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Abstract. Let H = (T, U) be a connected graph, and d¥ its distance function, i.e.,
d" (s,t) is the minimum length of a path connecting nodes s and ¢ in H. The minimum
distance mapping problem is (*): given a graph G = (V,E)withV D T, find a mapping
7 :V — T such that 2@ (v(2),1(y)) : e = {z,y} € E) is as small as possible. For
H fixed, this problem is known to be NP-hard if H is complete and [T| > 3 (as being
the minimum multiway cut problem), while it is polynomially solvable when IT| =2
(the minimum cut problem) or H is the complete bipartite graph with parts of 2 and
r nodes (the minimum (2, r)-metric problem).

In this paper we give a complete characterization of the set of graphs H with
the property that (x+) for any G, problem (x) and its fractional relaxation have the
same minimum objective value. More precisely, we prove that H satisfies (x+) if and
only if (i) H has no isometric k-circuit with k > 4, (ii) any three nodes are pairwisely
connected by three shortest paths sharing a common node, and (iii) the edges of H
can be directed so that the non-adjacent edges of each 4-circuit are oppositely directed.
Note that if H satisfies (+x), then (*) can be solved in polynomial time. The proof
combines combinatorial and topological ideas and reveals, in the key theorem, that H
with property (x*) can be embedded in a 2-dimensional space S with a special metric on
1t so that there is a one-to-one correspondance, with preserving the distances, between
the finite subsets of S that include T and certain metrics on sets V 2 T that appear
in the fractional relaxation of ().
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1. Introduction

By a metric on a set V! we mean a nonnegative real-valued function m : V' xV'
R, satisfying

(i) m(z,z) =0 for z € v’
(i) m(z,y) = m(y,z) for z,y € V' (symmetry);
(i) m(z,y) + m(y, z) > m(z, z) for z,y,zc V' (triangle inequalities).

Because of (i) and (ii) we may also think that m is given on the set Ey/ of edges
of the complete undirected graph Ky, = (V',Ev:). Then the set of metrics on 48
denoted by My, forms a (convex) polyhedral cone in the (";'I)-dimensional euclidean
space RV whose coordinates are indexed by edges of K. We use notation m(zry)
instead of m(z, Y¥). A special case of metrics is the distance function dS' of a connected
graph G’ = (v’ E'), ie., dG’(zy) is the minimum length of a path connecting nodes r
and y in G'.

Suppose that G = (V,E) is a graph with possibly multiple edges and H — (T,0)
is a connected graph with T C V. The minimum distance problem is:

(1) find a mapping 7V — T such that Y¥(v) = vforeachv € T and Z(d”(v(z)'y(y)) :
e € E, z and y are the ends of €) is as small as possible;

the minimum in (1) is denoted by 7 = 7(G, H). Another problem we deal with is:

(2) find a metric m on V such that m(st) = d¥ (st) for any s,t € V and 2(me) : ec
E) is as small as possible;

the minimum in (2) is denoted by r* = 7*(G, H).

A metric m on V whose restriction M. to T is d¥ is called an extension of H
to V; the set of extensions is denoted by Pv.u. Sometimes we denote an extension by
(Vim). Fory:V o T identical on T, the metric m defined by m(zy) = d¥ (v(z)7(y)),
Z,y €V, is called a O-eztension of H to V. Clearly each 0-extension is an extension,
therefore, 7* < 7. We think of (2) as the fractional relazation of (1). Note that (1) is, in
fact, equivalent to the problem in which, given graphs H' = (T',U’") and G' = (V',E"),
asubset X C V' and a mapping v : X — T', it is required to extend v’ to a mapping
7: V' - T’ s0 that Z(d”l(fy(x)'y(y)) ‘e=zy € E') is minimum.

