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ABSTRACT 

Let G = (VC, EC) and H = (VH, EH) be two undirected graphs, and VH c VC. 
We associate with G and H the (unbounded) polyhedron P(G, H) in QEG which 
consists of all nonnegative rational-valued functions (vectors) 1 on EC such that, for 
each edge st in H, the distance between s and t in the graph G whose edges e E EC 
have the lengths l(e) is no less than 1. Let v(H) be the least positive integer k such 
that each vertex of P(C, H) is l/k-integral for any C with VG 2 VH [v(H) = cc if 
such a k does not exist]. In other terms, v(H) is the least positive integer k such that 
each problem dual to a maximum undirected multicommodity flow problem with the 
“commodity graph” H has an optimal solution that is l/k-integral. We prove that 
v(H) can be only 1, 2, 4, or w , and moreover, for each k = 1,2,4, M, we describe the 
class of H’s with v(H) = k. Also results concerning extreme rays of cones related to 
feasibility multicommodity flow problems are presented. 

1. INTRODUCTION 

Suppose that .Y is a class of optimization problems: 

(0): given S c Q” and g: S ---) Q, find an x E S with g(x) maximum (or 
minimum), 

or a class of feasibility problems: 

(F): given S c Q”, find some element in S. 
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[Q is the set of rationals.] We define: 

(i) where x E Q”, q(x) to be the least positive integer k such that x is 
l/k-integral, i.e., each component of the vector kx is integer-valued; 

(ii) where P E .X, q(P) to be the least positive integer k such that P has 
an optimal (respectively, feasible) solution that is l/k-integral; if P has no 
optimal (feasible), solution we put (p(P) := 0; 

(iii) q(Y) to be the least positive integer k (if it exists) such that each 
problem P in X with q(P) > 0 has an optimal (feasible) solution that is 
l/k-integral; if such a k does not exist, then q(X) := co. 

We call q(x) [q(P), q(X)] the fructionulity of a vector x [a problem P, 
a class X’]; if q(Z) = co, we say that X has unbounded fractionality. 

In the present work we mainly study the fractionality of classes of 
problems dual to maximum undirected m&commodity flow problems. 

We start with some definitions and conventions. Throughout the paper, 
by a function we shall mean a function taking values in the set Q, of 
nonnegative ratio&s. By a graph we mean a finite undirected graph without 
loops and multiple edges; an edge with ends x and y may be denoted by xy. 
If K is a graph, then VK denotes its vertex set and EK its edge set. A chain, 

or an St-chain, of a graph is a subgraph L in it such that VL = (s = q,, 

Ul,...>Q,,, =t}(uiaredistinct)andEL={uioi+,:i=0,...,711-1};wemay 
denote L also as uOul . u,. 

Let G and H be two graphs with VH c VG, and c be a function on EG; 

we refer to c, H, and VH as capacities of edges of G, a (flow) scheme, and a 
set of terminals, respectively. It is more convenient for our purposes to use 
the “edg=hain” formulation for multicommodity flow problems, which is 
equivalent to the usual “edge-vertex” one (see [5]). For s, t E V, let 2( G, st ) 
denote the set of St-chains in G. Let 2 = Z(G, H) be u(P( G, st ): st E EH). 

A multicommodity flow, or a multijlow, for G and H is a function f on 9. 
f is called c-admissible if 

lf‘(e):=z(f(L):LE2,eEEL)<c(e) forall eEEG. 

The value u(f) := C( f(L): L E 2) is called the total u&e of f. 

The maximum multijlow problem, denoted by M(G, c, H), is: given G, 
c, and H as above, find a c-admissible multiflow f for G and H with u(f) 
maximum; this maximum is denoted by u(G, c, H). 

The problem M*(G, c, H) dual (in the linear-programming sense) to 
M(G, c, H) is: find a nonnegative function 1 on EG minimizing cl := 
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C( c( e)Z( e) : e E EG) subject to 

Z(EL) > 1 foreach LEY(G,H). (1) 

[For h: X + Q and X’ c X, h(X’) denotes C(h(e): e E X’).] Denote by 
M( G, H) the set of problems M( G, c, H) with fixed G and H and an 
arbitrary nonnegative integer-valued function c: EC + Z,; let M(H) := 
u(M(G, H) : G is a graph with VG 2 VH ). Similarly define the sets of dual 
problems M*(G, H) and M*(H). We denote cp(M*( H)) also as v(H) and 
call it the fraction&y of H (with respect to the dual maximum multiflow 
problems). 

Throughout the paper we shall assume that EH f 0 and H has no 
isolated vertex, i.e., each vertex of H has at least one incident edge [clearly, 
removing an isolated vertex (if any) from H does not change any problem 
M(G, c, H) or its dual]. 

DEFINITION. We say that a scheme H has property (P) if A n B = 
B n C = C n A holds for any three distinct pairwise intersecting anticliques 
A, B, and C in H. 

[An anticlique of a graph is a maximal (with respect to inclusion) 
independent set of its vertices.] For example, if H consists of two disjoint 
complete graphs H, and H,, then the set of anticliques of H is {{s, t } : s E 
VH,, t E VH,}, and H has property (P). 

The following two theorems are central in the paper. 

THEOREM 1. Zf a scheme H has pmperty (P), then v(H) is 1, 2, or 4. 

THEOREM 2. Zf a scheme H does not haoe property (P), then v(H) = *. 

Theorems 1 and 2 will be proved in Sections 3 and 4. They can be 
reformulated in polyhedral terms. A polyhedron P (possibly unbounded) in 
Q” is said to be l/k-integral, where k is a positive integer, if each of its 
facets contains a l/k-integral point. For G and H as above, let P(G, H) 
denote the (unbounded) polyhedron in QEG formed by the nonnegative 
functions (vectors) Z on EG satisfying (1); we refer to P(G, H) as a dual 
flow polyhedron. Obviously, for any c E Q”,“, there is a vertex 1 of P( G, H) 
such that cl < cx for all x E P(G, H), and, on the other hand, for an 
arbitrary vertex Z of P( G, H ), there is c E 2:’ such that cl < cr for all 
x E P(G, H) - {Z}. Th us, Theorems 1 and 2 are equivalent to the following 
theorems. 
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THEOREM 1’. If a scheme H has property (P), then, for any graph G 
with VG 2 VH, the polyhedron P(G, H) is $-integral. 

THEOREM 2’. If a scheme H does not have property (P), then, for any 
positive integer k, there exists a graph G with VG 2 VH such that the 
polyhedron P(G, H) is not l/k-integral. 

The values v(H) are already known for a number of schemes H. For 
example, Y(H) = 1 if IEH I= 1, by the max-flow min-cut theorem of Ford and 
Fulkerson [5], or if jEH[ = 2, by the max-two-commodity-flow min-cut theo- 
rem of Hu [7]. Section 5 contains a refinement of Theorem 1 which describes 
completely the classes of schemes H with v(H) = 1 and Y(H) = 2 (Theorem 
4). Thus, Theorems 1, 2, and 4 give the values v(H) for all schemes H. 

Theorem 2 enables us to state unbounded fractionality of the class M(H) 
of “primal” maximum multiflow problems for each H not having property 
(P). To this end we use the following statement, similar to one occurred in [S] 
for polyhedra with 0, 1 vertices (and to one known for the totally dual 
integral system; see [4]). 

STATEMENT 1.1. LetPbeapolyhedron {xEQ”:x>,O, Axah}, where 
A is a nonnegative m X n matrix and b is an integral m-component col- 
umn vector, and let k be a positive integer. Let the program D(c) := 
max{ yb : y > 0, yA ,< c} haue a l/k-integral optimal solution for each 
n-component integral row vector c > 0 whenever D(c) has an optimal solu- 
tion. Then P is l/k-integral. 

Proof. Let x be a vertex in P, and xi be a component of the vector x. It 
follows from nonnegativity of A that there exists c = (cr.. . . c,,) E Zn so that 
any c’ E Q” with j/c’ - c)], < 1 satisfies 

C’x = max{ yb: y 2 0, yA G &} 

[Ilall, is the norm max{]ai(: i = l,..., n} of a vector a =(a1 ,..., a.)]. Put 
c/:=ci+l and c(:=cj, j~{l,..., n} - (i}. Let y and y’ be l/k-integral 

optimal solutions of D(c) and D(c’), respectively. Then 

kr; = kc’x - kcx = ky’b - kyb, 

whence the value kxi is integral n 
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Applying Statement 1.1 to a matrix A whose rows are the characteristic 
vectors of the sets EL for L E U(G, H) and to the all-unit vector b, we 
obtain 

STATEMENT 1.2. (p(M(G, H)) > (p(M*(G, H)) for any G and H with 
VG 2 VH. 

COROLLARY 1.3 (to Statement 1.2 and Theorem 2). If a scheme H does 
not have the property (P), then ‘p( M( H)) = 00. 

It should be noted that Theorem 1 gives no possibility of determining 
whether or not (p(M(H)) is finite for H having the property (P) [in 
particular, the converse to Statement 1.1 is, in general, false]. Studying 
fractionality of M(H) for such H’s has turned out to be more difficult than 
for M*(H), and I shall return to this subject in a forthcoming paper. 

