertex of a polyhedron P(G, H), and let G’
be the complete graph with VG’'=VG. Then there exists a vertex I’ in
P(G’, H) such that I coincides with | on EG.
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Proof. Let c¢ be chosen so that ! is the unique optimal solution of
M*(G,c, H). Let ¢’ be the extension of ¢ by zero on EG'— EG, and [ be
the extension of [ by unity on EG’'— EG. Then [ € P(G’, H) and ¢'[=cl.
Take a vertex I’ of P(G’, H) that is an optimal solution of M*(G’,c’, H), and
let I” be the restriction of !’ to EG. Clearly [” € P(G, H). We have
cl” < e'l'< ¢’'T=cl, and now uniqueness of [ implies I =1"=1'| ... [ |

It follows from Corollary 2.6 and Statement 2.7 that in order to determine
»(H) for an arbitrary scheme H it suffices to consider only the set of
complete graphs G and the functions I on EG that are metrics with I(st) =1
for all st € EH. This fact will be used, in particular, in the proof of Theo-
rem 1.

3. PROOF OF THEOREM 1

Let G be a graph, ¢ be a capacity function on EG, and H, VH C VG, be
a scheme having property (P). One must prove that M*(G,c, H) has a
i-integral optimal solution. We shall denote VG by V.

Let f and I be optimal solutions of M(G, ¢, H) and its dual, respectively.
As it was explained in the previous section, we may assume that the graph G
is complete and ! is a metric on V satisfying I(st)=1 for all st € EH. Our
end is to find a }-integral metric m on V satisfying

m(st)=1  forall st€EH (10)
and EH-decomposing [, i.e.,

x,yeV, lxy)=0 imply m(xy)=0; (11)

(1, EH) C [(m, EH ). (12)

Then holding (6) and (7) for f and [ implies holding them for f and m; thus,
m will be also optimal, and Theorem 1 will be proved. The metric m is
derived from I, and it belongs to a special class of metrics on V which we
now introduce.

For an arbitrary scheme H’, let &/ = &/( H’) denote the set of anticliques
in H’, and 2 = 9(H’) denote the set of nonempty subsets « C VH’ such that
a= AN B for some distinct anticliques A and B in H’. Note that if H’ has
property (P), the members of 2 are disjoint. We say that s€ VH’ is a
1-terminal if s is in exactly one anticlique in H’, and a 2-terminal otherwise.
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For two not necessarily distinct vertices s and ¢ in H' such that st ¢ EH’,
we write s ~ t if s and t are 2terminals and, for each A € &/, either s,t € A
or s,t ¢ A; and we write s+t otherwise (in particular, s~s if s is a
1-terminal). Obviously, the relation ~ is transitive, and if s~ ¢, then, for
p € VH', sp € EH’ implies tp € EH' (and vice versa).

For H and V as above, let #=(X,;Y,;Z,) be a family of 2|«7|+ |2
subsets X, (A€ ), Y, (a€ D), and Z, (A€ ) of V (each of these
subsets can be empty). We say that # is a framework (for V and H) if the
sets in # are disjoint and the following are true:

each l-terminal s € A € & is contained in X, and each
2-terminal s € a € 2 is contained either in Y, or in X, (13)
for some A € & such that a C A;

unless X, is empty, it contains some s,t € A (possibly
s=t) such that s~¢; unless ¥, is empty, it contains (14)
some s € a

(thus, each Z, contains no terminal). It should be noted that (14) is not
essential in our proof, but it will be useful for considerations in Section 5. Let
M be the set of elements of V contained in none of the X,’s, Y,’s, and Z,’s,
and define ¥ (Z£) to be the family of all sets in # and the set M. We
associate with # the graph ¢ = (%) with vertex set ¥(#) whose edges
are

X,Z, forall A e &/,
YZ, forall A€ & and a € 2 such that a C A,
M forall Ae /.

Define the metric h=h[2] on (&) to be {my. In particular, one can
see that h(X,Xp)=h(X,Y,)=h(Y,Y,)=1if A,BE X, A+ B, o,8€ 9,
a¢ A, and neither a nor B is included in any common anticlique in H.
Finally, we define the metric m = m[ %] on V induced by # as follows:

(i) m(xy):=0if x and y are in the same set in F(R);
(i) m(xy)=h(SS"Hif x €S, y €S, where S and S’ are distinct members
of L(R).

STAaTEMENT 3.1. m=m[#] satisfies (10) for any framework R for V
and H.
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This follows from (13) and the constructions of ¥ and m{[#]. Thus, the
frameworks generate a class of !-integral metrics that are feasible solutions of
M*(G,c, H).

Construction of the metric m. For x€V, let

N(x)={z€V:l(xz) =0}.
Define # =(X4;Y,; Z,) as
X,={xeV:I(sx)+I(xt)<iforsomes,t€A, s=t} for Ae .,

Y, =UJ(N(s):s€a)—J(X,: A€ o, aC A) for a€2,
(15)

Z,={xeV:i(sx)+1(xt)=; forsome s, t €A, s+t}

-X,-U(Y,:a€2,ac A) for Ac.«.
Below we shall prove the following.

Lemma 3.2. The collection # defined by (15) is a framework for V
and H.

Let M and (%) be defined as above for given #. The required metric
m is just m[Z].

As an illustration, consider a scheme H consisting of two complete graphs
with vertex sets T, and T, where |T| > 3, i =1,2. Given T, and T,, take the
graph K from Example 2 in Section 2. Let G be the complete graph with
VG =VK, ¢ be the capacity function for G generated by I'(K, EH), and
l:=1myg. Then [ is an optimal solution of M*(G,c, H) (by arguments in
Section 2). One can check that the sets in # defined by (15) for given [ are
X,=@, Z,={x,} [A={s,t} e #(H)], and Y, = {s} (s € VH), whence
M = {v} and m[Z] coincides with I. Note also that [ is the unique optimal
solution of M*(G,c, H) because of the EH-primitivity of K, and so the
fractionality of this problem is just 4.

Now we begin to prove correctness and the optimality of m. Put
P = P(R).