Definition 1. Following [11], a graph H — (T,0U) is called minsmizable if r* (G, H) =
(G, H) holds for every graph G = (V, E) with T cv,

To motivate the above problems and definition, consider some examp]es.
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Ezample 1. H is the complete graph K, with p = |T| nodes. Then (1) turns into
the minimum multiway cut problem: given a graph G = (V, E) and subset T C V', find
a partition IT of V such that each member of II contains exactly one element of T and
the number of edges of G connecting different members of I is minimum. This problem
is known to be NP-hard for any fixed p > 3 [3]. On the other hand, its special case with

= 2 is efficiently solvable as being the classic minimum cut problem for which plenty
of polynomial algorithms have been designed (see, e.g., [4,5,6]). Moreover, 7 = 7* if
p = 2 (see, e.g., [4]), i.e., K3 is minimizable. For p > 3 the inequality 7* < 7 may
be strict. E.g., if G is as in Fig. 1, T = {s,t,u} and H = Kr, then 7 = 2 whereas
T =3/2.

Fig. 1 s u

Ezample 2. H is the complete bipartite graph K, , with parts of pand r = |[T| —p
nodes. It is easy to show that H is not minimizable if p,r > 3. On the other hand, H
is minimizable if p < 2 [8].

(An interesting result due to Lovasz [14] and, independently, Cherkassky 2] implies
that for H = K, problem (2) has a half-integer optimal solution m. A similar property
for H = K, , follows from a result in [9, Sec. 3].)

Ezample 3. Given a graph I' = (B,W), let H = (T,U) be formed by splitting
each edge e = zy € W into two edges zz, and z.y in series and then by adding a node
v and edges vz, for all e € W. From a result in [9, Sec. 3] one can derive that H is
minimizable if T' has no circuit with < 3 edges.

Ezample 4. Let H be the union of two graphs H' = (T",U") and H" = (T",U")
with T' N T" consisting of a single node. It is shown that if both H' and H" are

minimizable then H is minimizable too [11]. In particular, this implies that every tree
is minimizable (as K is minimizable).

From the computational point of view, for each minimizable H problem (1) is as
easy as (2). Indeed, (1) is reduced to comparing 7*(G, H) and r*(G’, H) for a sequence
of graphs G’, each obtained from G by sticking some nodes in V — T to nodes in T
clearly it suffices to test O(|T||V'|) graphs G'. In its turn (2) is a linear program whose
constraint matrix M has O(|V|®) rows and O(|V|?) columns; thus, 7 = 7* and an
optimal solution 5 to (1) can be found in polynomial time. Note also that if G is a
multigraph given via its node set and the integers ¢(zy) that indicate how many edges
connect a pair {z,y} in V, then (2) is solvable in strongly polynomial time by use of
Tardos’ version [16] of the ellipsoid method (taking into account that the size of writing
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M in binary notation is O(|V|3)); therefore, we get a strongly polynomial algorithm
for solving (1).

The aim of this paper is to give a complete characterization of the set of minimiz-
able graphs (Theorem 1 below), thus answering a question raised in [11]. To state this,
we need three more definitions.

Definition 2. Following [11], H = (T,U) is called 3-closed if for each triple
$0,81,82 € T there is v € T such that d¥ (s,v) + d¥ (vs;) = d¥ (sis;) for 0 <i < j <2
(i.e., there are shortest paths from s¢ to sy, from s; to s, and from s; to s that share
a common node).

Definition 3. A subgraph H' = (T',U’) of H is called isometric (in H) if d¥’
coincides with df on T".

Definition 4. H is called orientable if the edges of H can be directed so that for
any 4-circuit C = (vg,e1,v1,...,€4,04 = ¥p), edges €; and ez are oppositely directed,
and similarly for e; and e4 (e.g., if e; is directed from v,_; to v,, say, then e; 2 is
directed from v;42 to vi41, see Fig. 2).

V1 U2

Fig. 2 Vo v3

For example, K, is not 3-closed for p > 3, K, is 3-closed but non-orientable for
p,r > 3, and K3 , is 3-closed and orientable. Obviously, each 3-closed graph is bipartite.
If H is bipartite then each 4-circuit in H is isometric. A k-circust is a (simple) circuit

Ck with k nodes considered as a graph. A maximal subgraph K, , in H is called a
2-clique.