In Section 6 another popular kind of multiflow problems will be consid- 
ered. This is the feasibility multijlow problem, denoted by F(G, c, H, d): 
given G, c, H as above and a demand function d on EH, find a c-admissible 
multiflow f for G and H satisfying 

v(f,st):=~(f(L):L~Y(G,st))>d(st) for each st E EH. (2) 

By Farkas’s lemma, we have (see [14]) 

STATEMENT 1.4. The problem F(G, c, H, d) is solvable (i.e., a required 
multijlow f exists) if and only if 

cl - dq >, 0 

holds for all finctions 1 on EG and q on EH satisfying 

l(EL) >, q(st) forall stEEH and LEP(G,st). (3) 

Let C(G, H) be the cone of vectors (1, q) E Q”,” X Q”,” satisfying (3); we 
refer to C(G, H) as a dual flow cone (slightly different cones were consid- 
ered in [15, 161). According to Statement 1.4 we may define the problem 
F*(G, c, H,d) dual to F(G,c, H,d) as: find (1,q) E C(G, H) such that 
ML q)ll, = I and 

cl - dq < 0. (4) 

Thus, the alternative is: F(G, c, H, d) is solvable if and only if F*(G, c, H, d) 
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is not. Let F*(G, H) [F*(H)] be the set of problems F*(G, c, H, d) with 
fixed G and H [H] and arbitrary c and d [G, c, and d]. 

THEOREM 3. 

(i) Zf a scheme H contains no matching with three edges, then cp( F*( H)) 
is 1, 2, or 12. 

(ii) Zf a scheme H contains a matching with three edges, then p(F*( H)) 
=oO. 

[A matching in a graph is a set of its edges such that no two meet the 
same vertex.] This theorem will be proved in Section 6; its proof uses 
Theorem 1 and known results for special cases of H ‘s. In fact we give there 
the exact values ‘p( F *( H)) for all schemes H. 

One more type of multicommodity flow problems is known. This is the 
minimum-cost maximum-multiflow problem: given G, c, H as above and an 
edge-cost function a on EG, find a c-admissible multiflow F whose “total 
cost” C(a(e){f( e) : e E E) is minimum, subject to the value u(f) being 
maximum. 

Let CS(H) be the set of such problems with fixed H and with arbitrary 
graph G and integer-valued c and a, and let CS*( H) be the set of problems 
dual (in the linear-programming sense) to the problems in CS( H ). According 
to a multiterminal version of the minimum-cost maximum-flow theorem of 
Ford and Fulkerson [5], (p(CS(H)) = q(CS*(H)) = 1 if H is a complete 
bipirtite graph, i.e., EH = { st : s E S, t E VH - S} for some 0 f S C VH. It 
was proved in [9] that CS( H) = CS*( H) = 2 if H is a complete graph with 
r > 3 vertices; this result is easily extended to an arbitrary complete r-partite 
graph H, i.e., EH = { st : s E Si, t E Sj, i < j } for some partition {S,, . . , S,} 
of VH. On the other hand, it was shown in [12] that (p(CS(H)) = (p(CS*( H)) 
= 00 for all other schemes H. 

2. METRICS 

In this section we establish elementary properties of solutions of the 
abovementioned problems as well as some facts about vertices of polyhedra 
P(G, H) and extreme rays of cones C(G, H). 

Let V be a finite set with IV] 2 2. Denote by [V] the set of all unordered 
pairs of distinct elements of V; thus, (V, [VI) is the complete graph with the 
vertex set V. By a metric on V we mean a function on [V] satisfying the 
triangle inequality m(xy) + m( yz) 2 m(xz) for any X, y, z E V; we assume by 
definition that m(uu) = 0 for u E V. 



POLYHEDRA 299 

Let K be a connected graph with VK = V. Two metrics associated with K 
are distinguished: 

(a) the distance function m, induced by a function 1 (of lengths of 
edges) on EK, i.e., ml(xy) = min{ Z(EL): L E T(K, ry)} for r, y E V; 

(b) the metric mK induced by K, defined to be ml for the all-unit 
function 1 on EK. 

Let U be a subset of [V] and 1 be a function on EK. For x, y E V, an 
xy-chain L in K is called a geodesic, or an xy-geodesic, of 1 if I( EL) = m,( xy ), 
i.e., L is a shortest chain in the graph K with the lengths 1 of edges. An 
xy-geodesic is U-geodesic if xy E U. The set of U-geodesics of 1 is denoted by 
I’(Z, U). If 1 is the all-unit function, we apply the term “a U-geodesic of K ” 
and the symbol l?( K, U). 

We say that a function I’ on EK Udecomposes 1 if there is a rational 
X > 0 such that the function 1” := 1 - Al’ is nonnegative and 

m,(st) = m,,(st) -t m,,.(st) for all st E U. 

1 is called U-primitiue if (i) ml( st ) > 0 for some st E U unless U = 0, and (ii) 
each 1’ which U-decomposes 1 is proportional to 1, i.e., I’= Xl for some 
X >, 0. K is called U-primitive if the all-unit function on EK is primitive. 
Obviously, 2 is O-primitive if and only if /Z(l)1 >, (EK( - 1, where Z(I) := 
{eEE:Z(e)=O}. 

One popular kind of U-primitive functions for U f 0 give functions 
induced by certain cuts of K. More precisely, for X c VK, let 6X = 6,X be 
the set of edges of K with just one end in X; i3X # 0 is called a simple cut of 
K if there is no Y c VK such that 0 # 6Y c 6X. Denote by pX = pKX the 
characteristic function (on EK) of 6X. It is easy to check that, for X c V and 
U # 0, pX is U-primitive if and only if IX n {s, t } ( = 1 for some st E U and 
SX is a simple cut of K. 

The following describes elementary properties of U-primitive functions 
(similar statements for metrics occur, for example, in [16, 81). 

STATE~~ENT 2.1. Let 1 be afunction on EK and 02 U _C [VI. 

(i) Zf 1 is U-prim&e, then Z(e) = ml(e) for all e E EK, and each e E EK 
with l(e) > 0 belongs to some U-geodesic of 1. In particular, any U-primitive 
j&n&ion on [V] is a metric. 

(ii) A function 1’ m EK U-decomposes 1 if and only if Z(1) c Z(1’) and 
r( I, U) G r( Z’, U ). In particular, any U-primitiue function 1 is determined 
uniquely up to proportionality by the sets Z(1) and r(l, U), and K is 
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U-primitive if and only if each jixnction 
constant. 

1’ on EK with r( K, U) c I’(Z’, U) is 

(iii) There exists a finite sequence l’, . . . , I’ of functions on EG such that 
each 1’ is U-primitive or %-primitive, 1= 1’ + ’ . . + I’, and m,(st) = m/l(st) 
+ . . + m I’( st ) for all st E U. 

(iv) lf 1 is U-primitive, then the metric ml is U-primitive (ml is related 

to [VI>. 

In [15] and [2] a number of classes of primitive graphs were fotmd. One of 
them is described as follows. For K and U as above, two edges e and e’ in K 
are said to be vi&-vis if there exists a circuit C of K such that (i) r := ]VCJ is 
even, (ii) e and e’ are opposite edges in C (i.e., a minimal chain in C 
containing e and e’ has 1+ r/2 edges), and (iii) each chain in C with r/2 
edges is a part of some geodesic in I( K, U). [A circuit of a graph is a 
connected subgraph C in it each vertex of which has valency 2 in C.] 

STATEMENT 2.2 [15, 21. K is U-primitive if, for any two edges e and e’ 
in K, there is a sequence e = eO, e,, . . , e,, = e’ of edges of K such that each 
two edges e, and e, + 1 are vish-vis. 

We list several examples of graphs K whose primitivity follows from (2.2) 
(a verification is left to the reader). These graphs will be used in further 
sections. 

EXAMPLE 1. Let K be the graph drawn in Figure 1. Then K is 
U-primitive for U = { slsz, sass, sasr, s4sg, s,ssB, sBsq}. This example was 
pointed out to the author by V. P. Grishuhin. 

EXAMPLE 2. Where T, and T, are disjoint sets with 17; I> 3, i = 1,2, let 
K be the graph with vertex set T,U~,U{x,,:sET,, tET,}u{v}, whose 
edges are sxSl, txsf, and VX,~ for all s E Tr and t E T2. Then K is U-primitive 
for U= [T,]U[T,]. 

FIG. 1 
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EXAMPLE 3. Where k > 2, let K be the graph shown in Figure 2. Then 
K is U-primitive for U = { s,s4, Sass, Ssss}. 

EXAMPLE 4. Where p, q, r > 2, let K be the graph with vertex set 
{xip:i=l ,..., p, j=l,..., q, k=l,..., r} inwhichvertices zip and xiIiSkS 
are joined by an edge if and only if either Ji - i’l + lj - j’l + ) k - k’J = 1 or 

i’- i = jr- 9 = k’ - k = 1. Put si := xpll, si := zrlgr, sa := xrql, s; := xplr, 
sg := Xilr, s; := Xpql. Then K is U-primitive for U = (sis;, sa.sQ, sssj}. 

An important feature of the U-primitive functions is that they generate 
extreme rays of dual flow cones. More precisely, consider a cone C = C( G, H ). 
Where G is connected, 1 is a function on EC and U L EH, let m = m[ I, U] 
be the function on EH defined by m(e) := m,(e) for e E U and 0 for 
e E EH - U. Clearly the cone C is polyhedral and pointed (i.e., u E C and 
afoimply -a@C). aECisanetiremuZvectorof Cif a=a’+a’,where 
ui E C, implies that u1 = Au for some h > 0. 

STATEMENT 2.3. Let G be connected. The following are equivalent: 

(i) (I, q) is an extrernul vector of C(G, H); 
(ii) 1 is a U-primitive function on EG and q = m[l, U] for some U c EH. 

