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1. Introduction

The main problem that we deal with in this paper is defined by a supply graph
G = (V, E) and a commodity graph H = (W,U). Both graphs are undirected, G is
allowed to have parallel edges, and W is a subset of V called the set of terminals. An
s–t path is a path P from a node s to a node t in G; if {s, t} forms an edge of H, then
P is called an H-path. In the maximum edge-disjoint paths problem, one wishes to

(1.1) Find a largest set of pairwise edge-disjoint H-paths in G.

The maximum number of such paths is denoted by ν. Besides, we consider the
fractional relaxation of (1.1). More precisely, by a multiflow (multicommodity flow) we
mean a collection of H-paths P1, . . . , Pk along with nonnegative real weights λ1, . . . , λk.
A multiflow f = (P1, . . . , Pk; λ1, . . . , λk) is admissible if the total multiflow through each
edge is at most one, i.e.,

(1.2) fe :=
∑

(λi : e ∈ Pi) ≤ 1 for each e ∈ E.

Unless otherwise is said, we assume that every multiflow in question is admissible. The
value of f is λ1 + . . . + λk, denoted by val(f). The maximum multiflow problem for
(G,H) is:

(1.3) Find a multiflow f whose value is as large as possible.

This maximum value is denoted by ν∗, and f is called maximum if val(f) = ν∗.
Obviously, ν ≤ ν∗ holds in general, and one is often interested in special cases when this
inequality turns into equality, or, roughly, when (1.3) becomes equivalent to (1.1). The
simplest case with ν = ν∗ arises if H consists of a single edge (while G is arbitrary), due
to the classic result that the maximum single commodity flow problem has an integer
optimal solution [1,12]. Subsequently, other interesting special cases of (G,H) with
ν = ν∗ have been found (see [2,4,8,11] for a survey). In this paper we describe one
more non-trivial class with such a property.

More precisely, we assume that the commodity graph H is formed by five nodes
s1, s2, s3, t1, t2 and four edges s1s2, s2s3, s1s3, t1t2. In other words, H represents the
disjoint union of a triangle and an edge, which is abbreviated as H = K3 +K2; see Fig.
1. In addition, we assume that G is pseudo-Eulerian; this means that

(1.4) |δ(X)| is even if either X ⊆ V −W or X ∩W = {t1, t2}.

Hereinafter for X ⊆ V , δ(X) = δG(X) is the set of edges of G with one end in X

and the other in V −X, a cut in G.
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Fig. 1

• s2

s1 • • s3

t1 • • t2

We prove the following theorem.

Theorem 1. If H = K3 + K2 and G is pseudo-Eulerian, then ν = ν∗.

This fact immediatelly implies that for an arbitrary G and H = K3 +K2, problem
(1.3) has a half-integer optimal solution f = (P1, . . . , Pk; λ1, . . . , λk), i.e., with all λi’s
multiple of 1/2.

Remark. A similar property of half-integrality has been established for a wide class
of commodity graphs by Lomonosov and the author in [9] (proofs in details are given
in [5,11]). Namely, it turned out that (1.3) always has a half-integer optimal solution if
H is anticlique-bipartite, in the sense that the family of all (inclusion) maximal stable
sets of H admits a partition into two subfamily, each consisting of pairwise disjoint sets
(see also [7,11] for a stronger version and [3] for a shorter proof of this version). On the
other hand, it was shown in [8, Section 5] that for each fixed H, (1.3) has no half-integer
optimal solution for some G, unless H is anticlique-bipartite or H = K3 + K2. Also
[8] annonced that a half-integer optimal solution exists if H = K3 + K2. The present
paper proves this result in a sharper form.

Since (1.3) is a linear program which has an integer optimal solution in our case by
Theorem 1, it is reasonable to ask whether the dual program has an optimal solution
of a special form. A “nice” optimal dual solution does exist: we reveal a combinatorial
minimax relation involving ν∗ and a value depending on certain metrics.

To state this, consider a metric m on V , i.e., a function m : V ×V → IR+ satisfying
(i) m(x, x) = 0, (ii) m(x, y) = m(y, x), and (iii) m(x, y) + m(y, z) ≥ m(x, z), for all
x, y, z ∈ V . We allow m(x, y) = 0 for distinct x, y ∈ V . Because of (i) and (ii) we
may think that m is, in fact, defined on the edges of the complete undirected graph
KV = (V, EV ) on V , and write m(xy) instead of m(x, y). The linear program dual of
(1.3) can be viewed as follows (see [11]):

(1.5) Find a metric m on V such that m(E) is as small as possible, provided that
m(uv) = 1 for all pairs uv ∈ U .

(For a function g : S → IR and a subset S′ ⊆ S, g(S′) denotes
∑

(g(e) : e ∈ S′).)
Let τ = τ(G,H) be the minimum m(E) in (1.5). Then τ = ν∗ ≥ ν holds for arbitrary
G and H, and τ = ν holds for our special case stated in Theorem 1.
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One sort of metrics feasible to (1.5) with H = K3 +K2 is described as follows. For
disjoint subsets X, Y ⊂ V , let (X, Y ) be the set of edges of KV with one end in X and
the other in Y . Consider a partition Π = (S1, S2, S3, T1, T2) of V such that si ∈ Si for
i = 1, 2, 3 and tj ∈ Tj for j = 1, 2. Then Π induces the metric m = mΠ defined by

m(e) = 1/2 for e ∈ (Si, Tj), i = 1, 2, 3, j = 1, 2,(1.6)

= 1 for e ∈ (S1, S2) ∪ (S2, S3) ∪ (S1, S3) ∪ (T1, T2),

= 0 otherwise.

We refer to m as a (2,3)-metric (this slightly differs from the usual definition where by
a (2,3)-metric one means the metric 2m). Let M2,3 = M2,3(V, H) denote the set of
such metrics.

Another sort of feasible metrics comes up from triples Ξ = (A,B, C) of pairwise
disjoint subsets of V such that

(1.7) A ∩W = {si, t1}, B ∩W = {sj , t2} and C ∩W = {sk},

where {i, j, k} = {1, 2, 3}. Then Ξ induces the metric m = mΞ to be the half-sum of
the cut metrics corresponding to the cuts δ(A), δ(B), δ(C), i.e.,

m(e) = 1 for e ∈ (A,B) ∪ (B,C) ∪ (A,C),(1.8)

= 1/2 for e = uv, u ∈ A ∪B ∪ C, v ∈ V − (A ∪B ∪ C),

= 0 otherwise.