Theorem 1. The following are equivalent:
(i) H is minimizable;
(ii) H is 3-closed, orientable and contains no isometric 2k-circuit with k > 3.

The proof of Theorem 1 is given throughout Sections 2-4. Section 2 exhibits some
basic properties of minimizable graphs. In particular, the minimizability admits a
simple description in terms of vertices of the dominant polyhedron Dy g of Py . We
also describe the vertices of Dy g (“H-primitive metrics”) in terms of shortest paths,
which then enable us to establish some necessary conditions for the minimizability.
These results are then used to prove (i)=>(ii) in the theorem by showing, in Section 3,
that if H violates at least one condition in (ii) then one can construct an H-primitive
metric m on some V 2 T so that m is not a O-extension. The implication (ii)=(i),



more involved, is proved in Section 4 by combining combinatorial and topological ideas.
First we embed H as in (ii) in an orientable 2-dimensional space (pseudo-surface) S; it
is constructed by sticking up each 4-circuit of H by a disk, which forms a 2-dimensional
cell, and then by identifying certain parts of cells related to 2-cliques of H. We assign
an £;-metric within each cell, extend these local metrics to a metric o on the entire §
and show (in key Theorem 4.1) that for every V and every minimal extension m of H
to V, the embedding of H can be extended to an isometric embedding in (S,0) of the
metrical space (V,m). Finally, we show that every finite set V on S can be mapped to
T preserving the lengths of all shortest (w.r.t. o) paths with both ends in T, completing
the proof of Theorem 1. In concluding Section 5 we discuss a relationship between (1)
and the so-called multiflow locking problem and explain that the minimizability of the
graphs H as in (ii) without subgraphs K, , with r > 3 can be also derived by use of
the multiflow locking theorem in [10].

Theorem 1 shows that the set of minimizable graphs is rather large. For example,
it contains every planar graph in which all inner faces are quadrangles and each node
not in the outer face has degree at least four. A 2-dimensional grid I', , with nodes (7, 7)
for i =0,1,...,pand j =0,1,...,r and edges {(3,7),(¢',j")} for 1 —¢'| + |7 — j'| = 1
is a special case of the latter graphs. Another consequence of Theorem 1 is that if H
and H’ are minimizable, then identifying an edge of H with an edge of H' results in a
minimizable graph as well.

2. Dual description and H-primitive metrics

As before, My and P = Py gy denote the sets of all metrics on V and all extensions
of H to V, respectively. Clearly P is a polyhedron in R®Y. The dominant polyhedron
of Pis

D=Dyy:={ccR® : £>m some me P}.

Let £ = v g denote the set of minimal extensions m, i.e., there is no m’ € P such that
m' # m and m’ < m. Then € is exactly the intersection of the boundaries of P and D.
Similarly, for a metric u on T we define the set P = Py, of extensions of i to V' to be
{me My : m|, = p} and define the dominant polyhedron D = Dy,, as above.

A metric that is a vertex of D is called H-primitive (or p-primitive). It is easy
to see that every O-extension of H is H-primitive. The next statement exhibits a dual
description of the set of minimizable graphs. We identify a graph G = (V, E) and its
edge multiplicity function ¢ : Ev — Z, where for z,y € V, ¢(zy) is the number of
edges of G with the ends z and y. Then the objective in (2) is min{c¢-m : m € P},
denoting by a - b the inner product 3 _(a(e)b(e) : e € Q) of vectors a,b € RY.
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Statement 2.1. H is minimizable if and only if for any V O T every H-primitive
metric on V is a 0-extension.

Proof. By linear programming arguments, for each ¢ : Ey — Z. the minimum of
¢-m over m € P is achieved by a vertex of D; reversely, for each vertex m of D there
is ¢ : Ey — &, such that ¢-m < ¢-m/ for any other vector m’ in P. This implies the
statement. .