Proof. (ii) -+ (i) is trivial For the converse, let us show that an arbitrary 
vector (1, q) in C is the sum of some vectors (I’, q’) as in (ii). We proceed by 
induction on lW(q)l, where W(q):= {stEEH:q(st)>O}. If W(q)=0, 
then (1, q) is the sum of the vectors (Z,,O), e E EG, and Z,, the unit basis 
vector of e in Q”‘, is 0 -primitive. Thus, one may assume that W(q) z 0. 
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Let b be the maximum of h > 0 such that mAI < q(st) for all st E W(q). 
Put I’:= bl, l”:= 1 -I’, q’:= m[Z’, W(q)] and q”:= q - q’. Clearly, I” and 
q” are nonnegative, (I’, q’), (I”, q”) E C, and W(q) strongly includes W(q”). 
By induction, (Z”, q”) is the sum of some vectors as in (ii). By Statement 
2.l(iii), the same is true for (Z’, q’). n 

REMARK 2.4. This statement is easily generalized to an arbitrary (not 
necessarily connected) graph G. Let G,,. . , G, be the components of G, 
vi := EH n [VG,], and U, := EH - (U, U . . . U V,). One can see that C(G, H) 
is the direct product of the cones C(G,, Hi), i = 1,. . . , r, and C,, := Qp”), 
st E U,; so a vector (I, q) in C(G, H) is extremal if and only if it is the direct 
product of an extremal vector of one of these cones and the zero vectors of 
the others. By analogy with the case of a connected graph, the function 1 for 
such an (1, q) is called U-primitive (for corresponding U). 

Standard linear-programming arguments show that, on the one hand, if a 
problem F(G, c, H, d) has no solution, then there is an extremal vector (1, q) 
in C(G, H) such that cl < dq, and on the other hand, each extremal vector 
(Z,q) # 0 with ]](1, q)/[, = 1 is essential in the sense that, for any F > 0, there 
exists an unsolvable problem F(G, c, H, d) such that cl < dq but cZ’> dq’ 
for any (Z’, q’) E C(G, H) with ~~(Z’,q’)~~, = 1 and ]](Z, q) - (I’, q’)ll, >, E. 
Thus, by Statement 2.3 and Remark 2.4, q(F*(G, H)) is the least positive 
integer k such that kcp([) is integral for all E = (E, m[Z, U]) with ]](]I, = 1, 
where 1 is a U-primitive function on EG for some U c EH. 

Now consider a problem M( G, c, H) and its dual problem. Let f and 
I be feasible solutions of M(G, c, H) and of M*(G, c, H), respectively 
[i.e., f is c-admissible and I satisfies (l)]. Note that (1) can be rewritten as 

ml( st ) > 1 for each st E EN (5) 

[m, is defined as above assuming that m,(st) := cc if Z(G, st) =0, i.e., if s 
and t are in different components of G]. By the linear-programming duality 
theorem applied to these problems, f and I are optimal if and only if the 
following (complementary slackness) relations hold: 

e E EC, Z(e) > 0 imply that f saturates e, i.e., Sfce) = c(e); (6) 

L E ,Ep(G, st), st E EH, f(L) > 0 imply that L is a geodesic of 1 
having length 1, i.e., Z(EL) = m,(st) = 1. (7) 

We distinguish one kind of capacity functions and multiflows. Let T c 
Z(G) H). For e E EG, define c(e) to be the number of chains in T 
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containing e, and for L E Y(G, H), define f(L) to be 1 if L E r and 0 
otherwise. These f and c are called the capacity function (for G) and the 
multiflow (for G and H) getmated by r, respectively. Clearly f saturates 
each edge in G. Note also that the relation (7) can be rewritten for f and a 
function I on EC satisfying (5) as 

l(EL) = 1 forall LEr. (8) 

One possible way to prove that the fractionality of a certain scheme H is 
more than k is as follows. Suppose we succeed in constructing a graph G 
with VG 2 VH, a subset U E EH, and a function 1’ on EG that is not 
l/k’-integral for any k’ = 1,. . . , k so that 

m,o(st)>l forall ~~EEH and m,o(st)=l forall stEU, (9) 

and the system (8) for r := r(1’, U) has a unique solution. Then 1’ is the 
unique solution of M*(G, c, H ), where c is the capacity function for G 
generated by r, whence v(H) > k. Indeed, let f be the multiflow for G and 
H generated by r. By (9), 1’ is a feasible solution of M*(G, c, H). Since (6) 
and (8) hold for f and lo, f is optimal. Now if 1 is an optimal solution of 
M*(G, c, H), then I must satisfy (8), and the result follows. 

Such an approach will be applied in Section 5 to prove that v(H) > 2 for 
some schemes H. Note also that uniqueness of the solution of (8) is ensured 
whenever we take for G a U-primitive graph such that m,(st) is a constant b 
for st E V, and for 1’ the function on EG taking identically the value l/b. 

Now we explain a relation between vertices of a polyhedron P(G, H) and 
metrics. We shall identify an edge in H and an edge in G if they have the 
same ends. 

STATEMENT 2.5. Let 1 be a vertex of a polyhedron P(G, H). Then 
l(e) = ml(e) < 1 for each e E EG. 

Proof. Define I’ by Z’(e) := min{l, ml(e)} for e E EG, and let Z”:= 
22 - 1’. Clearly 1’ < 1~ 1” and I’ satisfies (5); hence 1’ and 1” are contained in 
P(G, H). Now since 1 is a vertex in P(G, H), we have 2 = Z’= 1”. l 

COROLLARY 2.6 (to Statement 2.5). lf G is complete and 1 is a vertex of 
P(G, H), then 1 is a metric and Z(st) = 1 for each st E EH. 

STATEMENT 2.7. Let 1 be a vertex of a polyhedron P(G, H), and let G’ 
be the complete graph with VG’= VG. Then there exists a vertex I’ in 
P(G’, H) such that I’ coincides with I on EG. 
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Proof. Let c be chosen so that 1 is the unique optimal solution of 
M*(G, c, H). Let c’ be the extension of c by zero on EC’- EG, and r be 
the extension of 1 by unity on EG’- EG. Then f~ P(G’, H) and cf%= cl. 
Take a vertex 1’ of P(G’, H) that is an optimal solution of M*(G’, c’, H), and 
let 1” be the restriction of I’ to EG. Clearly 1” E P(G, H). We have 
cl” < c’l’< c’i= cl, and now uniqueness of 1 implies I= I” = l’lEc. n 

It follows from Corollary 2.6 and Statement 2.7 that in order to determine 
Y(H) for an arbitrary scheme H it suffices to consider only the set of 
complete graphs G and the functions I on EG that are metrics with I( st ) = 1 
for all st E EH. This fact will be used, in particular, in the proof of Theo 
rem 1. 

3. PROOF OF THEOREM 1 

Let G be a graph, c be a capacity function on EG, and H, VW _C VG, be 
a scheme having property (P). One must prove that M*(G, c, H) has a 
i-integral optimal solution. We shall denote VG by V. 

Let f and 1 be optimal solutions of M(G, c, H) and its dual, respectively. 
As it was explained in the previous section, we may assume that the graph G 
is complete and 1 is a metric on V satisfying l(st ) = 1 for all st E EH. Our 
end is to find a i-integral metric m on V satisfying 

m(st) = 1 for all st E EH (10) 

and EH-decomposing I, i.e., 

x,y~V, Z(xy)=O imply m(ry)=O; (II) 

I?(Z, EN) c r(m, EH). (12) 

Then holding (6) and (7) for f and I implies holding them for f and nz; thus, 
m will be also optimal, and Theorem 1 will be proved. The metric m is 
derived from I, and it belongs to a special class of metrics on V which we 
now introduce. 

For an arbitrary scheme H’, let ~2 = .sYJ( H’) denote the set of anticliques 
in H’, and 9 = a( H’) denote the set of nonempty subsets OL c VH’ such that 
a = A f~ B for some distinct anticliques A and B in H’. Note that if H’ has 
property (P), the members of 9 are disjoint. We say that s E VH’ is a 
l-terminal if s is in exactly one anticlique in H’, and a 2-terminal otherwise. 
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For two not necessarily distinct vertices s and t in H’ such that st 4 EH’, 
we write s - t if s and t are 2-terminals and, for each A E &, either s, t E A 
or s, t 4 A; and we write s-c t otherwise (in particular, s + s if s is a 
l-terminal). Obviously, the relation - is transitive, and if s - t, then, for 
p E VH’, sp E EH’ implies tp E EH’ (and vice versa). 

For H and V as above, let 9 = (X,; Y,; 2,) be a family of 2]&‘r$(+ )CB] 
subsets X, (A E d), Y, (a E 9), and Z, (A E ,oy”) of V (each of these 
subsets can be empty). We say that 9? is a framework (for V and H) if the 
sets in 9 are disjoint and the following are true: 

each l-terminal s E A E _z? is contained in X, and each 
2-terminal s E a E 9 is contained either in Y, or in X, 
for some A E d such that a c A; 

(13) 

unless X, is empty, it contains some s, t E A (possibly 
s = t ) such that s + t; unless Y, is empty, it contains 
some sEa 

(14) 

(thus, each 2, contains no terminal). It should be noted that (14) is not 
essential in our proof, but it will be useful for considerations in Section 5. Let 
M be the set of elements of V contained in none of the X,‘s, YU’s, and Z,‘s, 
and define 9’(a) to be the family of all sets in 9 and the set M. We 
associate with 9 the graph B = C@(B) with vertex set Y( 9) whose edges 
are 

x*z‘4 for all A E .&, 

Y,Z* forallAE.@‘andaE9suchthatacA, 

Z‘4M for all A E &. 