We call m a 3-cut metric and denote their set by M3 = M3(V,H). Obviously, our
(2,3)-metrics and 3-cut metrics are feasible to (1.5). Moreover, it turns out that, in
fact, only such metrics are essential.

Theorem 2. If H = K3 + K2, then τ = m(E) for some m ∈ M2,3 ∪M3.

This paper is organized as follows. Theorem 2 is proved in Section 2. Note that
this theorem can be derived from a general result in [8]; however, we prefer to give
an independent combinatorial proof. Using Theorem 2, we then prove Theorem 1.
The proof is divided into two parts. First, in Section 3, we show the existence of a
half-integer maximum multiflow in our case. This exploits a variant of splitting-off
techniques similar to that elaborated in [6] for the multiflow demand problem in the
five terminal case (and also applied for another multiflow problem in [10]). Second, in
Section 4, we show that a maximum half-integer multiflow can be transformed into an
integer multiflow, thus proving Theorem 1. Note that such a transformation is more
complicated than the corresponding transformation in [6].
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When it is not confusing, a path P = (x0, e1, x1, . . . , ek, xk) is denoted by x0x1 . . .

xk. For a function g on the edges of a graph where P is defined, g(P ) denotes
∑

(g(ei) :
i = 1, . . . , k).

2. Optimal metrics

Since the metrics feasible to (1.5) are described via linear constraints, they form a
polyhedron P = P(V, H) in the Euclidean space IREV whose coordinates are indexed
by the edges of the complete graph KV . Let m,m′ ∈ P. We say that m′ decomposes
m with respect to H if there exists m′′ ∈ P such that m ≥ λm′ + (1− λ)m′′ for some
0 < λ ≤ 1. If m is optimal and m′ decomposes m, then the obvious inequality m(E) ≥
λm′(E) + (1− λ)m′′(E) together with m(E) ≤ m′(E), m′′(E) implies m′(E) = m(E),
i.e., m′ is also optimal. Therefore, Theorem 2 will follow from the fact that any metric
in P(V,K3 + K2) is decomposed by some (2,3)-metric or some 3-cut metric. We prove
the latter in the rest of this section.

Consider m ∈ P(V, H) for H = (W,U) = K3 + K2. Let U be the set of pairs sitj

for i = 1, 2, 3 and j = 1, 2. Without loss of generality one may assume that

(2.1) each two x, y ∈ V belong to a shortest H-path; in other words, m(ux) + m(xy) +
m(yv) = 1 holds for some uv ∈ U .

For otherwise one can decrease m on some pairs so as to get a smaller metric m′

on V still satisfying m′(e) = 1 for all e ∈ U , and then work with m′ instead of m. (2.1)
easily implies that

(2.2) for each e ∈ U , there is an adjacent edge e′ in U such that m(e) + m(e′) = 1

(edges are adjacent is they share a common node).

Claim 1. At least one of the following is true:

(i) m(e) = 1/2 for all e ∈ U ;

(ii) there are two non-adjacent edges e, e′ ∈ U such that m(e),m(e′) < 1/2, and

m(e) > 1/2 for the other edges e in U ;

(iii) there is an e ∈ U with m(e) < 1/2 such that the two adjacent edges e′, e′′ ∈ U

disjoint from e satisfy m(e′) = m(e′′) = 1/2, and m(e) > 1/2 for the other edges e in

U .

Proof. For any two adjacent edges e, e′ in U , their non-common ends form an edge in
U , therefore, m(e)+m(e′) ≥ 1. Also any triple of edges in U includes an adjacent pair.
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Hence, at most two edges e ∈ U with m(e) < 1/2 are possible, and such edges cannot
be adjacent. In view of (2.2), only cases (i), (ii) and (iii) are possible. •

In case (i) of this Claim, the restriction of m to W is exactly 1/2 times the distance
function of the graph (W,U) = K2,3. As is shown in [6], such an m is decomposed w.r.t.
H by a (2,3)-metric.

Consider case (ii) of Claim 1. Let for definiteness m(s1t1) = a < 1/2 and m(s2t2) =
b < 1/2. We show that m is decomposed by the 3-cut metric induced by the triple
Ξ = (A,B, C), where

A = {x ∈ V : m(s1x) + m(xt1) = a};
B = {x ∈ V : m(s2x) + m(xt2) = b};
C = {x ∈ V : m(s3x) = 0}.

Clearly s1, t1 ∈ A, s2, t2 ∈ B and s3 ∈ C, i.e., Ξ satisfies (1.7).

Claim 2. Let x ∈ A and y ∈ B. Then m(xy) > 1/2.

Proof. By (2.3), m(s1x) + m(xt1) < 1/2 and m(s2y) + m(yt2) < 1/2. Since m is a
metric,

m(s1x) + m(xy) + m(ys2) ≥ m(s1s2) = 1,

and
m(t1x) + m(xy) + m(yt2) ≥ m(t1t2) = 1.

This implies 2m(xy) > 1, or m(xy) > 1/2, as required. •

Claim 3. Let x ∈ A and z ∈ C. Then m(xz) > 1/2. Similarly, m(yz) > 1/2 for

y ∈ B and z ∈ C.

Proof. We have m(s1x) < 1/2, m(s3z) = 0 and m(s1x)+m(xz)+m(zs3) ≥ m(s1s3) =
1. Therefore, m(xz) > 1/2. •

These two claims show that A,B, C are pairwise disjoint.

Claim 4. Every two nodes x, y in A belong to a shortest path from s1 to t1. Similarly,

every pair of nodes in B belongs to a shortest path from s2 to t2.

Proof. By (2.1), m(ux)+m(xy)+m(yv) = 1 for some uv ∈ U . Suppose that {s1t1}∩
{u, v} 6= ∅; say, s1 = u. Since the path s1xyv is shortest for m, m(s1x) + m(xy) =
m(s1y). Then m(s1y) + m(yt1) = a (by (2.3)) implies m(s1x) + m(xy) + m(yt1) = a,
i.e., the path s1xyt1 is shortest.