Proof of Lemma 3.2. First of all we observe from (15) that if x €S for
some S €., then N(x)CS. Let s VH. If s is a 1-terminal contained in an
anticlique A, then s € X, (since s + s and I(sx)+ l(xs) =0 < for x == 5). If
s is a 2-terminal contained in a € 2, then, by (15), either s € X, for some
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A € o/ such that a C A, or s € Y,. Thus, (13) holds. (14) is trivial. It remains
to prove that the sets in & are disjoint. This falls into a number of claims.

CramM 3.3.

(i) s~ tif and only if s and t are in the same set in 2.
(ii) s =t if and only if there is a unique anticlique containing both s
and t.

CrLaM 3.4.

) MNS=@3 forall S€e #(X)— {M).
) X,NY,=X,NZ,=Z,NY, = for A€ & and for a € 2 such
that a C A.

Claim 3.3 obviously follows from property (P), and Claim 3.4 from (15).

Cramm 3.5. Ifs,teAe s, s+~t, p€VH, l(sp)<], and l(tp) <1,
then p € A.

Indeed, sp & EH, since I(sp) <1, and similarly ¢p ¢ EH. Hence s, ¢, and
p are in some anticlique B, and we have B = A because s + t.

It follows from Claim 3.5 that, firstly, each terminal in X,UZ, isin A
and, secondly, X, NY,=Z,NY, =@ if aZ A.

Cramm 3.6. Let A and B be distinct anticliques, and let s,t € A, s+ t,
r,qE€ B, p~+q, and x € V. Then:

() if lsx)+ (xt) <3, then I(px)+ Kxq) > };

(i) if Usx)+1U(xt)=1, then l(px)+1(xq) > %; moreover, if equality
holds, then there are v € {s,t} and w € {p,q} such that v,w € AN B and
I(vx)=l(wx)=0.

Indeed, s~ t, p+q, and A+ B imply s'p’ €U for some s"€ {s,t} and
p’ € {p,q)} (otherwise s, t, p, and g would be all in some anticlique C and
we would have A =C= B, by Claim 3.3). Letting, for definiteness, s'=s
and p’=p, we have I(sx)+Il(tx)+ I(px)+ l(gx) = l(sp) =1, whence the
required inequalities in (i) and (ii) follow. Next, if I(sx)+ I(tx) =1(px)+
I(gx) =14, then Il(tx)+1(gx)=1(tq)=0 [since I(sx)+I(px)> L(sp)=1].
Now I(tq) =0 and Il(sq)=1I(st) <1 imply tq,sq & U, whence g € A, by
Claim 3.3(ii). Similarly, ¢ € B.

It follows immediately from Claim 3.6 that X, NXy;=X,NZ;=9 for
distinct anticliques A and B. Thus, we obtain X,NS=@ for all S€.%¥ —
{X,}. Next, consider a set Z,. It was shown that Z, N X;=Z,NY = for
any B€ o/ and a€ 2. This and (13) imply that Z, contains no terminal.
Suppose that Z, N Zy;# 3 for some B# A, and let x € Z, N Z,. Then, by
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Claim 3.6(ii), N(x) contains some terminal s, and hence s € Z,, a contradic-
tion. Thus, Z,NS= forall S€ ¥~ {Z,}.

Cramm 3.7. Y, NY,=0 for any distinct a, B € D.

Indeed, assuming that Y, and Y, are nonempty, consider arbitrary
terminals s and ¢ in Y,Na and Y;N B, respectively. If st € EH then
I(st)=1, and if st then I(st) >} (otherwise we would have s,t € X, for
the anticlique A containing s and ¢t ). In both cases we have N(s)N N(t) =3,
and the result follows.

Thus, & consists of pairwise disjoint sets. Lemma 3.2 is proven. ]

We continue the proof of the theorem. We have remarked above that
m = m[R] satisfies (10) for any framework %. Next, (11) obviously follows
from the fact that, for any S€.%, x €S implies N(x)C S. It remains to
prove (12). We start with the following auxiliary statement.

STATEMENT 3.8. Let s, t, p, and q be (not necessarily distinct) termi-
nals, so that s =t and pq € EH. Then there are s'€ {s,t} and p' € {p,q )
for which s'p' € EH.

Proof. Suppose that it is not so for some s, t, p, and ¢ as in the
hypotheses of Statement 3.8. Then s, t, and p (or g) are in some anticlique
A (or B). Since s ~ t, we have A = B (by Claim 3.3), contrary to pg €U. &

Consider an arbitrary EH-geodesic L = x,x, ... x, of I. One must prove
that L is also a geodesic of m. Let p:=x, and g:=x;. By (10), m(pq) =
I(pg) = I(EL) = 1. Claims 3.9-3.11 below clarify how L can pass across each
of the sets in #(#). In particular, we shall show that unless VL NS =0
for some S € #(#), the vertices x; in L contained in § go in succes-
sion (without gaps). For 0<i<j<k, let VL(x;x;) denote the set
{xixiipn )

Cramv 3.9. If V:=VL N X, is nonempty for some A € &/, then either
V'=VL(p, x,) for some i <k or V'=VL(x;,q) for some j> 0.

Proof. Choose a vertex x in V', and let s and t be elements of A such
that s+t and I(sx)+I(xt) <}. By Statement 3.8, we may assume, for
definiteness, that sp € EH. Then I(sx)+ I(xp) > l(sp) =1 and

Wpx)+1(xq)+1(sx)+U(xt) <1+ Li=3,
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whence I(tq) <I(tx)+I(xq) <} and I(sq) <I(st)+(tq) <1 Thus, tq, sq
¢ EH, and hence g € A. Two cases are possible.

(1) t » q. For any x’ € VL(x, q), we have
W(tx') + I(x'q) <l(tx) + (xx') + U(x'q) = (tx) + I(xq) <3;

therefore x’ € X ,. Thus, VL(x,q)C X ,.

(2) t ~q. Then tp € EH (since gp € EH) and s~ g (otherwise s ~q
and ¢ ~ g would imply s ~ t). Following the same reasoning for t as for s
above, we also obtain VL(x,q) C X ,.