Note that £ is characterized by the following property:

(2.1) an extension m € P is minimal if and only if for any z,y € V there are 5,1 € T
such that m(sz) + m(zy) + m(yt) = u(st).

Indeed, “if” is obvious, while “only if” follows from the obvious fact that if for
some z and y, m(sz) + m(zy) + m(yt) > d¥ (st) for any s,t € T, then one can decrease
m on some pairs, forming a smaller metric m' on V with m"T =df.

For m,m’ € P = Py g (or = Py ,) we say that m' H-decomposes (or u-decomposes)
m if there is m" € P and 0 < A < 1 such that m > Am’ 4 (1 — A)m”. When it leads to
no confusion, we omit the prefix H or u in terms “H-primitive”, “u-decomposes”, and

etc. Clearly m is primitive if and only if no metric in P — {m} decomposes m.

In the next section, when proving necessary conditions for a graph to be minimiz-
able, we will construct a “bad” u/-primitive metric for a certain submetric ' of df and
then use it to show that H is not minimizable. This relies on three simple facts stated
in Statements 2.2, 2.4 and 2.5.

Statement 2.2. Let u be a metric on T, and y' its restriction to T' C T. Let V'
be a set such that V' NT = T'. Let m' be a u'-primitive metric on V'. Then m' can
be extended to a u-primitive metriconV =V/'UT.

Proof. Define m by m(zy) = m'(zy) for z,y € V', m(zy) = p(zy) for z,y € T, and
m(zy) = min{m(zs) + pu(sy) : s € T'} forz € V' and y € T — T'. One can check
that m is a metric. Thus m € Py ,. Take a p-primitive m; on V that u-decomposes
m. Then its restriction m{ to V' u’-decomposes m’'. The fact that m' is u'-primitive

implies m’ = m{. Hence, m, is as required. .
From Statement 2.2 it follows that

(2.2) for u = d¥,T',V',m' as above, if H is minimizable, then there is a mapping
4 : V! — T such that v is identical on T’ and m/(zy) = d¥ (v(z)~(y)) for all
z,ye V'



This property enables us to immediately eliminate the non-3-closed graphs H.

Statement 2.3 (11). If H is minimizable then H is 3-closed.

Proof. Consider so,s1,82 € T. Let po,p1,pe satisfy p; + p; = d¥ (s;s;) for 0 < ¢ <
j < 2. These numbers are nonnegative (as d” is a metric) and defined uniquely. Take
T' = {s0,51,82} and V' = T’ U {z}, and let m/(s;z) = p;, ¢+ = 0,1,2. Obviously,

defining m’ on T' as p' = d¥ we obtain a p’-primitive metric on V’. Assuming that
g P

I
H is minimizable, let v be as in (2.2). Then v = ~y(z) satisfies d” (s;s;) = pi + p; =

d¥ (s;v) + d¥ (vs;) for 0 < ¢ < j < 2, as required. .

In particular, each minimizable graph is bipartite. This and (2.2) yield the follow-
ing property (which will be used in Section 3 to prove that a graph is not minimizable
if it is non-orientable or contains an isometric 2k-circuit with k > 3).

Statement 2.4. Let p' be the restriction of d¥ to a subset T' C T. Suppose
that there is a u'-primitive metric m’ on a set V'. If m' is not integral or there are
To,...,Zx € V' such that m/(zozy) + ... + m'(zk—12) + m/(zkzo) is an odd integer,
then H is not minimizable. .

The next statement shows that we can construct primitive metrics recursively.

Statement 2.5. Let m be an H-primitive metriconV 2 T. Let u’ be the restriction
of mtoV’' C V. Let m' be a u'-primitive metric on W O V' (assuming that W NV =

V'). Then there is an H-primitive metric m" on V" = V UW that coincide with m’ on
W.