Now suppose that {s1, t1} ∩ {u, v} = ∅. This is possible only if {u, v} = {s2, s3}.
Then m(s1x) + m(xu) ≥ 1 and m(s1y) + m(yv) ≥ 1. Adding these inequalities and
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subtracting m(ux) + m(xy) + m(yv) = 1 yields m(s1x) + m(s1y) − m(xy) ≥ 1. But
both m(s1x) and m(s1y) are at most a < 1/2; a contradiction. •

Claim 5. m(xy) = 0 for any x, y ∈ C.

Proof. This follows from m(s3x) = m(s3y) = 0 and m(xy) ≤ m(xs3) + m(s3y). •

An immediate corollary from Claims 4 and 5 is that

(2.4) if nodes x and y belong to the same set X among A, B,C, and P is a shortest x–y

path, then all nodes of P belong to X as well.

Claim 6. Let P = x0x1 . . . xk be a shortest H-path. For X = A, B,C, let nX be the

number of times P meets the cut δ(X) (in KV ). Let n = nA + nB + nC . Then n = 2.

Proof. Since x0 and xk belong to different sets among A,B and C, n is an even integer
≥ 2. We call a part xixi+1 . . . xj of P a segment if xi and xj occur in different sets
among A,B, C, and xi+1, . . . , xj−1 6∈ A ∪B ∪ C.

Consider a segment xi . . . xj . Suppose that one of xi and xj , xi say, is in A and the
other, xj , in B. Then m(s1xi)+m(xit1) = a and m(s2xj)+m(xjt2) = b. These together
with m(s1xi) + m(xixj) + m(xjs2) ≥ 1 and m(t1xi) + m(xixj) + m(xjt2) ≥ 1 imply
2m(xixj) ≥ 2− (a + b). Since a + b < 1, we obtain m(xixj) > 1/2. Now suppose that
one of xi and xj is in A∪B, xi ∈ A say, and the other, xj , is in C. Then m(s1xi) ≤ a,
m(s3xj) = 0 and m(s1xi) + m(xixj) + m(xjs3) ≥ 1 yield m(xixj) ≥ 1− a > 1/2.

Now since m(P ) = 1, P has at most one segment, and the claim follows. •

Claim 6 enables us to prove that mΞ decomposes m. First of all we observe that
m(e) > 0 for any e ∈ δ(X). Indeed, for x ∈ A and y ∈ V , m(xy) = 0 would imply
m(s1y) = m(s1x) and m(t1y) = m(s1y), whence m(s1y) + m(yt1) = a, i.e., y ∈ X.
Similarly, m(e) > 0 for any e ∈ δ(B) ∪ δ(C). Therefore, there exists ε1 > 0 such that
the function mε := m − εmΞ is nonnegative for any 0 ≤ ε ≤ ε1 (note that mε is not
necessarily a metric). Next, Claim 6 implies that any shortest H-path P satisfies

1 = m(P ) = mε(P ) + εmΞ(P ) = mε(P ) + ε.

Therefore, there exists 0 < ε ≤ ε1 such that any H-path satisfies mε(P ) ≥ 1 − ε.
Let m′ be the distance function in KV whose edges are weighted by mε/(1− ε). Then
m′(e) = 1 for all e ∈ U , and m ≥ εmΞ + (1− ε)m′. Thus, mΞ decomposes m.

Finally, in case (iii) of Claim 1, the proof is similar. Let for definiteness m(s1t1) =
a < 1/2 and m(s2t2) = b = 1/2. Define A, B,C by (2.3) , and let Ξ = (A,B, C).
Observe that Claims 2–6 remain valid (except for the second part of Claim 3 where

7



m(yz) > 1/2 must be replaced by m(yz) ≥ 1/2). In the above proofs of these claims
we only need a slight correction in the proof of Claim 6 because it is now possible that
m(yz) = 1/2 for some y ∈ B and z ∈ C. The latter implies that if some segment
xi . . . xj of P connects B and C, then m(xixj) ≥ 1/2 (instead of m(xixj) > 1/2).
Nevertheless, in view of (2.4), at most one segment connecting B and C is possible,
and now the claim that P has at most one segment at all remains correct.

This completes the proof of Theorem 2. • •

3. Existence of a half-integer maximum multiflow

As mentioned in the Introduction, the first part of the proof of Theorem 1 given
in this section is based on splitting-off techniques. To describe this, we first associate
with the supply graph G = (V, E) the function c = cG on EV which, for x, y ∈ V ,
indicates the number of edges between x and y in G. We call c(e) the capacity of an
edge e. Accordingly, a multiflow f = (P1, . . . , Pk; λ1, . . . , λk) for KV and H is called
c-admissible if

(3.1) fe ≤ c(e) for each e ∈ EV ;

cf. (1.2). A c-admissible multiflow determines in a natural way an admissible mul-
tiflow in G, and vice versa. The corresponding dual problem (cf. (1.5)) consists in
finding a metric m ∈ P(V, H) with cm minimum (where gh denotes the inner product∑

(g(e)h(e) : e ∈ D) of functions g and h within the common part D of their domains).
Since we will vary the function c during the proof, the corresponding numbers ν, ν∗ and
τ are specified as ν(c), ν∗(c) and τ(c), respectively.

As above H = (W,U) is K3 + K2; let S = {s1, s2, s3} and T = {t1, t2}. A
metric m ∈ M2,3 ∪ M3 is called tight if cm = τ(c); let T (c) denote the set of tight
metrics for c. Let ‖c‖ denote

∑
(c(e) : e ∈ EV ). We apply induction, assuming

that the equality ν(c′) = τ(c′) holds for every pseudo-Eulerian function c′ on EV such
that either |T (c′)| > |T (c)|, or |T (c′)| = |T (c)| and ‖c′‖ < ‖c‖ (preserving V and H

throughout the proof). Here c′′ : EV → ZZ+ is called pseudo-Eulerian if c′′(δ(X)) is
even for every X ⊂ V such that either X ⊆ V −W or X ∩W = T . The base case c = 0
(implying T (c) = M2,3 ∪M3) is obvious.