Now choosing as x the vertex x; in V' with the least number j and taking
into account that p & X, (since q € A implies p € A) we obtain the claim. B

Cramv 3.10.  If V:=VLNY, is nonempty for some a € P, then one of
the following is valid:

(i) V'=VL(p, x,) C N(p) for some i <k;

(i) V'=VL(x,,q) S N(q) for some j > 0;

(iii) V' =VL(x;x;) C N(s) for some 0 <i< j <k and some terminal s in
Y, such that s ~ p, s~ q, and l(ps)=1l(gs) = 3.

Proof. Let x be an arbitrary vertex in V'. Two cases are possible.

(1) l(px) =0 [the case I(gx) = 0 is symmetric]. Then N(x)C Y, implies
VL(p,x)CY,.

(2) 0 <l(px) <1 [and hence 0 < I(gx) <1]. Choose a terminal s in Y,
such that I(sx)=0. Then I(ps)=1(px) <1 and Il(gs) = l(gx) < 1, whence
ps, gs &€ EH. Therefore p, s € A and g, s € B for some anticliques A and B.
Now pg € EH implies A+ B, p ¢ B, and g € A, whence s+ p and s+ q.
Since x & X,, we have l(px)=1I(px)+ I(xs) > }; similarly /(gx)> }. Now
I(px)+ l(xq) =1 implies I(px)=1(gx)=1}.

The rest of the proof is trivial. [ ]

Note that if case (iii) in Claim 3.10 occurs and s, p € A € &, then each
vertex in VL(p, x,_,) which is contained in none of X, and Y; (8 C A) must
be in Z,, and similarly for VL(x, ,q). Hence VLN M =0.

Cramm 3.11. Let V':=VLNZ, be nonempty for some A€ /. Then
V'=VL(x,, x;) for some 0 <i< j<k, and exactly one of the following is
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valid:

(i) VL(p,x,_;)C Xy
(i) VL(p,x,_)CY, forsome a € 2, aC A;
(lll) VL(xj+1’ q)gXA;
(iv) VL(x;,,,q)C Y, forsome A€, aC A.

Proof. Let x be an arbitrary vertex in V'. Then there are s,¢ € A such
that s+¢ and I(sx)+ l(xt)=4. By Statement 3.8, one may assume, for
definiteness, that sp € EH. Using similar arguments to those in the proof of
Claim 3.9, we conclude that ¢ € A and that there is v € {5,¢} such that
v+ q and l(vx")+1(x’'q) <} for any x’ € VL(x, g). This implies that each
vertex in VL(x, q) is in one of the sets X,, Z,, or Y,, a € A. Now applying
Claims 3.10 and 3.11, we obtain the conclusion [note that at most one of
(i)—(iv) can hold because |{p,g} N A| < 1]. [ |

One easy consequence of Claims 3.9-3.11 is that if VL N M is nonempty,
then it is VL(x,,x;) for some 0<i<j<k. Claims 3.9-3.11 enable to
describe all possible cases of passing L across sets in &#(#). More precisely,
we assert the following (a verification is straightforward and left to the
reader): there are indices 0 = i(0) <i(1) < i(2) <i(3) < i(4) <i(53) =k +1 and
a mapping j = S, € F(X), j=0,...,4, such that:

(@) for j=0,....,4, V;:==VL(x,, x;;.1,-1) C ; [if i">i" we assume by
definition VL(x,, x;.) = ; so each of V|, V,, and V; can be empty];

(ii) S, is either X, for some A € &7 or Y, for some a € Z;

(iii) S, is either X for some B € &/ or Y, for some B € Z;

(iv) S, (S3)is Z, (Zg), and if Sy =Y, (S, =7Y,) then aC A (B C B);

(v) S, is either M or Y, for some v € 9, and if S, =Y, then v=ANB.
(See Figure 3.) It follows from (ii)—(v) and the constructions of the graph ¥

and the metric h that h(SijH):i for j=0,...,3. Let ] be the set of pairs
(j,j)suchthat0< j<j'<4and i(j— D) <i(j)=i(j+D=--- =i(j’— 1)
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<i(j") [letting i( —1)>= —1]. Using (i) and the fact that m and h are
metrics, we have

m(EL) = m(x,(])x.(,H) 1j= O=-'-’3) = Z(m(xi(j)xi(j’)):(j’ iNe ])

X(
=X (h(8;8;): (i, iV €T) < L (h(S,8;11): §=0,....3)

4x ;=1

.

Now since m(EL) > m(pq) =1, we obtain m(EL) =1, as required.

This completes the proof of Theorem 1.

In conclusion we make several observations from the proof of Theorem 1;
they will be used in Section 5. As before, we assume that H has property (P)
and G is complete. It was established in the proof of Theorem 1 that the
optimum in M*(G, ¢, H) is achieved on a metric m induced by a framework;
such a framework is called optimal for GG, ¢, and H. Thus, we obtain

StaTEMENT 3.12.  Each vertex of the polyhedron P(G, H) is the metric
m([R) induced by a framework # for VG and H.

The following is an obvious corollary of the construction of the metric
m[ R}

StateMmenT 3.13. If #=(X,;Y;Z,) is a framework for VG and H in
which Z, is empty for each A € &7, then the metric m| ] is half-integral.

For A< &, let 9(A) denote the set of a€ 2 such that aC A. For
a € 2, let d_ denote the number of A € .27 such that « C A. One can check
that the metric m[ 2] is expressed as

o

m[R]==(L (pX,+poWy: Ac )~ Y ((d,— 2)pY,: a€ D)), (16)

where W, := X, UZ, UKY,: a€ 2(A)) (pX’ is the characteristic function of
the “cut” 8X’, X’ € V). This yields a special minimax relation in which the
maximum total value v(G, ¢, H) is strictly bounded by certain linear combi-
nations of capacities of cuts of G.

STATEMENT 3.14. The following is true:
1
o(G,c,H) = Zmin{ Y (c(8X, )+ c(8W,): A€ Z(H))

— Y ((d,—2)c(8Y,): a€ 9(H))},
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where the minimum is taken over all frameworks # =(X,;Y,; Z,) for VG
and H.

STATEMENT 3.15. Let # =(X4;Y,; Z,) be an optimal framework for G,
¢, and H, and suppose that, for some A € of, no more than one set among
X, and Y, a€ D(A), is nonempty. Then the framework R'(X;Y/!;Z})
obtained from A by setting 2, =@ (and keeping the other 2| |+ |2| -1
sets) is also optimal.