Define the metric h = h[ 91 on y(9) to be in+ In particular, one can 
see that h(X,X,) = h(X,Y,) = h(Y,Yp) = 1 if A, B E &, A # B, cx, fi E 9, 
(Y C A, and neither a nor p is included in any common anticlique in H. 
Finally, we define the metric m = m[9] on V induced by 59 as follows: 

(i) m(ry) := 0 if x and y are in the same set in 9(B); 
(ii) m(xy) := h(SS’) if x E S, y E S’, where S and S’ are distinct members 

of 9(a). 

STATEMENT 3.1. m = m[ 2’1 satisfies (10) for any framework 9 for V 
and H. 
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This follows from (13) and the constructions of 9 and m[ 91. Thus, the 
frameworks generate a class of i-integral metrics that are feasible solutions of 
M*(G, c, H). 

Construction of the metric m. For XE V, let 

N(x) := {LE v: Z(x.2) =O}. 

Define 9%’ = (X,; Y,; 2,) as 

XA:= {xEV:Z(sx)+Z(ti)<iforsomes,tEA, s-t} for AE._&‘, 

Y,:=U(N(s):s~cy)-u(XA:A~&‘,cucA) for (YES, 

(15) 
ZA:= {r~V:Z(sx)+Z(xt)=iforsomes,t~A, s+t} 

-X,-~(Y,:cYE~), QCA) for AE.&. 

Below we shall prove the following. 

LEMMA 3.2. The collection 9 defined by (15) is a framework for V 

and H. 

Let M and 9’(W) be defined as above for given 9’. The required metric 
m is just m[9]. 

As an illustration, consider a scheme H consisting of two complete graphs 
with vertex sets Ti and T,, where ITI >, 3, i = 1,2. Given Ti and T,, take the 
graph K from Example 2 in Section 2. Let G be the complete graph with 
VG = VK, c be the capacity function for G generated by P( K, EH), and 
Z := arnK, Then 1 is an optimal solution of M*(G, c, H) (by arguments in 
Section 2). One can check that the sets in 9 defined by (15) for given Z are 
X,=0, Z,= {xst} [A= {s,t} E&(H)], and Y,= {s} (sEVH), whence 
M = { u } and m [ 2’1 coincides with 1. Note also that 1 is the unique optimal 
solution of M*(G, c, H) because of the EH-primitivity of K, and so the 
fractionality of this problem is just 4. 

Now we begin to prove correctness and the optimality of m. Put 
9 := Y( 9). 

Proof of Lemma 3.2. First of a.ll we observe from (15) that if x E S for 
some S E 9, then N(x) c S. Let s E VH. If s is a l-terminal contained in an 
anticlique A, then s E X, (since s + s and I( sx) + Z( xs) = 0 < f for x := s). If 
s is a Bterminal contained in (Y E 9, then, by (15) either s E X, for some 
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A E G’ such that (Y c A, or s E Y,. Thus, (13) holds. (14) is trivial. It remains 
to prove that the sets in Y are disjoint. This falls into a number of claims. 

CLAIM 3.3. 

(i) s - t if and only ifs and t are in the same set in 9. 
(ii) s + t if and only if there is a unique anticlique containing both s 

and t. 

CLAIM 3.4. 

(i) MnS=0 foraZZSESP(S)- {M}. 
(ii) X,nY,=X,nZ,=Z,nY,=0 for AE.s’ and fm a~9 such 

that acA. 

Claim 3.3 obviously follows from property (P), and Claim 3.4 from (15). 

CLAIM 3.5. Zf s, t E A E ~2, s + t, p E VH, Z(sp) < 1, and Z(tp) < 1, 
then p E A. 

Indeed, sp 4 EH, since Z(q) < 1, and similarly tp e EH. Hence s, t, and 
p are in some anticlique B, and we have B = A because s * t. 

It follows from Claim 3.5 that, firstly, each terminal in X, U Z, is in A 
and, secondly, X, n Y, = Z, n Y, = 0 if (Y Q: A. 

CLAIM 3.6. Let A and B be distinct anticliques, and let s, t E A, s * t, 
p,qEB, p*q, andxEV. Then: 

(i) if Z(sx)+ Z(ti) < i, then Z(px)+ Z(xq) > $; 
(ii) if Z(sx)i- Z(xt) = +, then Z(px)+ Z(xq) > i; moreover, if equality 

holds, thenthereareuE{s,t} andwE{p,q} suchthatu,wEAnBand 
Z( ux) = Z( wx) = 0. 

Indeed, s + t, p + q, and A # B imply s’p’ E U for some s’ E { s, t } and 
p’ E { p, q } (otherwise s, t, p, and q would be all in some anticlique C and 
we would have A = C = B, by Claim 3.3). Letting, for definiteness, s’= s 
and p’ = p, we have Z( sx) + Z( tx) + Z( px) + Z(qx) >, Z( sp) = 1, whence the 
required inequalities in (i) and (ii) follow. Next, if Z(sx) + Z(tx) = Z(px) + 
Z(qx) = $, then Z(tx)+ Z(qx) = Z(tq) = 0 [since Z(sx)+ Z(px) 2 l(v) = 11. 
Now Z(tq) = 0 and Z(sq) = I( st ) < 1 imply tq, sq e U, whence q E A, by 
Claim 3.3(ii). Similarly, t E B. 

It follows immediately from Claim 3.6 that X, n X, = X, n Z, = 0 for 
distinct anticliques A and B. Thus, we obtain X, n S = 0 for all S E Y - 
{ X, }. Next, consider a set Z,. It was shown that Z, n X, = Z, n Ya = 0 for 
any B E .z4 and (Y E 9. This and (13) imply that Z, contains no terminal. 
Suppose that Z, n Z, # 0 for some B Z A, and let x E Z, n Z,. Then, by 
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Claim 3.6(ii), N(x) contains some terminal s, and hence s E Z,, a contradic- 
tion. Thus, Z,nS=0 forah SGP’-- {Z,}. 

CLAIM 3.7. Y, f' Yp = 0 for any distinct a, p E 9. 

Indeed, assuming that Y, and YP are nonempty, consider arbitrary 
terminals s and t in Y, n (Y and YP n/3, respectively. If st E EH then 
I( st ) = 1, and if s + t then I( st ) > i (otherwise we would have s, t E X,% for 
the anticlique A containing s and t ). In both cases we have N(s) n N( t ) = 0, 

and the result follows. 
Thus, 9 consists of pairwise disjoint sets. Lemma 3.2 is proven. n 

We continue the proof of the theorem. We have remarked above that 
m = m[ .%‘I satisfies (10) for any framework 9. Next, (11) obviously foUows 
from the fact that, for any S E -4p, x ES implies N(X) c S. It remains to 
prove (12). We start with the following auxiliary statement. 

STATEMENT 3.8. Let s, t, p, and q he (not necessarily distinct) termi- 
nals, sothats+tandpqEEH. Thenthereares’E{s,t} andp’E{p,q} 
for which s’p’ E EH. 

Proof. Suppose that it is not so for some s, t, p, and q as in the 
hypotheses of Statement 3.8. Then s, t, and p (or q) are in some anticlique 
A (or I?). Since s * t, we have A = B (by Claim 3.3) contrary to pq E U. W 

Consider an arbitrary EH-geodesic L = x0x1 . . . xk of 1. One must prove 
that L is also a geodesic of m. Let p := x0 and q := xk. By (lo), m(pq) = 
Z( pq) = I( EL) = 1. Claims 3.9-3.11 below clarify how L can pass across each 
of the sets in y(.%‘). In particular, we shall show that unless VL n S = 0 

for some S E y(.%‘), the vertices ri in L contained in S go in succes- 
sion (without gaps). For 0 < i < j <k, let VL(r,, xi) denote the set 

{xi>xi+~~“‘>xj}’ 

CLAIM 3.9. lf V’ := VL n X, is rwnempty for some A E -01, then either 
V’=VL(p,xi) forsomei<korV’=VL(rj,q) forsomej>O. 

Proof. Choose a vertex x in V’, and let s and t be elements of A such 
that s -+ t and Z(sx) + I(&) < $. By Statement 3.8, we may assume, for 
definiteness, that sp E EH. Then Z(sx) + Z(m) > Z(sp) = 1 and 
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whence Z(t9) < Z(tx)+ &x9) < i and I(s9) < l(st)+ Z(Q) < 1. Thus, tq, ~9 
g EH, and hence 9 E A. Two cases are possible. 

(1) t +- 9. For any x’ E VL( x, 9), we have 

therefore x’ E X,. Thus, VL(x, 9) c X,. 
(2) t - 9. Then tp E EH (since 9p E EH) and s * 9 (otherwise s - 9 

and t - 9 would imply s - t). Following the same reasoning for t as for s 
above, we also obtain VL(x, 9) G X,. 

Now choosing as x the vertex x j in V’ with the least number j and taking 
into account that p g X, (since 9 E A implies p @ A) we obtain the claim. W 

CLAIM 3.10. Zf V’ := VL n Y, is nonempty for some a E 9, then one of 
the foZ2owing is valid: 

(i) V’=VL(p,xi)~N(p) forsomeick; 
(ii) V’=VL(xj,9)cN(9) forsomej>O; 
(iii) V’= VL(x,r j) c N(s) for some 0 < i < j < k and some terminal s in 

Y, such that s + p, s * 9, and Z( ps) = Z(9s) = i. 

Proof. Let x be an arbitrary vertex in V’. Two cases are possible. 

(1) Z( pr) = 0 [the case 1(9x) = 0 is symmetric]. Then N(r) c Y, implies 

VL( p, x) c Y,. 
(2) 0 < Z(pr) < 1 [and hence 0 < Z(9x) < 11. Choose a terminal s in Y, 

such that Z(sx) = 0. Then Z( ps) = Z(px) < 1 and Z(9s) = 1(9x) < 1, whence 
ps, 9s ~6 EH. Therefore p, s E A and 9, s E B for some anticliques A and B. 
Now p9 E EH implies A # B, p P B, and 9 4 A, whence s + p and s + 9. 
Since x P X,, we have Z( px) = I( px) + Z(x.s) > i; similarly 1(9x) 2 $. Now 
Z(px)+ 1(x9) = 1 implies Z(px) = Z(9x) = $. 