Fix an inner node x ∈ V − W such that the set Φ = Φ(x, c) of incident edges
xy with c(xy) > 0 is nonnempty. Note that if Φ consists of a single edge xy, then
reducing c to zero on xy we obtain the function c′ which is also pseudo-Eulerian and
obviously satisfies ν(c′) = ν(c) and T (c′) ⊇ T (c). Since ‖c′‖ < ‖c‖, the theorem follows
by induction.
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So we may assume that |Φ| ≥ 2. Consider a pair {xy, xz} in Φ. The (integer)
splitting-off operation applied to xy, xz transforms c into c′ as follows:

c′(e) = c(e)− 1 for e = xy, xz,(3.2)

= c(e) + 1 for e = yz,

= c(e) otherwise.

(In the original graph G, this corresponds to deletion of one edge connecting x and y

and one edge connecting x and z and addition of a new edge between y and z; see Fig.
2.)

Fig. 2

x •

y • • z

x •

y • • z

Clearly c′ remains nonnegative and pseudo-Eulerian. Moreover, for any metric m

on V , cm− c′m = m(xy) + m(xz)−m(yz) ≥ 0. Therefore, τ(c′) ≤ τ(c). We say that
{xy, xz} is splittable if τ(c′) = τ(c). In this case cm ≥ c′m ≥ τ(c′) = τ(c) for any
m ∈ P implies T (c) ⊆ T (c′). Also ‖c′‖ = ‖c‖ − 1. Hence, by induction there exists a
c′-admissible integer multiflow f ′ such that val(f ′) = τ(c′). One can transform f ′ into a
c-admissible integer multiflow f with the same value; then ν(c) ≥ val(f) = τ(c′) = τ(c)
proves the theorem for c. (More precisely, assuming without loss of generality that all
paths in f ′ have unit weights, the desired f is constructed as follows:

(3.3) if (f ′)yz ≤ c(yz), put f := f ′ (as f ′ is already c-admissible); otherwise choose a
path P ′ ∈ f going through yz and replace in P ′ the edge yz by the pair yx, xz.)

Our goal is to show that at least one pair in Φ(x, c) is splittable. By induction
this reduces the problem to the case V = W ; this case will be considered in the end of
Section 4.

For a contradiction, we suppose that all pairs in Φ are not splittable. In the rest
of this section we show the following.

Lemma 3.1. There exists a maximum multiflow which is half-integer.

The proof of this lemma falls into several claims.

Claim 1. cm is an integer for each m ∈ M2,3 ∪M3.

Proof. Let m = mΠ ∈ M2,3, where Π = (S1, S2, S3, T1, T2) (cf. (1.6)). Let X =
T1 ∪ T2. Then m takes value 1/2 on the edges of the cut δ(X) and integer values on
the other edges in KV . Since c is pseudo-Eulerian, c(δ(X)) is even. This implies that∑

(c(e)m(e) : e ∈ δ(X)) is an integer, whence cm is also an integer.
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Next let m = mΞ ∈ M3, where Ξ = (A,B, C) (cf. (1.7)). Let Q = V −(A∪B∪C).
Then m takes value 1/2 on the edges of the cut δ(Q) and integer values on the other
edges in KV . The integrality of cm follows from the fact that c(δ(Q)) is even. •

This claim together with Theorem 2 implies that

(3.4) τ(c) and cm− τ(c) are integers for any m ∈ M2,3 ∪M3.

Consider a pair {xy, xz} in Φ, and let c′ be obtained by splitting-off (3.2).

Claim 2. Let m ∈ M2,3 ∪M3, and let ∆ = cm− c′m. Then ∆ is equal to 0,1 or 2.

Moreover, if ∆ = 2 then m(xy) = m(xz) = 1 and m(yz) = 0.

Proof. Observe that the lenght m(P ) of any closed path P in KV is an integer. Also
m(e) ∈ {0, 1, 1/2} for all e ∈ EV . Hence, ∆ = m(xy) + m(xz) −m(yz) is an integer
≤ 2, and the result follows. •

In view of Theorem 2, the fact that {xy, xz} is non-splittable means the existence
of m ∈ M2,3 ∪M3 such that c′m = τ(c′) < τ(c). From (3.4) and Claim 2 we obtain
that

(3.5) if m ∈ M2,3 ∪M3 and c′m < τ(c), then either

(i) m is tight for c, and m(xy) + m(xz)−m(yz) > 0, or

(ii) cm = τ(c) + 1, c′m = τ(c)− 1, m(xy) = m(xz) = 1 and m(yz) = 0.

A metric m satisfying (ii) in (3.5) is called critical for {xy, xz}. Let f = (P1, . . . , Pk;
λ1, . . . , λk) be a multiflow which is an optimal solution for c. One may assume that all
λi’s are nonzero.

Claim 3. Let m be tight for c. Then:

(i) for e ∈ EV , if m(e) > 0 then e is saturated by f , i.e., fe = c(e);

(ii) each path Pi in f is shortest for m, i.e., m(Pi) = 1.

Proof. (i) and (ii) are equivalent to the complementary slackness conditions for (1.3)
and its dual. More precisely,

(3.6) val(f) = λ1 + . . . + λk ≤ λ1m(P1) + . . . + λkm(Pk)

=
∑

(fem(e) : e ∈ EV ) ≤ cm.

Since val(f) = τ(c) = cm, equality holds throughout, proving (i) and (ii). •

This claim shows that
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(3.7) if some of the edges xy, xz is not saturated by f or if both xy and xz belong to a
path in f , then only alternative (ii) in (3.5) is possible.

Note that at least one path in f meets x; otherwise fe = 0 holds for all e ∈ Φ, and
therefore, each pair in Φ is splittable.

Now the proof of Lemma 3.1 is completed as follows. Choose a pair {xy, xz} as
in (3.7). Consider the capacity function c̃ = 2c. Then τ(c̃) = 2τ(c). Furthermore, the
impossibility of (i) in (3.5) provides that any metric m′ ∈ M2,3 ∪M3 with m′(xy) +
m′(xz) > m′(yz) satisfies c̃m′ ≥ τ(c̃)+2. Then the function c̃′ obtained by splitting-off
(3.2) from c̃ satisfies τ(c̃′) = τ(c̃) = 2τ(c). Let m be a critical metric for c and {xy, xz}.
Then

c̃m = τ(c̃) + 2 and c̃′m = τ(c̃) = τ(c̃′).