Proof. Put l:=m[Z#] and l':=m[%’]. It follows from (16) that if each
of X, and Y,, a € D(A), is empty, then I’< !, whence cl’<cl and #’ is
optimal. Now assume that there is a unique nonempty set among X, and Y,
a€ D(A). Let #”"=(X;Y; Z}) be the framework obtained from % by
setting X7 :=X,UZ, and Z}:=@ if X, #J and by setting Y, ==Y, UZ,
and Z7 =@ if Y, #@. Put I”:=m[#"”]. One can check that I(e)=
1[’(e)+ I”"(e)] holds for any e € EG. This implies the optimality of both %’
and #". |

4. PROOF OF THEOREM 2

We start with two statements. K’ is an induced subgraph of a graph K if
VK'=X and EK'={xy€ EK:x,y € X} for some X C VK; K’ may be
denoted as K{X). If K” is an arbitrary subgraph of K, we write K" C K.

STAaTEMENT 4.1.  If a scheme H' is an induced subgraph of a scheme H,
then v(H) = kv(H') for some positive integer k.

Proof. Consider a problem M*(G’,¢’, H’). Assuming (VH —VH')N VG’
=, take the graph G with VG = VG'U(VH — VH’) and EG = EG’. Obvi-
ously, M*(G, c, H) and M*(G’, ¢, H’) have the same set of feasible solutions,
whence the result follows. ]

STATEMENT 4.2. If a scheme H does not have property (P), then there
exists a subset T C VH of cardinality 6 such that H':== H{T) satisfies

H°C H' C H', (17)

where H® and H' are graphs as drawn in Figure 4.

(One can show that the converse is also true.)
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Proof. Let A;, A,, and A, be distinct pairwise intersecting anticliques
in H such that A, N A, + AN A, Two cases are possible.

(1) For i=1,2,3, each A ==(Aj(\Ak)~ A, is nonempty, where
{i, j, k) = {1,2,3}. Choose six terminals, say t,,..., s, so that t,€ A}, t,, 4
€ A, and tt, € EH (¢, exists because A, is a maximal independent set).

(2) There are A, and A such that A;NA;C A and A"=(A;NA,)~
A;#2, where {1, j, k} = {1,2,3}. Choose six terminals, say ¢,,..., %, so that
HHEAINANA, tEA, hEA, - A tsEA, (€ Ay, and 4,8, ;€ EH,
r=1,2,3 (¢, exists because H contains no isolated vertex).

A straightforward check shows that in both cases the terminals ¢,,...,
are distinct and they induce the subgraph H’ in H satisfying (17). |

We shall assume that the vertices of the graphs H? and H! are labeled by
t,,...,tg as shown in Figure 4. Let 5 be the set of schemes H’ whose
vertices are labeled by ¢,,...,t; and such that H’ satisfies the inclusions in
(17) with preserving the labels. We say that (labeled or unlabeled) graphs K
and K’ are isomorphic (denoted as K = K’) if their underlying unlabeled
graphs are isomorphic.

Now we begin to prove Theorem 2. Let k be a positive integer > 3.
According to Statements 4.1 and 4.2 it suffices to consider only the different
(up to isomorphism) schemes H in .5 and for each of these H’s to yield G
and ¢ with (M*(G, ¢, H)) > k. Unfortunately, the list of such H’s is still
too long to consider them separately. We give here a common construction
for G and ¢ whose features enable us to reduce this list to six cases of H'’s.
The approach developed here extends slightly that outlined in Section 2.

A basic fragment of the graph G is the graph K from Example 3 in
Section 2 (for given k); let the vertices of K be labeled as in Figure 2. The
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graph G is obtained from K by adding terminals ¢,..., t; and the edges ¢;s;,
i=1,...,6; see Figure 5. It is easy to check that the following are true:

k+1 for (i,j)=1(2.5),
k for (i,7)=(1,4),(3.6).(2,4),(3,5),
(

mg(s;s;))={k—1 for (i,j)=(3,4), (18)
2 for (i,j)=1(5,6),
1 for (i,j)=1(4,5),(4,6)

[we point out that m,(s;s;) only for 1 <i < j <6 such that t;t; € EH!'];

every tt; -chain L in G, i # j, has view ¢t;s,... s.t;, and
for any functlon l on EG, L is a geodesic of l if and only (19)
if the part of L from s, to s; is a geodesic of [| g« (in K).

Put B:= {s;:i=1,...,6}. Suppose that some H &€ # and JC B are
fixed. Define the capacities ¢ = ¢,; , of edges of G by

(20)

(o) = c'(e) for e EG -],
¢ - c'(e)+ for ee],

where ¢’ is the capacity function for G generated by I'(G, EH) (see Section
2). We say that a function [ on EG is good for H and J if

m(tt;)=1  forall tt;€EH, (21)
[ is constant on EK, (22)

Il(e)=0 forall ee]. (23)
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Our proof is based on Claims 4.3-4.5 below (Claim 4.3 enables us, in
particular, to eliminate many schemes in ).

CraM 4.3.  Suppose that there exists a function l good for H and J. Let
Ul):= {titj: 1<i<j<6, m,(t,.tj) 21}, and let H' € 3¢ be such that EH C
EH’ C U(l). Then every optimal solution of M*(G, cy ;, H') is a good func-
tion for H and ].

Proof. Let c=cy ;, and let f be the multiflow for G and H’ generated
by T'(G, EH). We observe that f and [ are optimal solutions of M(G, ¢, H")
and its dual, respectively. Indeed, firstly, [ is feasible for H’' [by (21) and the
definition of U(1)]. Secondly, (6) holds for f and ! because of (23) and the
fact that f saturates each edge in EG — J [by (20)]. Thirdly, each chain
Le (G, H) with f(L)>0is an EH-geodesic of G, and now, using (19)
(twice) and (22), we obtain that L is an EH-geodesic of I, whence (7) holds
for f and I. Now consider an arbitrary optimal solution I’ of M(G, ¢, H").
The relations (6) and (7) for H', f, and !’ show that (21) and (23) hold for !’
Finally, (22) for I’ follows from (7) (for f and '), (19), and the facts that
EH° c EH and K is U primitive, where U®:= {s,s,, 5,55, 5356 }. [ ]

For a good function [, let a(l) denote I(¢) for e € EK.