The rest of the proof is trivial. W 

Note that if case (iii) in Claim 3.10 occurs and s, p E A E J&‘, then each 
vertex in VL( p, xi_ 1) which is contained in none of X, and Ya (p C A) must 
be in Z,, and similarly for VL(x j+ 1, 9). Hence VL n M = 0. 

CLAIM 3.11. Let V’:= VL n Z, be rwnempty for some A E &. Then 
V’= VL(x,, xi) for some 0 < i < j -C k, and exactly one of the following is 
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valid: 

(0 vL(P> xi_l) C X,; 
(ii) VL(~,X~_~)CY~ jiisome CYELB, CXCA; 
(3 VL(Xj+l, 9) C X.4; 
(iv) VL(xjtl, 9) C Y, for some A E 9, (Y c A. 

Proof. Let x be an arbitrary vertex in V’. Then there are s, t E A such 
that s + t and Z( sr) + I(&) = f . By Statement 3.8, one may assume, for 
definiteness, that s-p E EH. Using similar arguments to those in the proof of 
Claim 3.9, we conclude that 9 E A and that there is v E {s, t } such that 
v * 9 and Z(vr’) + l(x’9) < + for any x’ E VL(x, 9). This implies that each 
vertex in VL(x, 9) is in one of the sets X,, Z,, or Y,, (Y c A. Now applying 
Claims 3.10 and 3.11, we obtain the conclusion [note that at most one of 
(i)-(iv) can hold because ]{ p, 9} n A] G 11. n 

One easy consequence of Claims 3.9-3.11 is that if VL n M is nonempty, 
then it is VL(x,, r j) for some 0 < i < j < k. Claims 3.9-3.11 enable to 
describe all possible cases of passing L across sets in y(B). More precisely, 
we assert the following (a verification is straightforward and left to the 
reader): there are indices 0 = i(0) < i(1) < i(2) < i(3) < i(4) < i(5) = k + 1 and 
amapping j+SjEP’(%‘), j=0,...,4,such that: 

(i) for j=O,...,4, Vj:=VL(xi(j), zi(j+i,_l)CSj [if i’>i”weassumeby 

definition VL(x,,, xi,,) :=0; so each of Vi, V,, and Vs can be empty]; 
(ii) S, is either X, for some A E & or Y, for some cx E 9; 
(iii) S, is either X, for some I3 E z2 or Yp for some p E 9; 
(iv) S,(S3)isZA(ZB),andifS,=Y,(S,=Yg)thencrcA(pcB>; 
(v) S, is either M or Y, for some v E 9, and if S, = Y, then v = A n B. 

(See Figure 3.) It follows from (ii-(v) and the constructions of the graph 3 
and the metric h that h(SjSj+ 1) = a for j = 0,. . . ,3. Let J be the set of pairs 
(j, j’) such that 0 < j < j’< 4 and i( j - 1) < i(j) = i( j + 1) = . . . = i( j’ - 1) 

FIG. 3. 
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< i(j’) [letting i( - 1) := - 11. Using (i) and the fact that m and h are 
metrics, we have 

=z(h(SjSj,):(j,j’)~J)<z(h(SjSj+l): j=O,...,3) 

=4x$=1. 

Now since m(EL) > m(pq) = 1, we obtain m(EL) = 1, as required. 
This completes the proof of Theorem 1. 
In conclusion we make several observations from the proof of Theorem 1; 

they will be used in Section 5. As before, we assume that H has property (P) 
and G is complete. It was established in the proof of Theorem 1 that the 
optimum in M*( G, c, H) is achieved on a metric m induced by a framework; 
such a framework is called optimal for G, c, and H. Thus, we obtain 

STATEMENT 3.12. Each vertex of the polyhedron P(G, H) is the metric 
m [ W] induced by a framework W for VG and H. 

The following is an obvious corollary of the construction of the metric 

m[al. 

STATEMENT 3.13. If .L% = (X,; Y,; Z,) is a framework for VG and H in 
which Z, is empty for each A E &, then ihe metric m [ 91 is half-integral. 

For A E &, let 9(-4) denote the set of (Y E 9 such that CY c A. For 
(Y E 9, let d, denote the number of A E ..a? such that (Y c A. One can check 
that the metric m [ 91 is expressed as 

m[.9]=~(~(pX,+pWn:AESP)-~((d~-2)pY~:at9)), (16) 

where W, := X, U Z,U_J(Yol: a E 9(A)) (pX ’ is the characteristic function of 
the “cut” SX’, X’c V). This yields a special minimax relation in which the 
maximum total value v(G, c, H) is strictly bounded by certain linear combi- 
nations of capacities of cuts of G. 

STATEMENT 3.14. The following is true: 

u(G,c,H)=~min{~(c(GX,)+c(6W,):At&(H)) 

-C((d,-2)c(6Y,):ly~~(H))}, 
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where the minimum is taken over all frameworks W = (X,; Y,; Z,) for VG 
and H. 

STATEMENT 3.15. Let 9 = (X,; Y,; Z,) be an optimal framework for G, 
c, and H, and suppose that, for some A E JS?, no more than one set among 
X, and Y,, a E 9(A), is nonempty. Then the framework .%?‘(X;; Y;; Zi) 
obtained jnnn .!%’ by setting ZA := 0 (and keeping the other 2]&‘]+ ]9] - 1 
sets) is also optimal. 

Proof. Put I := m[ B] and I’ := m[ a’]. It follows from (16) that if each 
of X, and Y,, cx E 9(A), is empty, then 1’~ 1, whence cl’< cl and 9’ is 
optimal. Now assume that there is a unique nonempty set among X, and Y,, 
(Y E 9(A). Let 9” = (Xt; Y,“; Zz) be the framework obtained from 9 by 
setting Xi := X, U Z, and Zi; := 0 if X, f 0 and by setting Y,” := Y, U Z, 
and Zl:= 0 if Y, + 0. Put 1” := m[ 9?“]. One can check that Z(e) = 
$[ I’( e) + Z”(e)] holds for any e E EG. This implies the optimality of both 9 
and 9%“‘. w 

4. PROOF OF THEOREM 2 

We start with two statements. K’ is an induced subgraph of a graph K if 
VK’=X and EK’={x~EEK:x,~EX} for some XCVK; K’ may be 
denoted as K(X). If K” is an arbitrary subgraph of K, we write K” c K. 

STATEMENT 4.1. lf a scheme H’ is an induced subgraph of a scheme H, 
then v(H) = kv( H’) for some positive integer k. 

Proof. Consider a problem M*(G’, c’, H’). Assuming (VH - VH’) n VG’ 
= 0, take the graph G with VG = VG’ U (VH - VH’) and EC = EG’. Obvi- 
ously, M*(G, c, H) and M*(G’, c, H’) have the same set of feasible solutions, 
whence the result follows. w 

STATEMENT 4.2, lf a scheme H does not have property (P), then there 
exists a subset T 5 VH of cardinality 6 such that H’:= H(T) satisfies 

H’cH’cH’, (17) 

where Ho and H’ are graphs as drawn in Figure 4. 

(One can show that the converse is also true.) 
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Ho H' 

FIG. 4. 

Proof. Let A,, A,, and A, be distinct pairwise intersecting anticliques 
in H such that A, n A, # A, n A,. Two cases are possible. 

(1) For i = 1,2,3, each A::=(Ajn Ak) - Ai is nonempty, where 
{ i, j, k } = { 1,2,3}. Choose six terminals, say t,, . . . , t,, so that ti E A:, ti +3 
E Ai, and titi+a E EH (tit3 exists because Ai is a maximal independent set). 

(2) There are Ai and Aj such that Ai n Aj c A, and A’:= (A, n Ak) - 
A j # 0, where { i, j, k } = { 1,2,3}. Choose six terminals, say t,, . . . , t,, so that 
t, E A, n A, n A,, t, E A’, t3 E Ai - A,, t, E Aj, t, E A,, and trtria E EH, 
r = 1,2,3 (t, exists because H contains no isolated vertex). 

A straightforward check shows that in both cases the terminals t,, . . . , t, 
are distinct and they induce the subgraph H’ in H satisfying (17). n 

We shall assume that the vertices of the graphs Ho and H’ are labeled by 
r,, . * * 7 t, as shown in Figure 4. Let &’ be the set of schemes H’ whose 
vertices are labeled by t,, , . . , ts and such that H’ satisfies the inclusions in 
(17) with preserving the labels. We say that (labeled or unlabeled) graphs K 
and K’ are isomorphic (denoted as K = K’) if their underlying unlabeled 
graphs are isomorphic. 

Now we begin to prove Theorem 2. Let k be a positive integer >, 3. 
According to Statements 4.1 and 4.2 it suffices to consider only the different 
(up to isomorphism) schemes H in .# and for each of these H’s to yield G 
and c with (p(M*(G,c, H)) > k. Unfortunately, the list of such H’s is still 
too long to consider them separately. We give here a common construction 
for G and c whose features enable us to reduce this list to six cases of H ‘s. 
The approach developed here extends slightly that outlined in Section 2. 