This means that m becomes tight for c̃′. Therefore, T (c̃′) strictly includes T (c̃) =
T (c). Since c̃′ is obviously pseudo-Eulerian, by induction there exists an integer c̃′-
admissible multiflow h with val(h) = τ(c̃′). Then the problem for c̃ also has an integer
optimal solution, by (3.3) applied to c̃ and h. Hence, the problem for c has a half-integer
optimal solution, as required. • •

The above proof reveals some additional properties of maximum multiflows and
critical metrics; these will be used in the next section. Let f = (P1, . . . , Pk; λ1, . . . , λk)
be a half-integer maximum multiflow for c. Repeating, if needed, some paths in f , we
may assume that λ1 = . . . = λk = 1/2. Also assume that f is chosen so that

(3.8) ξ(f) := |P1|+ . . . + |Pk| is as small as possible,

where |Pi| is the number of edges of Pi. In particular, all Pi’s are simple. Consider a
path P = Pi which passes x using edges xy and xz say. By (3.7), there exists a critical
metric m for c and {xy, xz}. Moreover, taking into account that cm = τ(c) + 1, that
λi = 1/2 and that m(P ) ≥ 3 (by (3.5)(ii)), and considering an expression similar to
(3.6), one can see that

(3.9) if m is critical for {xy, xz} and P is a path in f containing xy and xz, then all
edges e with m(e) > 0 are saturated by f ; also m(P ) = 3 and m(P ′) = 1 for the
remaining paths P ′ in f .

In particular, xy belongs to a path in f different from P , and similarly for xz.
Varying {xy, xz}, we conclude that

(3.10) there is a sequence e0, . . . , er−1, er = e0 (r ≥ 2) of different edges incident to x

such that each pair ei, ei+1 belongs to a path in f , Pi say, and these paths are
different.
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Moreover, r ≥ 3 because if r = 2 then both P0 and P1 use e0 and e1, so {e0, e1} is
splittable. Here and later on the indices are taken modulo r. We call D = (P0, . . . , Pr−1)
a paths cycle and assume that, among all maximum half-integer multiflows satisfying
(3.8), f and D are chosen so that |D| is minimum.

4. Existence of an integer maximum multiflow

To show this, we will try to re-arrange some paths in the above paths cycle D =
(P0, . . . , Pr−1) by breaking them up at the node x into pieces and then combining the
pieces in another way in order to obtain a “better configuration” of paths through x;
for example, to get a smaller paths cycle. We keep terminology and notation from the
previous section and will use the following fact:

(4.1) if c′ is obtained from c by splitting-off (3.2) for a pair {xy, xz} and there is a
c′-admissible multiflow g such that val(g) > τ(c)− 1, then {xy, xz} is splittable.

Indeed, since τ(c) and τ(c′) are integers (cf. (3.4)) and τ(c′) ≥ val(g), it must be
τ(c′) = τ(c).

For a path P = v0v1 . . . vk, P−1 denotes the reverse path vkvk−1 . . . v0, and P (vivj)
the subpath of P from vi to vj . The concatenation v0 . . . vku1 . . . uq of P and a path
Q = u0 . . . uq with u0 = vk is denoted by P ·Q. For i = 0, . . . , r − 1, let yi be the end
of an edge ei, defined in (3.10), that is different from x. We assume that each path
Pi ∈ D meets the nodes yi, x, yi+1 in this order, and denote by ai and bi the first and
last nodes in Pi, respectively. If ai, bi are in S (resp. T ), Pi is called a path of type S,
or an S-path (resp. a T -path).

Consider Pi and fix a metric mi critical for {ei, ei+1}. If mi ∈ M2,3 (mi ∈ M3),
the partition (resp. triple) that induces mi is denoted by Πi = (Si

1, S
i
2, S

i
3, T

i
1, T

i
2) (resp.

Ξi = (Ai, Bi, Ci)). Let Xi and Yi denote the sets in Πi (resp. Ξi) that contain x and
{yi, yi+1}, respectively. Note that if mi ∈ M3, then all x, yi, yi+1 are in Ai ∪ Bi ∪ Ci,
by (3.5)(ii). Since mi(yix) = 1 = mi(Pi−1) and mi(yi+1x) = 1 = m(Pi+1) (by (3.5)(ii)
and (3.9)), we observe that

(4.2) the subpaths Pi−1(ai−1, x) and Pi+1(x, bi+1) are entirely contained in Xi, while
Pi−1(yi, bi−1) and Pi+1(ai+1, yi+1) in Yi; in particular, ai−1 and bi+1 are terminals
in Xi, while bi−1 and ai+1 are terminals in Yi

(considering a path as a set of nodes). Recall that each of Xi, Yi contains exactly one
terminal if mi is a (2,3)-metric, and one or two terminals if mi is a 3-cut-metric. Also
none of Xi, Yi has two terminals in S or in T . Therefore, (4.2) implies that
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(4.3) either ai−1 = bi+1 and bi−1 = ai+1, or ai−1 6= bi+1 and bi−1 6= ai+1; in the latter
case, mi is a 3-cut metric with {Ai, Bi} = {Xi, Yi}, and one of Pi−1 and Pi+1 is
an S-path while the other is a T -path.

Regarding the path Pi, the facts that mi(Pi) = 3 (cf (3.9)) and mi(x′y′) = 1 for
any x′ ∈ Xi and y′ ∈ Yi imply that

(4.4) either one of ai, bi lies in Yi (and therefore, it coincides with some of bi−1, ai+1),
or both ai, bi are outside Yi; the latter occurs only if mi is a (2,3)-metric and the
paths Pi and Pi+1 have different types.

We now study possible combinations of types of consecutive paths in D.

(4.5) If both Pj , Pj+1 have the same type, then bj = aj+1.

Indeed, suppose that bj 6= aj+1. Since Pj and Pj+1 have the same type, we obtain
from (4.4) that one of aj , bj is in Yj . Also aj+1 ∈ Yj , by (4.3). Then aj+1 coincides
with some of aj , bj . Therefore, bj 6= aj+1 implies aj = aj+1, whence aj 6= bj+1. Now
replace in f the paths Pj and Pj+1 by the new paths Q = Pj(aj , x) · Pj+1(x, bj+1) and
Q′ = Pj+1(aj+1, yj+1) · Pj(yj+1, bj). Since both Q,Q′ are H-paths and |Q| + |Q′| <

|Pj |+ |Pj+1| (as xyj+1 is not used in Q,Q′), the resulting multiflow is again maximum
and ξ(f ′) < ξ(f), contrary to (3.8).