Cramim 4.4. If 1 is good for H and | and a(l) >0, then | is not
1/ k-integral.

Proof. Let L be a tyt-geodesic of [, and let L’ be the part of L from s,
to s5. Then (19) and (22) imply that L’ is a geodesic of K. Therefore L’ has
k +1 edges [by (18)]. Since t,ts € EH® C EH, we have I(EL)=1 [by (21)],
and hence 1 =1(EL) > I(EL") = (k+ 1)a(l). So 0 <ka(l) <1 and the result
follows. | ]

Cramm 4.5.  The following are equivalent:
(i) a(l)> 0 for each good function l for H and J;
(ii) the system S(H, J) given by
(s )5 )+ m(ts,)U(es;) =1, ;€ EH,

where 1/(e) is 0 if e € J and 1 if e € B — ], has no nonnegative solution.

The proof is obvious.

Now we consider six concrete schemes H,,,..., Hs in ¢, where H,:= H°
and H,,..., H; are schemes drawn in Figure 6. For each H = H; we shall fix
a subset J = J, C B and point out a function ! =, good for H and J. Next, we
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shall establish that the system S(H, J) has no solution for each of these H’s
and J’s. Thus, by Claims 4.3, 4.4, and 4.5, M*(G,cy ;, H') has no 1/k-
integral optimal solution for each H' € J#(H, ), where 5#(H, 1) is the set of
schemes H’ such that EH ¢ EH’ ¢ U(l) [U(l) is defined as in Claim 4.3].
Finally, we shall show that each scheme in 5 is isomorphic to some scheme
in

F = {Hy}UX#(H,1)U ---U#(Hsl,),

whence Theorem 2 will follow by the above arguments.

Case H=H, (=H°). Put J:={t;5,, 8,85, 1355 tss5} and l(e)=1/
(k+1) for all e€ EG~] [l(¢):=0 for e €J]. One can see from (18) that
(21) holds for given H and I. Thus, ! is good for H and J. The system
S(H, J) contains the equality 0-l(t,s,)+0-1(¢t5s5)=1; therefore, S(H,J)
has no solution.

Case H=H,, i=1,...,5. For each of these H’s we put J:= {¢5,,t,5,)
and

1
oK for e€ EKU {t;s,},
k-1
Ie) = % for e=tss5, tgsq,
3 for e=1,s,.

Using (18), one can check that U(l) = EH! and my(t;t;) =1 for all tit; €U(1)
(and so ! is good for each of the H’s and J’s in question). For H = H, the
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system S(H, J) contains the equalities
0-1(t;s,)+ U(tys,) =1.
0-1(tys,) +1(tss5) =1,
I(tysy)+1(tgsg) =1;
therefore S(H, J) has no solution. We leave it to the reader to verify the

unsolvability of S(H,, J) fori=2,...,5.

Now consider an arbitrary scheme H € 5# not belonging to %. Let
A:=EH — EH®. We have H+ H® and EH,¢ EH for i =1,...,5 [otherwise
H € & because EH C EH! =U(l,)]. This implies that

1<|Al<3 and either AC {tyt,, tot,, tits} or AC {tyt,, tte, tste ).

(24)

Furthermore, |A| > 1 (otherwise H = H,), and H is not a chain with 5 edges
(otherwise H = H;). This and (24) imply that H is one of the graphs shown
in Figure 7. It is easy to check that each of these graphs is isomorphic to
some graph in %

This completes the proof of Theorem 2.

- 5. INTEGRALITY AND HALF-INTEGRALITY

Here we describe the classes of schemes H for which »(H)=1 and
v(H) = 2. By Theorem 2 such schemes must have property (P). Three cases
of schemes H with »(H)=1 or 2 are known:

(E1) H is a complete bipartite graph;
(E2) EH consists of two nonadjacent edges;
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(E3) there exists a partition { ./}, .2, } of the set &7(H ) of anticliques of
H such that each &7, counsists of pairwise disjoint anticliques; in other words,
H is the complement of the line graph of a bipartite graph.

(E1) and (E2) are special cases of (E3). In case (E1), p(M(H))=»(H) =1
by a “multiterminal” version of the max-flow min-cut theorem of Ford and
Fulkerson [5]. In case (E2), o(M(H))= 2 and »(H) =1 by the max-two-com-
modity-flow min-cut theorem of Hu [7]. In case (E3), (M(H))=v(H)=2
by [13] (a detailed proof was given in [8, 16]; in [10] a strongly polynomial-time
algorithm to solve the problem M(G, ¢, H) and its dual with such schemes H
was developed). Note also that an arbitrary complete graph H is a special
case of (E3); the fact that ¢(M(H))=v(H)<2 for such an H was in-
dependently established by Lovasz [17], Mader [18], and Cherkassky [3]
(Cherkassky’s proof and algorithm were described also in [1]).

ReMARk. The existence of a half-integral optimal solution of M*(G, ¢, H)
with H as in (E3) can be established directly from Statement 3.14 as follows.
One may assume that the graph G is complete. First of all we observe that
each terminal in H is in at most two anticliques, whence d_, =2 for all
a€ D, Let Z=(X,Y,;Z,) be an optimal framework for G, ¢, and H.
Form the families #' = (X}; Y} Z%), i =1,2, by setting Y, = Z' :==& for all
a€P and A € &7 and

, X4 if Aeu,
Xy= . : (25)
= J ra 1 3_ -
W, [=x,uz,0U(Y,:ac2(A))] if Acw,

One can check that each #¢ is a framework for G, ¢, and H. Considering
(16) for #, 2!, and #? and taking into account that d_=2 for all a € 2,
we obtain m[#]=1(m[R']+ m[R*]). This implies that each m[#'] is
optimal. Furthermore, m[%'] is half-integral, by Statement 3.13.

Let K + K’ denote the graph consisting of disjoint graphs K and K'. Let
K, be the complete graph with n vertices. It turns out there is one more
scheme H with »(H)=2.