A basic fragment of the graph G is the graph K from Example 3 in 
Section 2 (for given k); let the vertices of K be labeled as in Figure 2. The 
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graph G is obtained from I< by adding terminals t,, . . . , t, and the edges t,s,, 
i=I >..., 6; see Figure 5. It is easy to check that the following are true: 

for (i,j)=(2,5), 

for (i, j) = (1,4),(3,6),(2,4),(3,5), 

for (i, j) = (3,4), (18) 

for (i, j) = (5,6), 

for (i, j) = (4,5),(4,6) 

[we point out that m,(sisj) only for 1 < i < j < 6 such that titj E EH’]; 

every titj-chain Z, in G, i f j, has view tis,. . . siti, and 
for any function 1 on EG, L is a geodesic of 1 if and only 
if the part of L from si to sj is a geodesic of II,, (in K). 

(19) 

Put B := { ti,si: i = 1,. . . ,6}. Suppose that some H E .%’ and J C B are 
fixed. Define the capacities c = cII,, of edges of G by 

c(e) := 
c’(e) for e E EG - J, 

c’(e)+1 for eEJ, 
(26) 

where c’ is the capacity function for G generated by I’(G, EH) (see Section 
2). We say that a function 1 on EG is good for H and J if 

m,( titj) = 1 for all titi E EH, (21) 

1 is constant on EK, (22) 

Z(e) = 0 for all e E J. (23) 
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Our proof is based on Claims 4.3-4.5 below (Claim 4.3 enables us, in 
particular, to eliminate many schemes in 2). 

CLAIM 4.3. Suppose that there exists a function 2 good for H and J Let 
U(Z) := { titj: 1~ i < j < 6, ml(titj) > l}, and let H’ E 3 be such that EH c 
EH’ c U(Z). Then evey optimal solution of M*(G, c~,~, H’) is a good func- 
tion for H and J. 

Proof. Let c := CH,,’ and let f be the multiflow for G and H’ generated 
by T(G, EH). We observe that f and 1 are optimal solutions of M(G, c, H’) 
and its dual, respectively. Indeed, firstly, Z is feasible for H’ [by (21) and the 
definition of U(Z)]. Secondly, (6) holds for f and 1 because of (23) and the 
fact that f saturates each edge in EG - J [by (20)]. Thirdly, each chain 
L E 9(G, H’) with f(L) > 0 is an EH-geodesic of G, and now, using (19) 
(twice) and (22), we obtain that L is an EH-geodesic of 2, whence (7) holds 
for f and 2. Now consider an arbitrary optimal solution 1’ of M(G, c, H’). 
The relations (6) and (7) for H’, f, and 1’ show that (21) and (23) hold for I’. 
Finally, (22) for I’ follows from (7) (for f and Z’), (19) and the facts that 
EH” c EH and K is U”-primitive, where U” := { slsq, s2sg, s3ss}. n 

For a good function I, let a(Z) denote Z(e) for e E EK. 

CLAIM 4.4. Zf 1 is good for H and J and a(Z) > 0, then 1 is not 
l/k-integral. 

Proof. Let L be a t,t,-geodesic of I, and let L’ be the part of L from s2 
to ss. Then (19) and (22) imply that L’ is a geodesic of K. Therefore L’ has 
k + 1 edges [by (18)]. Since tzts E EH” c EH, we have Z(EL) = 1 [by (21)], 
and hence 1 = Z( EL) >, Z( EL’) = (k + l)a( 1). So 0 < ka( 1) < 1 and the result 
follows. n 

CLAIM 4.5. The following are equivalent: 

(i) a(Z) > 0 for each good function 1 for H and J; 
(ii) the system S(H, J) given by 

T,( tisi)z( tisi) + T,( tjsj)z( tjsj) = 1, titj E EH, 

where r,(e) is 0 if e E J and 1 if e E B - 1, has no nonnegative solution. 

The proof is obvious. 
Now we consider six concrete schemes Ho,. . . , H, in LX+‘, where Ho := Ho 

and H,, . . . , H, are schemes drawn in Figure 6. For each H = Hi we shall fix 
a subset J = .ZI c B and point out a function 1 = Zi good for H and J. Next, we 
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FIG. 6. 

shall establish that the system S( H, J) has no solution for each of these H's 
and J’s Thus, by Claims 4.3, 4.4, and 4.5, M*(G,cH,,, H') has no l/k- 
integral optimal solution for each H' E X( H, Z), where X’( H, Z) is the set of 
schemes H' such that EH c EH’ c U(Z) [U(Z) is defined as in Claim 4.31. 
Finally, we shall show that each scheme in X’ is isomorphic to some scheme 
in 

S-z:= {H,}uX(H,,Z,)u ... uX(Hg,Zs), 

whence Theorem 2 will follow by the above arguments. 

Case H = H, ( = Ho). Put _Z:= { t,s,, t,s,, tsss, t,s,s} and Z(e) := l/ 
(k + 1) for all e E EG - J [Z(e) := 0 for e E J]. One can see from (18) that 
(21) holds for given H and 1. Thus, Z is good for H and J. The system 
S( H, J) contains the equality 0. Z(t,s,) + 0. l(t,s,) = 1; therefore, S( H, J) 
has no solution. 

CaseH=Hi, i=l , . . . ,5. For each of these H’s we put J := { trs,, t,s,} 
and 

( 1 

2k 
for eEEKU{t,s,}, 

Z(e) := ( !_f$ for e = tss,, tss,, 

1 

\2 
for e = t4s4. 

Using (18), one can check that V( 1) = EH' and ml(titj) = 1 for all titj E U(Z) 
(and so 1 is good for each of the H’s and J’s in question). For H = H, the 
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FIG. 7. 

system S( H, J) contains the equalities 

04(t,s,)+ Z(t,s,) = 1. 

0. I( tzs2) + I( t,s,) = 1, 

Z(t,s,)+ Z(t,s,) = 1; 

therefore S( H, J) has no solution. We leave it to the reader to verify the 
unsolvability of S( Hi, J) for i = 2,. . . ,5. 

Now consider an arbitrary scheme H E 3' not belonging to g. Let 
A := EH - EH'. We have H # Ho and EH, g EH for i = 1,. . . ,5 [otherwise 
H E F because EN c EH' = U( Zi)]. This implies that 

If(A(f3 and either AC {t,t,,t,t,,t,t,} or Ac_ {t,t,,t,t,,t5t6}. 

Furthermore, JA( > 1 (otherwise H s H,), and H is not a chain with 5 edges 
(otherwise H z H3). This and (24) imply that H is one of the graphs shown 
in Figure 7. It is easy to check that each of these graphs is isomorphic to 
some graph in 9. 

This completes the proof of Theorem 2. 

5. INTEGRALITY AND HALF-INTEGRALITY 

Here we describe the classes of schemes H for which v(H) = 1 and 
v(H) = 2. By Theorem 2 such schemes must have property (P). Three cases 
of schemes H with v(H) = 1 or 2 are known: 

(El) H is a complete bipartite graph; 
(E2) EH consists of two nonadjacent edges; 
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(E3) there exists a partition {&i, d2} of the set d(H) of anticliques of 
H such that each ~4’~ consists of pairwise disjoint anticliques; in other words, 
H is the complement of the line graph of a bipartite graph. 

(El) and (E2) are special cases of (E3). In case (El), cp( M( H)) = Y( H j = 1 
by a “multiterminal” version of the max-flow min-cut theorem of Ford and 
Fulkerson [5]. In case (E2), (p(M(H)) = 2 and v(H) = 1 by the max-two-com- 
modity-flow min-cut theorem of Hu [7]. In case (E3), I&M(N)) = v(H) = 2 
by [ 131 (a detailed proof was given in [8, 161; in [lo] a strongly polynomial-time 
algorithm to solve the problem M(G, c, H) and its dual with such schemes H 
was developed). Note also that an arbitrary complete graph H is a special 
case of (E3); the fact that ‘p( A4( H )) = v(H) < 2 for such an H was in- 
dependently established by LovAsz [17], Mader [18], and Cherkassky [3] 
(Cherkassky’s proof and algorithm were described also in [I]). 

REMARK. The existence of a half-integral optimal solution of M*( G, c, H ) 
with H as in (E3) can be established directly from Statement 3.14 as follows. 
One may assume that the graph G is complete. First of all we observe that 
each terminal in H is in at most two anticliques, whence cl, = 2 for all 
rr E 9. Let 9 = (X,; Y,; 2,) be an optimal framework for G, c, and H. 
Form the families gi = (Xi; Y$ Zft), i = 1,2, by setting YL := Z:, := iz for all 
LYE~ and AE..& and 

x; := 
x’* if A E SB,, 

W, [ =X,UZ,,~UU(Y~:~E~(A))] if AE&~_~. 
(251 

One can check that each gi is a framework for G, c, and H. Considering 
(16) for 9, .9?‘, and W2 and taking into account that d, = 2 for all 01 E g, 
we obtain m[9] =i(m[%“‘]+ m[.%?‘]). This implies that each m[9’] is 
optimal. Furthermore, m[.9?‘] is half-integral, by Statement 3.13. 

Let K + K’ denote the graph consisting of disjoint graphs K and K’. Let 
K, be the complete graph with R vertices. It turns out there is one more 
scheme H with v(H) = 2. 

STATEMENT 5.1. If H = K, + K, then v(H) = 2. 

[q$M( H)) = 2 is also true, but a proof of this fact exceeds the limits of 
our paper.] 

Proof. Let, for definiteness, VH = { sl, . . . , sg} and EH = 

{ sisa, s3s47 S4SS’ s5s3}. Then d(H) = ({si, sj}: 1 d i < 2, 3 6 j < 5}, 
9(H)= {(si}:i=1,...,5}, and H has property (P). Consider a problem 
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M*(G, c, H) with a complete graph G. Let 9 = (X,; Y,; 2,) be an optimal 
framework for G, c, and H in which the number w(9) of nonempty sets 
among Z,, A E -c4, is minimum. Put 2 := m[9]. We shall show that w(9) = 
0, whence 1 is half-integral, by Statement 3.13. Suppose, for a contradiction, 
that o(9) > 0. 