Let Li and Ri stand for Pi(ai, x) and Pi(x, bi), respectively.

(4.6) For r ≥ 4, there are no four consecutive Pj , . . . , Pj+3 such that Pj and Pj+2 are
S-paths while Pj+1 and Pj+3 are T -paths.

For suppose such paths exist. By (4.3) for i = j + 1, aj = bj+2 and bj = aj+2.
Similarly, aj+1 = bj+3 and bj+1 = aj+3. Break these four paths at x and combine
the resulting pieces by concatenating Lj with L−1

j+2, Lj+1 with L−1
j+3, R−1

j with Rj+2,
and R−1

j+1 with Rj+3, forming paths Q1, . . . , Q4, respectively. Since all Q1, . . . , Q4 are
H-paths, we can replace Pj , . . . , Pj+3 in f by these paths. But both Q2 and Q3 pass
through ej+1 and ej+3, therefore, this pair of edges is splittable; a contradiction.

(4.7) For r ≥ 4, there are no four consecutive Pj , . . . , Pj+3 such that Pj and Pj+1 are
S-paths while Pj+2 and Pj+3 are T -paths.

For suppose the contrary. Since bj ∈ S, aj+2 ∈ T and both bj , aj+2 belong to Yj+1

(by (4.2)), the set Yj+1 contains exactly two terminals, namely, bj and aj+2. Hence,
mj+1 is a 3-cut metric. Similarly, Yj+2 ∩W = {bj+1, aj+3} and mj+2 ∈ M3. Notice
also that bj = aj+1 and bj+2 = aj+3 (by (4.5)). Therefore, {bj , aj+2} and {bj+1, aj+3}
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have no common terminal (in view of aj+1 6= bj+1 and aj+2 6= bj+2). Next we use
submodularity. Let for definiteness aj+2 = t1 and aj+3 = t2; then Yj+1 = Aj+1 and
Yj+2 = Bj+2. Let A = Aj+1−Bj+2 and B = Bj+2−Aj+1. Since the sets of terminals
in Aj+1 and in Bj+2 are disjoint,

A ∩W = Aj+1 ∩W and B ∩W = Bj+2 ∩W.

Therefore, the triples Ξ′ = (A,Bj+1, Cj+1) and Ξ′′ = (Aj+2, B, Cj+2) satisfy (1.7).
Also each triple consists of pairwise disjoint sets; so m′ = mΞ′ and m′′ = mΞ′′ are 3-cut
metrics. We observe that the obvious submodular inequality

c(δ(A)) + c(δ(B)) ≤ c(δ(Aj+1)) + c(δ(Bj+2))

is strict because the edge ej+2 is contained in both δ(Aj+1) and δ(Bj+2) but none
of δ(A) and δ(B). Therefore, cm′ + cm′′ < cmj+1 + cmj+2. Let for definiteness
cm′ < cmj+1. Since cm′ − τ(c) and cmj+1 − τ(c) are integers and cmj+1 − τ(c) = 1,
we have cm′ = τ(c), i.e., m′ is tight for c. But the set Xj+1 = Bj+1 contains x and
none of yj+1, yj+2; so Pj+1 intersects the cut δ(Bj+1) at least twice. This implies that
Pj+1 cannot be a shortest path for m′, whence m′ is not tight (cf. Claim 3 in Section
3); a contradiction.

(4.8) For r ≥ 3, there are no three consecutive T -paths Pj , Pj+1, Pj+2.

Otherwise, letting for definiteness bj = t1, we have aj+1 = t1 and bj+1 = aj+2 = t2

(in view of (4.5)). Then aj = t2 and bj+2 = t1. Hence, both Q = Lj · Rj+2 and
Q′ = Lj+2 · Rj are H-paths. Replace Pj , Pj+2 by Q,Q′. Then the resulting multiflow
f ′ is maximum. Since the paths Pj+1 and Q′ in f ′ go through ej+1 and ej+2, the pair
of these edges is splittable; a contradiction.

(4.9) For r ≥ 3, there are no three consecutive S-paths Pj , Pj+1, Pj+2.

Otherwise form Q,Q′ as in the previous case. Then Q′ is an H-path (as it connects
aj+2 = bj+1 with bj = aj+1), while Q needs not connect different terminals in S.
Nevertheless, replacing Pj and Pj+2 by the only path Q′ results in a multiflow f ′ with
val(f ′) = val(f) − 1/2 > τ(c) − 1. Since f ′ contains two paths that use both ej+1

and ej+2, f ′ can be transformed into a c′-admissible multiflow g with val(g) = val(f ′),
where c′ is obtained from c by the splitting-off operation for ej+1, ej+2. Now (4.1) says
that the latter pair is splittable; a contradiction.

(4.10) For r ≥ 4, there are no j, q such that 2 ≤ q − j ≤ r − 2 and all Pj , Pj+1, Pq, Pq+1

are T -paths.
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Indeed, suppose such j, q exist. By (4.5), bj = aj+1 and bq = aq+1. Let for
definiteness bj = t1. Then aj = bj+1 = t2. Two cases are possible. (i) Let bq = t2.
Then aq = bq+1 = t1. Replace the above four paths by the H-paths Lj ·Rq+1, Lq+1 ·Rj ,
Lj+1 ·Rq and Lq ·Rj+1. Since two of the latter paths contain the pair ej+1, eq+1, this
pair is splittable. (ii) Let bq = t1. Then aq = t2. Hence, both Q = Lj · Rq and
Q′ = Lq · Rj are H-paths. Now replacing Pj , Pq by Q,Q′ creates two paths cycles
in place of D, namely, (Q,Pq+1, . . . , Pj−1) and (Pj+1, . . . , Pq−1, Q

′), contradicting the
minimality of D.

(4.11) For r ≥ 4, there are no j, q such that 2 ≤ q − j ≤ r − 2 and all Pj , Pj+1, Pq, Pq+1

are S-paths.