StatemENT 5.1. If H=K,+ K, then v(H)=2.

[p(M(H)) =2 is also true, but a proof of this fact exceeds the limits of
our paper.]

Proof. Let, for definiteness, VH = {s,,...,s;} and EH =
{5159, 384, 8485, 5553} Then Z(H) = {{s;,5;}:1<i<2, 3<j<5),
2(H)={{s;}:i=1,...,5}, and H has property (P). Consider a problem
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M*(G, ¢, H) with a complete graph G. Let # =(X,;Y_; Z,) be an optimal
framework for G, ¢, and H in which the number w(%) of nonempty sets
among Z,, A € &, is minimum. Put ! :=m[%]. We shall show that w(%)=
0, whence [ is half-integral, by Statement 3.13. Suppose, for a contradiction,
that w(Z£)> 0.

Consider an anticlique A= {s;,s;}. Let S=S5(A) be the collection of
nonempty sets among X,, Y, ,, and Y(s,.)- It follows from (14) that if X,
(Y,) is nonempty, then X, N VH = A (respectively, Y, N VH = a). Therefore,
IS| <2, and if |S|=2 then S= {Y{si),Y{si) }. Furthermore, by Statement
315, Z,=2 if |S|< L

Let 7 be the number of A € & such that X, #@. Since |VH| =5, < 2.
If n =2 then Y, is nonempty for exactly one s € VH, whence by the above
arguments |S(A)| <1 for each A € o/, and all Z,’s are empty. It remains to
consider two cases.

Case 1. 7=0. For k=12, form &% =(Xk; Yk Zk) by setting X% :=
Z%:=@ for all A€ o and

Y{si) for i=k,
v = Yo Y20 for i=3,4,5,
Y, uMUU(Z,.,,:§=345) for i=3-k.

Case 2. n=1. Let, for definiteness, X, = {s,,$;}. Then Y, =@ for
a={s}, {s3),and Z, = for A= {s,,8;}, {5, 8, },{51 55}, {83, 85). For
k=1,2, form #*=(X%; Yk Z%) by setting

X, for A= {sy,s;},

X:;::
Y(Sz) v Y(33+k} vz

{$2, 8311} for A= {S2’83+k}r

Yr=Y, for a={sg_;},

and setting Q=@ for the remaining Q’s in Z*.

One can verify that in both cases each # is a framework for VG and H.
Let I¥:==m[%#*). A straightforward though tiring check shows that in each
case I = (I +12), which implies that each #* is optimal. But w(#*)=0, a
contradiction with the choice of Z. [ ]

Now we prove that there is no scheme H with »(H)=1 or 2 different
from those listed above.
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THEOREM 4.

(i) »(H) =1 if and only if H is as in (E1) or (E2).
(i) »(H)=2 if and only if H is as in (E3) or Statement 5.1 and H is
different from the scheme in (E1) and (E2).

Proof. It suffices to show that

(a) »(H)>1if H is not as in (E1) or (E2), and
(b) »(H)> 2 if H is not as in (E3) or Statement 5.1.

Suppose that H is neither as in (E1) nor as in (E2). It is not difficult to
show that there exist a subset T C VH and a partition {T,,T,,T;} of T such
that (i) the induced subgraph H’:= H(T) contains exactly three edges and
has no isolated vertices, and (i) for 1< i< j< 3, T; and T; are joined by an
edge. By Statement 4.1, it suffices to show that »(H')> 2. Let G be the
graph with the vertex set T U {x,, x5, x4,y )} and the edge set E,UE U
E,UE,, where E,:={x,y:i=1,2,3} and E;:=={x,p:p€T}}, i=123.
Define c(e) to be 1 for e € E, and to be a large enough positive integer for
e € EG — E,. It is easy to see that M*(G,c, H’) has the unique optimal
solution [, where l(¢):= 4 for ¢ € E, and 0 for e € EG — E,.

In order to prove (b) we need two auxiliary statements. We say that a
graph K’ is a vertex minor of a graph K if there is a sequence K=
K1, K2,...,K" =K’ of graphs such that, for i =1,...,n — 1, either K'"'=
K(X) for some X C VK' or K*1 is the graph K'/{x,y} obtained from K'
by identifying two nonadjacent vertices x and y iu it (and then identifying
multiple edges).

STATEMENT 5.2. If H' is a vertex minor of H, then v(H)=kv(H') for
some integer k > 1.

[It is also true that @(M(H))=k'p(M(H")), but it is not important
for us.]

Proof. In view of Statement 4.1, it suffices to prove this for the case
H'=H/{s,t}, where s and t are nonadjacent vertices in H. Let p be the
vertex in H’ arising by identifying s and . Consider a vertex I’ of a
polyhedron P(G’, H’), and choose a problem M*(G’,¢’, H') having the
unique optimal solution I’. Let G be the graph obtained from G’ by adding
“new” vertices s and t and the edges sp and tp; one can suppose that
VH=(VH'— {p}U{s,t}. Put c(e):=c’(e) for e € EG’ and c(sp) = c(tp)
:=q, where a:=c’(EG")+1. Let | be an optimal solution of M*(G,c, H),
and let b be the function on EG defined by b(e):=1'(e) for ¢ € EG’ and
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b(sp) = b(tp):= 0. We show that [ = b, whence the result obviously follows.

Let g be the function on EG’ defined by g(e):=l(e) if e is not incident
to p and g(e):=I(e)+ I(sp)+ l(tp) otherwise. It is easy to check that b and
g are feasible solutions of M*(G,c, H) and M*(G’,c’, H'), respectively
(using the facts that st & EH and that, for g € VH'— {p}, pq € EH’ if and
only if at least one of sq and tq is in EH). Obviously, ¢'l’ = cb. Also we have

cl—c'g=a(l(sp)+(tp))
=Y (c'(e)[I(sp)+(tp)]) : e € EG’, e incident to p)
> [a—c¢'(EG)][U(sp) + Utp)] =1(sp) + Utp),

by definition of a. Thus,
cd—1(sp)-ltp)=cg=c'l=chb>cl, (26)

whence I(sp) =1(tp) =0 and c¢’g = ¢’l’. This implies g = I’ (by the unique-
ness of optimal ") and, finally, I = b. [ |

Now we introduce three special cases of schemes H':

(H1) where k is an odd number >5, VH'= {¢,,...,t;}, and t;t, € EH’" if
and only if 2 < i —j|<k~2;

(H2) VH’ = (t,...,ts}, tty tobs, tits, tuts € EH’, tt,& EH  for i=
1,2,3, and t;it; € EH’ for at least one i € {1,2,3};

(H3) H'=K,+ K,

StaTteMENT 5.3. If H has property (P) and H is different from schemes
of the form (E3) and Statement 5.1, then H has a vertex minor isomorphic to
one of graphs H' as in (H1)~-(H3).