Proof. This is close to the proof of Statement 2.2. More precisely, define m(zy) to be
m(zy) for z,y € V, m/(zy) for z,y € W, and min{m(zs) + m'(sy) : s€ V'} forz eV
and y € W. One easily shows that m is a metric. Take an H-primitive m; € Pyu
that H-decomposes m. Then mi, = m (as m is H-primitive). This implies that
mi|y, = #', therefore, my,,,, pu'-decomposes m'. Since m' is u'-primitive, my, = m'.
[ ]

Next we discuss a method of showing that certain metrics are primitive. We need
some terminology.

A sequence P = (zo,z;,...,zk) of elements of V is called an o —zi path on V;
for brevity we use notation zgzy ...z for P. If all z,’s are distinct, P is stmple. If
zo and zi are distinct elements of T, P is called a T-path. Given m € Py g, a T-
path P = zqox, ...z is called an H-geodesic of m if P is simple and the m-length
m(P) = m(zozy) + ... + m(zx_12x) of P equals d?(zozk). The set of H-geodesics



of m is denoted by G(m) = Gy (m). When each e; = z;_,z; is an edge of a graph
G = (V,E), P is said to be a path of G, and e; an edge of P (though G may contain

miltiple edges, this will lead to no confusion in what follows). |P| denotes the number
k of edges of P.

A metric is called positive if it takes non-zero values on all pairs of distinct elements.
The following fact is obvious (see, e.g., [12]):

(2.3) if m,m’ € P and m is positive, then m’ decomposes m if and only if G(m) C
G(m'); in particular, every positive primitive metric is uniquely determined by its
geodesics.

This property has a practical application for constructing primitive metrics; we
borrow an idea from [12,1]. Let G = (V, E) be a connected graph such that for some
o € Ry the metric m = ad® is in Py y. A subgraph G' = (V', E’) of G is called
H-tsometric if

(2.4) for each z,y € V' there are s,t € T such that m(sz) + ad® (zy) + m(yt) = d7 (st);
in other words, G has an H-geodesic of m that contains, as a part, a path in G’ between
z and y. An H-isometric subgraph is, obviously, isometric.

Suppose that H has an H-isometric even circuit C = zoz; ... Z2k (Z2x = Z¢) in G.

For G’ = C, (2.4) is equivalent to saying that

(2.5) for ¢ = 0,...,k — 1, there are s;,t; € T such that m(s;z;) + m(ziyxti) + ak =
dH(Siti).

Let m' decompose m. Then G(m) C G(m'), therefore, (2.5) implies that
itk—1
(2.6) for 1 =0,...,k—1, m'(s;z;) + m'(ziputs) + Z m'(z;2;41) = d¥ (s:t5).

j=

We may assume that s; = ¢, and t; = s;+x. Then putting together the 2k inequalities
in (2.6), one can derive that

(2.7) m'(z;zi41) = M (TiskTivks1)s t=0,...,k.
Edges e,e’ € E are called H-dependent if there is a sequence e = eg,e1,...,¢, = €'
of edges and a sequence Cy,...,Cy of H-isometric even circuits of G such that e;_;

and e; are opposite edges of C;, 7 = 1,...,q. A maximal set of mutually H-dependent
edges is called an orbit. The following statement is close to a result in [12,1] (see also
[13]) on extreme metrics of graphs.



Statement 2.6. If each orbit of G contains an H-geodesic (e.g., an edge with both
ends in T) then m = ad® is H-primitive.

Proof. Let m' decompose m. From (2.7) it follows that m’(e) is the same number b for
all edges of an orbit Q. Since Q contains an H-geodesic P connecting some z,y € T, b
is fixed to be d¥(zy)/|P|. Hence, m’ is uniquely determined for all edges of G. Now
since G is connected, m' is uniquely determined on all pairs in V, i.e., m' = m. .