Again suppose such j, q exist. If aj 6= bq and bj 6= aq or, symmetrically, aj+1 6= bq+1

and bj+1 6= aq+1, we act similarly to (ii) in the previous proof. So assume we are not
in these cases. Note that aj 6= bq and bj 6= aq imply bj 6= bq; let bj = s1 and bq = s2

say. Then aj , bj+1 ∈ {s2, s3} and aq, bq+1 ∈ {s1, s3}. Moreover, it is impossible that
aj = aq = s3 or bj+1 = bq+1 = s3. Let for definiteness aj = s2. Consider two possible
cases. (a) Let bj+1 = s2. Then aj 6= bq+1 and bj+1 6= aq, and we act as in (i) from
the previous proof. (b) Let bj+1 = s3. Then bq+1 = s1, and we have aj 6= aq and
bj+1 6= bq+1. Therefore, each of Lj · L−1

q and R−1
j+1 · Rq+1 is an H-path, which implies

that {ej+1, eq+1} is splittable.

Putting together the eliminations exhibited in (4.6)-(4.11) and considering D up
to reversing (so the configurations reversed to those in (4.6) and (4.7) cannot occur
either), we conclude that only two cases still remain possible, as follows.

Lemma 4.1. r = 3 and, up to shifting D cyclically, either (i) P1 and P2 are S-paths

and P3 is a T -path, or (ii) P1 and P2 are T -paths and P3 is an S-path. •

We say that D in case (i) of this lemma has type S-S-T, and in case (ii) type
T-T-S. First of all we describe D of type S-S-T in more details. Notice that

(4.12) b1 = a2 and a1 = b2.

Indeed, b1 = a2 is true by (4.5). Suppose that a1 6= b2. Then a1 and b2 are different
terminals in S, so Q = L1 ·R2 is an H-path. Replacing P1 and P2 by the only Q gives
a multiflow f ′ with val(f ′) = val(f) − 1/2 > τ(c) − 1 in which two paths (P3 and Q)
use e1, e2. Hence, the latter pair is splittable, by (4.1); a contradiction.

Thus, without loss of generality one may assume that a1 = b2 = s1, a2 = b1 = s2,
a3 = t1 and b3 = t2; see Fig. 3a.
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Fig. 3
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t1 • • t1

P1 P2

(b) • t2

Next, by (4.2), X1 contains two different terminals b2 = s1 and a3 = t1, and Y1

contains a2 = s2 and b3 = t2. Therefore, m1 is a 3-cut metric with A1 = X1 and
B1 = Y1. Similarly, m2 is a 3-cut metric, A2 = Y2 and B2 = X2. On the other hand,
the fact that each of a3 = t1 and b3 = t2 is different from b2 = a1 = s1 implies that m3

is a (2,3)-metric, by (4.3).

By similar reasons, if D is of type T-T-S, then (4.13) holds, m1 and m2 are 3-cut
metrics, and m3 is a (2,3)-metric; see Fig. 3b (where a1 = t1, b1 = t2, a3 = s1 and
b3 = s2).

To finish the case V 6= W , we first make one important observation from the
above proofs of properties (4.5)-(4.12). Every time we proved the impossibility of one
ot another situation, it turned out that its occurrence would imply that some pair
of edges is splittable, or there exists a half-integer maximum multiflow f ′ with ξ(f ′)
smaller than ξ(f), or some paths in the chosen cycle D can be rearranged so that D

be transformed into two smaller paths cycles at x. It is essential to emphasize that the
latter transformation changes no other paths cycle at this or any other node (assuming
that some partitions into paths cycles are simultaneously fixed for the sets of paths at
all nodes in V −W ). This implies the following.

(4.13) There exists a half-integer maximum multiflow f such that ξ(f) is minimum and,
in addition, for each y ∈ V −W , the set of paths in f containing y is partitioned
into paths cycles so that each paths cycle D consists of three paths and has type
either S-S-T or T-T-S; moreover, the set W (D) of end nodes of paths in D consists
of four terminals.

Assuming that (4.13) is satisfied, consider a paths cycle D = (P1, P2, P3) with
W (D) = {s1, s2, t1, t2} as above. For v ∈ V let Z(v) be the set of nodes z reachable
from v by paths in KV whose all edges are non-saturated by f . Let N be the smallest
subset of V with the following properties:

(4.14) (i) x ∈ N ;

(ii) if v ∈ N then z(v) ⊆ N ;

(iii) if uv is an edge with u ∈ N which simultaneously belongs to an S-path and a
T -path in f , then v ∈ N .
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In particular, all edges in δ(N) are saturated.

Lemma 4.2. The following are true:

(i) N contains no terminal; and

(ii) each S-path in f meeting N connects s1 and s2.

Proof. It falls into three claims. We prove these claims assuming that D (and paths
cycles considered below) has type S-S-T, using the above properties of such cycles and
critical metrics and keeping the above notation. For paths cycles of type T-T-S, the
proofs below are similar.

Claim 1. None of intermediate nodes of any path in f is a terminal.

Proof. It suffices to show this for the paths P1, P2, P3. If Pi has type S (resp. T ) and
z is an intermediate node in Pi, then the facts that ξ(f) is minimum and Pi is shortest
for mi+1 imply that z 6∈ S (resp. z 6∈ T ).

Consider P1 and m3. By (4.2), the part of P1 from a1 = s1 to y1 is contained in
Y3, while its part from x to b1 = s2 is contained in X3. Since m3 is a (2,3)-metric, s1 is
a unique terminal in Y3 and s2 is a unique terminal in X3. Therefore, no intermediate
node of P1 is a terminal. Similarly, no intermediate node of P2 is a terminal. Finally,
consider P3,m1 and m2. The part P ′ of P3 from a3 = t1 to y3 lies simultaneously in X1

and Y2. Since X1 ∩W = {s1, t1} and Y2 ∩W = {s2, t1}, P ′ does not meet S. Similarly,
the part of P3 from y1 to b3 = t2 does not meet S. •

Claim 2. For any v ∈ N −W , the set Z(v) has no terminal.

Proof. It suffices to show this for v = x (because Φ(v) is nonempty for any node
v ∈ N −W , and therefore, there is a path cycle at v).

Consider X1, X2, X3. Since the edges of each δ(Xi) are saturated and x ∈ Xi,
Z(x) ⊆ X1 ∩X2 ∩X3. Also one can see that X1, X2, X3 have no terminal in common.
•

Because of Claim 2, a terminal can appear in N only if some of its incident edges
belongs to paths of different types (cf. (4.14)(iii)). The latter is impossible by Claim
1, therefore, (i) in the lemma is true.