Proof. Two cases are possible.
Case 1.  Each vertex in H belongs to no more than two anticliques. Let

A,,..., A = A, be a sequence of distinct anticliques of H such that {a) A;_,
meets A, i=1,...,k, (b) kis odd > 3, (¢) k is minimum subject to (a) and
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(b). Such a sequence exists; otherwise H would be as in (E3). Moreover,
k > 5 (it is easy to see that if a graph contains three pairwise intersecting
anticliques, then it also contains three anticliques having a common vertex).
Choose a vertex, say t, in A,_ N A,, i=1,..., k. Then the t;s are distinct
and the graph H{{t,,...,t;}) is as in (H1).

Case 2. There are three distinct anticliques, say A,, A,, and A,, in H,
having a common vertex s. Let a:=A;NA, (=A;NA, i+ j). Choose a
vertex, say ¢, in A, —a, i=1,2,3. Then st;& EH, i=1,2,3, and tt; € EH,
1 < i < j < 3 [the latter follows from property (P)]. Let W, == {(p € VH: pt, &
EH,i=1,2,3) and W,:=VH - W, — {1, 1,,t,}. We observe that W, # & (as
s € W,) and each vertex in W, is joined by an edge with some vertex in
W, U W, (as H has no isolated vertex). Suppose that W, #&.

(1) If there are p € W, and g € W, such that pg € EH, then H{{t,...,t5})
is as in (H2), where ¢, = p and t5 = q. Thus, we may assume that pg & EH
for any p € W, and g € W,

2) If pqeW,, pg€ EH, and v € W,, then H{{t, t,.15.p.q,v})/{q, v}
is isomorphic to a graph as in (H2). Thus, one may assume that W, =9.
Since H is not as in Statement 5.1, |W,| > 3. Note that the graph H{W,) is
connected [otherwise H would have at least three components, contrary to
the fact that H has property (P)]. So there are three vertices p, g, and v
in W, such that pq, pv € EH. Now if qv € EH, then H{{t, t;,t;,p,q,v})
is as in (H3), and if qv & EH, then H{{t, ¢, t5, p,q, v })/{¢, v} is isomor-
phic to a graph as in (H2). | |

According to Statements 5.2 and 5.3, it suffices to show that »(H) > 2 for
the schemes H = H’ as in (H1)-(H3). We apply the approach set forth in
Section 2. More precisely, in each of these cases of H’s we construct a graph
G, a subset U € EH, and a function 1° on EG satisfying (9) and not being
i-integral. We show that (8) with I':= I'(1° U) has a unique solution.

(a) Let H be as in (HI1). Let G be the graph drawn in Figure 8(a),
U= {1, 5:i=1,....k}u{tt,}, and

if e=tt,,, i=1,2,4,5.. .k,

if e=tp,t,

1%e) =

[P CRN N N Y

if e=tpw

(setting t;, ;:=t,). Obviously, U C EH, (9) holds, and T'(I°,U) consists of
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the chains t;t, t;, 5, i =1,4,5,..., k, tyta0t,, tsot,ts, t,0t5, and ¢, vt,. Taking
into account that k is odd, one can see that (8) has a unique solution.
(b) Let H be as in (H2), and let, for definiteness, t,f; € EH. Let G be

the graph drawn in Figure 8(b), U= {5, fot,, t3t;, t4¢5, £, }, and

=ty tit,,
%)=

if e=t,t,o,

S AN A Y ]

if e=tsv.

One can see that [? satisfies (9) (using the fact that EH — U can contain only
tots or tats), T(1% U) consists of the chains t,vt,t,, tot,ts, tot,0t,, t vts, and
t,ot, and (8) has a unique solution.

(c) Let H be as in (H3), and let, for definiteness, H have the compo-
nents with vertex sets T, == {t,,t,,t;} and T, = {¢,, £5,t5}. Take G to be the
graph from Example 2 in Section 2, and let U:= EH and {%(e):=1 for all
¢ € EG. Then (8) has a unique solution because of the U-primitivity of G.

This completes the proof of Theorem 4.

6. DUAL FEASIBILITY MULTIFLOW PROBLEMS

Statements 6.2~6.5 below give the fractionalities ( F*( H)) for all schemes
H and, as a consequence, prove Theorem 3 from the Introduction. We start
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with some observations. It follows from claims in Section 2 that @(F*(H)) is
the least common multiple of the numbers ¢(I, m[l, U)), where

@+ U C EH, | is a U-primitive function on the edge set
of a connected graph G with [VG]2U, and [ is (27)
U-normalized.

[l is called U-normalized if ||(1, m[l,U))||,, =1]. In particular, if H" is a
subgraph of H, then @(F*(H")) is a divisor of @(F*(H)). Also we have the
following.

StaTeEMENT 6.1.  If G is a connected graph and G’ is the complete graph
with VG'=VQG, then o(F*(G’, H)) = ko(F*(G, H)) for some integer k > 1.

Proof. Consider arbitrary I and U satisfying (27) for H and G, and let
g=m([l,U] and I':= m,. Obviously, g = m[l’, U]. By Statement 2.1(iv), I’ is
U-primitive, therefore (I’,q) is an extremal vector of the cone C(G’, H).
Next, Statement 2.1(i) implies that (|I||_. <|qll, and |I']|. <]lqll.., whence
I’ is U-normalized, and the result follows. [ ]

Thus, in order to determine @(F*(H)) we may consider only the set of
U-primitive U-normalized metrics. It is easy fact that if @(I, m{L,U])=1 for
some ! and U satisfying (27), then [ is the characteristic function pX of a
simple cut 8X of G. For l:=pX and q:=m[pX,U], the inequality in
Statement 1.4 turns into the Ford-Fulkerson inequality

c(8X)> Y (d(st):st €EH, |{s,t}NnX|=1). (28)

Papernov generalized well-known results of Ford and Fulkerson [5] and Hu
[7] by finding all the schemes H such that solvability of any problem
F(G,c, H,d) with given H depends only on the truth of (28) for each
X CcVG.