Consider an anticlique A = { si, s j }. Let S = S(A) be the collection of 
nonempty sets among X,, Ytsi ), and Y(,, ). It follows from (14) that if X, 

(Y,) is nonempty, then X, n VH = A (respectively, Y, f~ VH = a). Therefore, 
ISI < 2, and if (SI = 2 then S = { Yts,), Y(,,) }. Furthermore, by Statement 
3.15, z, = 0 if (S( Q 1. 

Let qbethenumberof AEdsuchthat X,+0.Since lVHl=5, 17~2. 
If r~ = 2 then Y{,, is nonempty for exactly one s E VH, whence by the above 
arguments IS( < 1 for each A E &, and ah Z,‘s are empty. It remains to 
consider two cases. 

Case 1. II= 0. For k = 1,2, form Sk = (Xi; Y,“; Zi) by setting Xi := 
Zi:=0 forah AE&‘and 

i 

y(%) for i=k, 

Yk .- Y{s,) “z{s,Jt) (61 .- 
for i = 3,4,5, 

Y~~,Iu~~U(Z(~,,~,):j=3,4,5) for i=3-k. 

Case 2. q = 1. Let, for definiteness, X, = { si, sa}. Then Y, = 0 for 
a= {si}, {~a}, and Z,=0 for A= {s~,s~},{s~,s~},{~,,ss},{~~,~~}. For 
k = 1,2, form .J%‘~ = (Xi; Y,“; Zi) by setting 

xi := 
i 

xi4 for A= (sl,s3}, 

Y~,,,uY(sgttj uz,sz,s3+k) for A= {%%+d~ 

Y,” := Y, for (Y= {s&k}, 

and setting Q := 0 for the remaining Q’s in Bk. 

One can verify that in both cases each 9% is a framework for VG and H. 
Let Zk := m[Bk]. A straightforward though tiring check shows that in each 
case I = i(1’ + Z2), which implies that each Bk is optimal. But ~(9~) = 0, a 
contradiction with the choice of 9. n 

Now we prove that there is no scheme H with v(H) = 1 or 2 different 
from those listed above. 
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THEOREM 4. 

(i) v(H) = 1 if and only if H is as in (El) or (E2). 
(ii) v(H) = 2 if and only if H is as in (E3) or Statement 5.1 and H is 

different j-km the scheme in (El) and (E2). 

Proof. It suffices to show that 

(a) v(H) > 1 if H is not as in (El) or (E2), and 
(b) v(H) > 2 if H is not as in (E3) or Statement 5.1. 

Suppose that H is neither as in (El) nor as in (E2). It is not difficult to 
show that there exist a subset T c VH and a partition {T,, Ts, T?} of T such 
that (i) the induced subgraph H’ := H(T) contains exactly three edges and 
has no isolated vertices, and (ii) for 1 < i < j < 3, Ti and Tj are joined by an 
edge. By Statement 4.1, it suffices to show that v( H’) > 2. Let G be the 
graph with the vertex set T u { x1, x2, lcg, y } and the edge set E, U E,U 
E, U E,, where E, := { xiy: i = 1,2,3} and Ei := { xjp: p E Ti}, i = 1,2,3. 
Define c(e) to be 1 for e E E, and to be a large enough positive integer for 
e E EG - E,. It is easy to see that M*(G, c, H’) has the unique optimal 
solution I, where Z(e) := f for e E E, and 0 for e E EG - E,. 

In order to prove (b) we need two auxiliary statements. We say that a 
graph K’ is a vertex minor of a graph K if there is a sequence K = 
K’, K2,..., K”=K’of graphs such that, for i=l,...,n-1, either Kit’= 
K’(X) for some X c VK’ or K’+’ is the graph K i/{ x, y } obtained from K’ 
by identifying two nonadjacent vertices x and y in it (and then identifying 
multiple edges). 

STATEMENT 5.2. lf H’ is a vertex minor of H, then v(H) = kv( H’) for 
some integer k > 1. 

[It is also true that cp(M( H)) = k’cp( M( H’)), but it is not important 
for us.] 

Proof. In view of Statement 4.1, it suffices to prove this for the case 
H’= H/{ s, t }, where s and t are nonadjacent vertices in H. Let p be the 
vertex in H’ arising by identifying s and t. Consider a vertex 1’ of a 
polyhedron P(G’, H’), and choose a problem M*(G’, c’, H’) having the 
unique optimal solution 1’. Let G be the graph obtained from G’ by adding 
“new” vertices s and t and the edges sp and tp; one can suppose that 
VH = (VH’- {p})U (s, t}. Put c(e):= c’(e) for e E EG’ and c(v) := c(tp) 
:= a, where a := c’(EG’) + 1. Let 1 be an optimal solution of M*(G, c, H), 
and let b be the function on EC defined by b(e) := l’(e) for e E EC’ and 
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b(sp) := b(tp) := 0. We show that 1 = b, whence the result obviously follows. 
Let g be the function on EG’ defined by g(e) := l(e) if e is not incident 

to p and g(e) := l(e)+ l(sp)+ l(tp) th o erwise. It is easy to check that b and 
g are feasible solutions of M*(G, c, H) and M*(G’, c’, If’), respectively 
(using the facts that st 4 EH and that, for q E VH’ - { p }, pq E EH’ if and 
only if at least one of sq and tq is in EH). Obviously, CT’= cb. Also we have 

cl - c’g = a(l(sp)+ l(tp)) 

- x(c’(e)[l(sp)+ l(w)] : e E EG’, e incident to p) 

by definition of a. Thus, 

cl-l(v) - lb) >, c’g >, c’l = cb > cl, (26) 

whence l(sp) = l(tp) = 0 and c’g = ~‘1’. This implies g = 1’ (by the unique- 
ness of optimal 1’) and, finally, 1 = b. n 

Now we introduce three special cases of schemes H’: 

(Hl) where k is an odd number >, 5, VH’ = {t,, . . . , tk}, and titj E EH’ if 
andonlyif 2<li-jl<k-2; 

(H2) VH’= {tl,..., ts}, t,t,, t,t,, t,t,, t,t, E EH’, tit, 4 EH’ for i = 
1,2,3, and tit, E EH’ for at least one i E {1,2,3}; 

(H3) H’ = K, + K,. 

STATEMENT 5.3. Zf H has property (P) and H is diffferent j-km schemes 
of the form (E3) and Statement 5.1, then H has a vertex minor isomorphic to 
one of graphs H’ us in (Hl)-(H3). 

Proof. Two cases are possible. 

Cu.se 1. Each vertex in H belongs to 120 17u)7e thun two anticliques. Let 
A r, . . . , A, = A, be a sequence of distinct anticliques of H such that (a) Ai _ 1 
meets Ai, i = l,..., k, (b) k is odd > 3, (c) k is minimum subject to (a) and 
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(b). Such a sequence exists; otherwise H would be as in (E3). Moreover, 
k > 5 (it is easy to see that if a graph contains three pairwise intersecting 
anticliques, then it also contains three anticliques having a common vertex). 
Choose a vertex, say ti, in Ai_inAi, i=l,...,k. Then the t,‘s are distinct 
and the graph H({ t,,. .., tk}) is as in (Hl). 

Case 2. There are three distinct anticliques, say A,, A,, and A,, in H, 
having a common vertex s. Let (Y := A, f~ A, ( = Ai n A j, i # j). Choose a 
vertex, say ti, in Ai - LX, i = 1,2,3. Then st, P EN, i = 1,2,3, and t,tj E EH, 
1~ i < j < 3 [the latter follows from property (P)]. Let W, := { p E VH: pti 4 
EH, i=1,2,3} and W,:=VH-W,- {tl,tz,t3}. Weobservethat W,#0 (as 
s E W,) and each vertex in W, is joined by an edge with some vertex in 
W, U W, (as H has no isolated vertex). Suppose that W, # 0. 

(1) IftherearepEW,and9EWzsuchthatp9EEH,thenH({t,,...,t,~}) 
is as in (H2), where t4 := p and t, := 9. Thus, we may assume that p9 @ EH 
for any p E W, and 9 E W,. 

(2) If P, 9 E W,, ~9 E EH, and 0 E W,, then H({ t,, t,, t,, P, 9, u})/{ 9.0) 
is isomorphic to a graph as in (H2). Thus, one may assume that W, = 0. 
Since H is not as in Statement 5.1, ) W,l > 3. Note that the graph H( W,) is 
connected [otherwise H would have at least three components, contrary to 
the fact that H has property (P)]. So there are three vertices p, 9, and 0 
in W, such that pq, pv E EH. Now if 90 E EH, then H({ t,, t,, &, p, 9, v}) 
is as in (H3), and if 9~ 4 EH, then H({ t,, t,, t,, p, 9, u})/{ t,, 1~) is isomor- 
phic to a graph as in (H2). n 

According to Statements 5.2 and 5.3, it suffices to show that v(H) > 2 for 
the schemes H = H’ as in (Hl)-(H3). We apply the approach set forth in 
Section 2. More precisely, in each of these cases of H’s we construct a graph 
G, a subset U c EH, and a function lo on EG satisfying (9) and not being 
&integral. We show that (8) with P := l’(I’, U) has a unique solution. 