Claim 3. Let D′ be a paths cycle at v ∈ V −W such that every S-path in D′ has

ends s1 and s2. Let P be an S-path in f which meets Z(v) at a node z. Then P

connects s1 and s2.

Proof. Again one may assume that v = x and D′ = D. Suppose that P connects
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s3 and si, i ∈ {1, 2}. Then P is different from P1, P2, P3, so P is a shortest path for
each of m1,m2,m3. The facts that m1 is a 3-cut metric, that P is shortest for m1, and
that z ∈ Z(x) ⊆ X1 show that P meets δ(X1) in exactly one edge. Thus, one end of
P belongs to X1 ∩W = {s1, t1}, whence i = 1. But z ∈ X3 and s2 ∈ X3 imply that
m3(s3z)+m3(zs1) = 2. Therefore, P cannot be a shortest path for m3; a contradiction.
•

Now part (ii) in the lemma follows from Claim 3 and the minimality of N subject
to (4.14). • •

Lemma 4.2 enables us to apply the following construction. Let C be the cut δ(N)
from which the edges e with c(e) = 0 are deleted. Consider an edge e = uv ∈ C with
u ∈ N and the set L(e) of paths in f going through e. Assume that, at the moment we
deal with e, each path in L(e) is directed so that it passes the nodes u, v in this order.
By (4.14)(iii), all paths in L(e) have the same type; moreover, by (ii) in Lemma 4.2, if
they are S-paths, then they connect s1 and s2. Note that the last nodes of these paths
must be the same (and the beginning nodes are the same). For if, e.g., L(e) contains
a path P from t1 to t2 and a path from t2 to t1, then replacing them by the H-paths
P (t1, u) · (Q(t2, u))−1 and (P (v, t2))−1 ·Q(v, t1) decreases ξ in (3.8).

Using this, we construct an auxiliary graph Γ = (V (Γ), E(Γ)) as follows. Take
the subgraph of KV induced by N , add the terminals s1, s2, t1, t2, and for each edge
uv ∈ C with u ∈ N , connect u with w ∈ {s1, s2, t1, t2} by an edge euv, where w is the
last node of paths in L(uv). We endow the edges of Γ with the capacity function c̃ that
coincides with c within N and takes value c̃(euv) = c(uv) for each uv ∈ C. The fact
that c is pseudo-Eulerian implies that c̃ is inner Eulerian, which means that c̃(δΓ(z))
is even for each z ∈ V (Γ)−W .

Consider the maximum multiflow problem for Γ, c̃ and the commodity graph form-
ing by the edges s1s2 and t1t2 (problem (∗)). The above property for f and C implies
that the set R of subpaths (v0, e1, v1, . . . , eq, vq) of the paths in f with v1, . . . , vq−1 ∈ N

and e0, eq ∈ C determine an optimal solution to (∗). On the other hand, by a sharp-
ened version of the two-commodity flow theorem due to Rothschild and Whinston [13],
problem (∗) has an integer optimal solution. This gives a half-integer optimal solution
h = (Q1, . . . , Qp; µ1, . . . , µp) to (∗) in which µ1 = . . . = µp = 1/2 and each path Qi is
repeated (Qi = Qj for some j 6= i). Sticking the paths from h in place of the corre-
sponding paths from R transforms f into a half-integer maximum multiflow f ′ for the
original problem. Observe that there are two paths in f ′ that share a pair e, e′ of edges
incident to a node in V − W . Hence, this pair is splittable. This final contradiction
completes our study of the case when V −W is nonempty.

It remains to consider case V = W . Let f = (P1, . . . , Pk; λ1, . . . , λk) be a maximum
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multiflow. One may assume that all λi’s are nonzero and f contains no repeated paths.
Also without loss of generality one may assume that:

(i) |Pi| < 3 for each i (otherwise Pi includes a smaller H-path);

(ii) each nonzero capacity edge connects some sj and tq; and

(iii) λi < 1 for all i (otherwise reduce by bλic the number λi and the capacities of
the edges of Pi; this preserves the pseudo-Eulerianness).

Note that (i) and (ii) imply |Pi| = 2 for all i. Finally, we assume that f is chosen
so that η(f) =

∑
(λi : Pi is an S-path) is as small as possible. This implies that:

(iv) no two S-paths in f have the same pair of end nodes; and

(v) for each S-path sitpsj in f , both edges sitq and sjtq are saturated, where
{p, q} = {1, 2}
(otherwise one can decrease η). We show that f is an integer multiflow (and therefore,
all λi’s are zero, by (iii)). Let L be the set of S-paths in f . One can see that f is
integer if |L| ≤ 1. So assume |L| ≥ 2. Property (iv) implies that, up to symmetry,
only three cases for L are possible, namely: (a) L consists of s1t1s2 and either s2t1s3

or s2t2s3; (b) L consists of s1t1s2, s1t1s3 and s2t1s3; or (c) L consists of P1 = s1t1s2,
P2 = s2t1s3 and P3 = s1t2s3. Note that (iii) and (v) provide that c(e) = 0 for all edges
e not occurred in members of L. Also

∑
(c(sitj) : i = 1, 2, 3, j = 1, 2) is even since c is

pseudo-Eulerian. In case (a), the integrality of f is obvious. In case (b), the integrality
of f follows from the fact that c(s1t1) + c(s2t1) + c(s3t1) is even (since c(sit2) = 0 for
i = 1, 2, 3). Finally, in case (c), we have c(s2t2) = 0, whence f contains at most two
T -paths, namely, P4 = t1s1t2 and P5 = t1s3t2. In this case, the facts that each edge
occurred in P1 ∪ . . . ∪ P5 is covered by these paths exactly twice and that the sum of
their capacities is even imply that all λi’s are integers.

This completes the proof of Theorem 1. • • •

In conclusion notice that an integer optimal solution to our problem can be found
in strongly polynomial time (provided that G is given by the corresponding capacity
function c). This uses a weighted version of the splitting-off method similar to that
developed in [6] (or in [10]). At iterations of such a method, one applies an algorithm to
minimize c′m over all (2,3)-metrics and 3-cut metrics, for a current c′ : EV → ZZ+. The
minimization problem over the set of (2,3)-metrics is known to be solvable in strongly
polynomial time [6], while that over the set of 3-cut metrics is obviously reduced to
O(1) usual minimum cut problems.
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