STATEMENT 6.2 [19]. @(F*(H))=1 if and only if H is K, or Cy (the
circuit with five vertices) or a union of two stars.

[See Figure 9(a),(b),(c).] (A star is a graph without isolated vertices
whose edges meet a common vertex; a graph K is a union of graphs K' and
K?2 if there are subgraphs G! and G2 in K such that G'UG?*=K and G' is
isomorphic to K’, i =1,2.) In [11] the following theorem was proved.
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Fic. 9. (a) K,; (b) Cs; (c) a union of two stars; (d) K;; (e) a union of K, and a
star.

Tueorem 6.3. @(F*(H))=2 if H is different from the schemes in
Statement 6.2, and it is a subgraph of K (including Ky itself) or a union of
K, and a star.

[See Figure 9(d), (e).]

STATEMENT 6.4. If H contains a subgraph isomorphic to K, + K, + K,
(i.e., H contains a matching of three edges), then ¢(F*(H)) = c0.

Proof. By the arguments above, it suffices to consider only the scheme
H =K, + K, + K,. Fix an integer k’> 3. Let K be a graph from Example 4
in Section 2 with p+qg+r=k'+3, and let EH = {s;5{:i=1,2,3}. Con-
sider the function ! on EK taking identically the value 1/k’. Then [ is
EH-primitive and EH-normalized. Hence @(F*(H)) > (I, m[l, EH))=k’. &

One can check that there is a unique scheme different from that de-
scribed in Statement 6.2, Theorem 6.3, and Statement 6.4, namely, K, + K.
Our final statement is the following.

STAaTEMENT 6.5. @(F*(H))=12 for H=K;+ K.

Proof. Let, for definiteness, VH=T,UT,, T,= {s}, 85 83}, Tz=
{54855 8¢}, and EH = {s5;5,:1<i<j<3 or 4<i<j<6]}. First of all we
produce EH-primitive EH-normalized functions !, and [, such that
o(l,, m[l,, EH]) =3 and ¢(l;, m[l,, EH])= 4.

(1) Let K be the graph with the distinguished vertices s,,..., sg from
Example 1 in Section 2, and let ! be the function on EK taking identically
the value §. Then ! is EH-primitive and EH-normalized [since m,(s,s,) =1].
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(2) Let K be the graph from Example 2 in Section 2 for given T, and T},
and let | be the function on EK taking identically the value }. Then [ is
EH-primitive and EH-normalized.

Thus, @(F*(H))> 3X4=12. Now consider an arbitrary problem
F*(G, ¢, H,d) with a complete graph G and the given scheme H. We show
that its fractionality is less than or equal to 4, whence the result will follow.

For i=1,...,6, let J, denote the pair { j,r} of indices such that s;s, 5,5,
€ EH. For s;s;€ EH, put d,;:=d(s;s;). We reduce the problem
F(G,c, H,d) to M(G’,¢’, H’), where:

(i) G’ is the complete graph obtained by adding new vertices t,,..., f; to
VG;

(ii) c'(e)=c(e) for e € EG; c'(t;s;)=d,;+d;s {jor} =], i=1...6
¢'(e) = 0 for the remaining edges ¢ in EG’;

(iii) VH' = {t,,....ts} and EH'= {#t:1<i<j<3 or 4<i<j<6)
(thus, H'= H).

Let f’ be an optimal solution of M(G’,¢’, H’), and let f be the multiflow for
G and H induced by f’, ie., f(s;... §;)= f(ts,... sitj) for each chain
L=s,...s; in LG, H). Cleardy o(f,tt;)=0(f ss;) for s;s;€EH
[v(f, st) is defined as in (2)]; denote this value by v;;. We have

T v, =8 (ts) <c'(ts), {j.r) =1, i=1,....86,

or

v tvu,<d;+d,, {jr}=1. i=1,....,6. (29)

Considering the inequalities in (29) for i = 1,2,3 and for i = 4,5,6, we obtain
that F(G,c, H,d) is solvable and f is its solution if and only if each
inequality in (29) holds with equality (this is equivalent to that v,; = d,; for
all s;5,€ EH).

Now suppose F*(G,c, H,d) is solvable. Then F(G,c, H,d) is not, and
hence at least one inequality in (29) is strong. This implies

Y (v,:s8s,€EH) <Y (d,;:s;s;€ EH). (30)

Next, as H’ (= H) has property (P), M*(G',c’, H') has a }-integral optimal
solution I, by Theorem 1. Moreover, by arguments in Section 2, one may
assume that !” is a metric on VG’ and ([I'||, = 1. Put I:==0V|.., I/ :=1'(;s,),

i
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¢/ =c'(t;s), i=1,...,6, and L;=I(s;s;) [ = m(s;s)), as l is a metric]. We
assert that

<) (dl:ss;€EH) (31)

[cf. (4)], whence (Al, Aq) is a solution of F*(G,c, H,d) with ¢(Al,Aq) < 4
where g:=m|l, EH] and A:==1/||(/, ¢)|| -
Firstly, since f and [’ are optimal, we have

Z(vij:s,.sjEEH)=v(f)=c’l’=cl+Z(c{l,.’:i=1,...,6). (32)
Secondly, I/ +l +l' >my(tt )=1f0r any s,.s].GEH; therefore
Yd, - Tdl<Td (I +1)
=Z((dij+dir)li,:{j’r}=]i,i=1,...,6)
=L (el:i=1,....6) (33)

(where in the corresponding sums ij runs over the set {ij:s;s; € EH })
Now, comparing (32) and (33) with (30), we obtain (31), as reqmred

I am indebted to the referee for the correction of numerous linguistic
errors and for a number of helpful suggestions.
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