(a) Let H be as in (Hl). Let G be the graph drawn in Figure 8(a), 
U:= {tit,+2:i=l,...,k)U{tlt,},and 

i 

I 

l*(e):= f 

if e = titi+l, i = 1,2,4,5 ,..., k, 

if e = t,v, t,v, 

J 
1 if e = t,u 

(setting t,, j := tj). Obviously, U c EH, (9) holds, and P(ZO, U) consists of 
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t.i 

(a> 

FIG. 8. 

v 

-6 
t2 

t1 t4 

t3 . 

t5 

(b) 

the chains titi+lti+2, i = 1,4,5 ,..., k, t,t,vt,, t,~t,t,~, t,ut,, and tint,. Taking 
into account that k is odd, one can see that (8) has a unique solution. 

(b) Let N be as in (H2), and let, for definiteness, t,t,s E EH. Let G be 
thegraphdrawninFigure8(b),U:={tt tt tt tt tt },and 1 2, 2 3, 3 1, 4 5’ 1 5 

i 

i if e=t,t,,t,t,, 

Z’(e):= $ if e=t,o,t,v, 

3 
4 if e=t,u. 

One can see that 1’ satisfies (9) ( using the fact that EH - U can contain only 
tat, or t,t,), l?(Z’, U) consists of the chains t,ut,t,, t,t,t,, t,t,ut,, t,vt,, and 
t,ut,, and (8) has a unique solution. 

(c) Let H be as in (H3), and let, for definiteness, H have the compo- 
nents with vertex sets Ti := (t,, t2, t,} and Ta := ( t4, t,, t6). Take G to be the 
graph from Example 2 in Section 2, and let U:= EH and Z’(e) := : for all 
e E EG. Then (8) has a unique solution because of the U-primitivity of G. 

This completes the proof of Theorem 4. 

6. DUAL FEASIBILITY MULTIFLOW PROBLEMS 

Statements 6.2-6.5 below give the fractionalities cp( F*( H)) for all schemes 
H and, as a consequence, prove Theorem 3 from the Introduction. We start 
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with some observations. It follows from claims in Section 2 that q( F*( H)) is 
the least common multiple of the numbers q( I, m[ 1, U]), where 

0 f U c EH, 1 is a U-primitive function on the edge set 
of a connected graph G with [VG] 2 U, and 1 is 
U-normalized. 

(27) 

[I is called U-rwrmu lized if ]](Z, m[l, U])((, = 11. In particular, if H’ is a 
subgraph of H, then q( F *( H’)) is a divisor of rp( F *( H )). Also we have the 
following. 

STATEMENT 6.1. If G is a connected graph and G’ is the complete graph 
with VG’= VG, then cp( F*(G’, H)) = kv( F*(G, H)) for same integer k z 1. 

Proof. Consider arbitrary 1 and U satisfying (27) for H and G, and let 
4 := m[Z, U] and I’:= ml. Obviously, 4 = m[Z’, U]. By Statement 2.l(iv), I’ is 
U-primitive, therefore (I’, q) is an extremal vector of the cone C(G’, H). 
Next, Statement 2.1(i) implies that ])Z]], < 11q11, and ]]Z’]], < jjq)j,, whence 
1’ is U-normalized, and the result follows. n 

Thus, in order to determine ‘p( F*( H)) we may consider only the set of 
U-primitive U-normalized metrics. It is easy fact that if &I, m[Z, U]) = 1 for 
some 1 and U satisfying (27), then 1 is the characteristic function pX of a 
simple cut SX of G. For l:= pX and q := m[pX, U], the inequality in 
Statement 1.4 turns into the Ford-Fulkerson inequality 

c(6X)>x(d(st):stEEH, l{.s,t}nXl=l). 

Papemov generalized well-known results of Ford and Fulkerson (51 and Hu 
[7] by finding all the schemes H such that solvability of any problem 
F(G, c, H, d) with given H depends only on the truth of (28) for each 
XcVG. 

STATEMENT 6.2 [19]. (p(F*(H)) = 1 if and only if H is K, or C,5 (the 
circuit with five vertices) or a union of two stars. 

[See Figure 9(a),(b),(c).] (A star is a graph without isolated vertices 
whose edges meet a common vertex; a graph K is a union of graphs K’ and 
K2 if there are subgraphs G1 and G2 in K such that G1 U G2 = K and G i is 
isomorphic to K’, i = 1,2.) In [ll] the following theorem was proved. 
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FIG. 9. (a) K,; (b) C,; (c) a union of two stars; (d) K,; (e) a union of K:, and a 
star. 

THEOREM 6.3. q~( F *( H)) = 2 if H is diffflent from the schemes in 
Statement 6.2, and it is a subgraph of K, (including K, itself) or a union of 
K, and a star. 

[See Figure 9(d), (e).] 

STATEMENT 6.4. lf H contains a subgraph isomorphic to K, + K, + K, 
(i.e., H contains a matching of three edges), then $( F *( H)) = co. 

Proof. By the arguments above, it suffices to consider only the scheme 
H = K, + K, + K,. Fix an integer k’ > 3. Let K be a graph from Example 4 
in Section 2 with p + q + r = k’+3, and let EH = { sis( : i = 1,2,3}. Con- 
sider the function 1 on EK taking identically the value l/k’. Then 1 is 
EH-primitive and EH-normalized. Hence ‘p( F*( H)) >, cp(Z, m[Z, EH]) = k’. n 

One can check that there is a unique scheme different from that de- 
scribed in Statement 6.2, Theorem 6.3, and Statement 6.4, namely, K, + K,. 
Our final statement is the following. 

STATEMENT 6.5. ~JJ,( F*( H)) = 12 for H = K, + K,. 

Proof. Let, for definiteness, VH = T, U T2, T, = { sl, s2, s,}, T, = 

{ sqy S5' se}, and EH = { sjsj: 1~ i -C j < 3 or 4 < i < j < 6). First of all we 
produce EH-primitive EH-normalized functions 1, and 1, such that 
v(Z,, m[Z,, EN]) = 3 and ‘p(l,, m[l,, EHI) = 4. 

(I) Let K be the graph with the distinguished vertices sr, . . . , se from 
Example 1 in Section 2, and let 1 be the function on EK taking identically 
the value $. Then 2 is EH-primitive and EH-normalized [since ml(slss) = 11. 
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(2) Let K be the graph from Example 2 in Section 2 for given T, and T2, 
and let 1 be the function on EK taking identically the value f . Then 1 is 
EH-primitive and EH-normalized. 

Thus, q( F*( H)) > 3 x 4 = 12. Now consider an arbitrary problem 
F *( G, c, H, d ) with a complete graph G and the given scheme H. We show 
that its fractionality is less than or equal to 4, whence the result will follow. 

For i = 1 , . . . ,6, let Ji denote the pair { j, r } of indices such that sis i, s,s, 
E EH. For sisj E EH, put dij := d(sisj). We reduce the problem 
F(G,c, H, d) to M(G',c', H'), where: 

(i) G’ is the complete graph obtained by adding new vertices t,, . . , t6 to 
VG; 

(ii) c’(e):=c(e) for eE EG; c’(t,si):=djj+di,; {j,r} =A, i = 1,...,6; 
c’(e) := 0 for the remaining edges e in EC'; 

(iii) VH'= {t,,..., t,} and EH'= {titj:l<i<j<3 or 4,<i<j,<6} 
(thus, H'z H). 

Let f’ be an optimal solution of M(G', c', H'), and let f be the multiflow for 
G and H induced by f, i.e., f(si. . . sj) := j-‘(tisi.. . sjtj) for each chain 

L = si,. . sj in 8(G, H). Clearly v(f’, titj) = u(f, sisj) for sisj E EH 
[ u( f, st ) is defined as in (2)]; denote this value by U, j. We have 

Uij+Uj~=gf(tiSj)~C'(tjSj), {j,r} =Jj, i = 1,...,6, 

or 

uij + u,, < djj + dir, { j,T) =I,3 i=1,...,6. (29) 

Considering the inequalities in (29) for i = 1,2,3 and for i = 4,5,6, we obtain 
that F(G, c, H, d) is solvable and f is its solution if and only if each 
inequality in (29) holds with equality (this is esquivalent to that nij = dij for 
all sisj E EH). 

Now suppose F*(G, c, H, d ) is solvable. Then F( G, c, H, d) is not, and 
hence at least one inequality in (29) is strong. This implies 

&j:.spj~EH)< ~(dij:s,sjE EN). (30) 

Next, as H' ( g H) has property (P), M*(G', c', H') has a i-integral optimal 
solution Z’, by Theorem 1. Moreover, by arguments in Section 2. one may 
assume that I’ is a metric on VG' and )11’1), = 1. Put I := Z’lEC, 1,’ := Z’(t,s,), 
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c! := c’(tisi), i = l,..., 6, and Zij := Z(sisj) [ = ml(sisj), as 1 is a metric]. We 
assert that 

cl < x(dijZij: sisj E EH) (31) 

[cf. (4)], whence (AZ, Aq) is a solution of F*(G,c, H, d) with cp(XZ, Xq) < 4, 
where 9 := m[Z, EH] and X := 1/])(1,9)]],. 

Firstly, since f’ and 1’ are optimal, we have 

~(vij:sisj~EH)=u(f)=c’Z’=cZ+~(c(Z~:i=1,...,6). (32) 

Secondly, Z/ + Zij + Z,! >, ml(titj) = 1 for any sisj E EH; therefore 

zdij - ~dijZij < xdij(Z( + Z;) 

=~((dii+dir)Z~:{j,r} =.&, i=l,..., 6) 

= c(clZ/: i= l,...,S) (33) 

(where in the corresponding sums ij runs over the set { ij: sis E EH }). 
Now, comparing (32) and (33) with (30), we obtain (31), as required. n 

I am indebted to the referee for the correction of numerous linguistic 
errors and fm a number of helpful suggestions. 
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