3. Non-minimizable configurations.

In this section we prove (i)=>(ii) in Theorem 1. We use notation A~B for isomor-
phic graphs 4 and B. First we consider a special graph H. Let K;’é denote the graph
obtained from K3 3 by deleting one edge, see Fig. 3. Note that K;é is non-orientable.

Fig. 3

Lemma 3.1. For H = K3—’3l there is an H primitive extension which is not integral.

Proof. We denote the nodes of this H = (T,U) by 1,...,6 as in Fig. 3. Split each
edge e = 1j of H into two edges 7z, and 2.7 in series, add two extra nodes = and y, add
edges zz, for all e = 15 € U with 7,7 < 5 and add edges yz, for all e = 15 € U with
t,7 > 2. The resulting graph, denoted by G = (V, E), is shown in Fig. 4.

2z 23

Fig. 4

A routine, though somewhat tiresome, check-up (which can be simplified by using
symmetries of G) shows that: (i) 1d®(ij) = d¥(ij) for all 1,5 € T, i.e., m = d/2 is
an extension of d¥; (ii) each 4-circuit in G is H-isometric; and (iii) all edges of G are

H-dependent, i.e., G has an only orbit. By Statement 2.6, m is H-primitive. Also m
is not integral. °



A special role of the graph K 31 is demonstrated by the following statement.

Statement 3.2. Let H' = (T',U’) be an isometric subgraph of H. Suppose that
there is a graph G = (V,E) with T' C V such that (i) m = d€ is H'-primitive, and
(ii) G has an isometric subgraph G' = (V',E’):Ka_,;. Then H is not minimizable. In
particular, H is not minimizable if it contains Ks',é as an isometric subgraph.

Proof. By Lemma 3.1, there exists a G’-primitive extension m’ to a set W C V' such
that m' is not integral. Since G' is isometric in G, u’ = d% is a submetric of d°.
Applying Statement 2.5 to H',m,u’,m’, we conclude that there is an H’-primitive
metric m" on V UW that coincides with m’' on W. Since H' is isometric in H, m"” is a
primitive extension of a submetric of d. Now the fact that m" is not integral implies
that H is not minimizable (by Statement 2.4). .

This statement enables us to eliminate graphs with big isometric circuits.

Lemma 3.3. Let H contain an isometric 2k-circuit C with k > 3. Then H is not
minimizable.

Proof. LetT' = {1,...,2k} be theset of nodesof C and 1, ..., 2k follow in this order in
C. In view of Statement 3.2, it suffices to show the existence of a graph G = (V, E) with
T' C V such that d is C-primitive and G contains Ks_,l as a C-isometric subgraph.
The desired graphs G (for k = 3 and k > 4) are depicted in Fig. 5.

Fig. 5 >k +2

One can check that: (i) in both cases, G contains a C-isometric subgraph G'~K }
(G’ is drawn bold in Fig. 5); (ii) for k = 3, all edges of G are C-dependent; (iii) for
k > 4, there are k — 2 orbits Oy,...,Ok_2, each containing an edge of C (namely, for
t=2,...,k~2, O; is formed by the edges {i + 2,7 + 3}, {zi, ziv 1}, {k + ¢+ 2,k +1 +
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3}, {zksi—2,Tkri—1} (letting z2x_3 = z; and identifying {2k, 2k + 1} with {2k,1}),
and O is the rest). Thus, G is as required. .

For further purposes we need two more “non-minimizable configurations”. As
mentioned in the Introduction, H' = K, , is not minimizable for p,r > 3. This is
because adding to H' a node z and edges zs for all nodes s in H' results in graph G for
which the H'-primitivity of d© can be easily shown. Since G is not bipartite, H' is not
minimizable (cf. Statement 2.4). Note also that any subgraph H'~K, . of a bipartite
graph H is isometric in H.

Another example is the graph Cg depicted in Fig. 6. This graph has an isometric
6-circuit C (namely, that follows 1,2,...,6), so Cg is not minimizable. If we add to
Ce+ one or two edges connecting opposite nodes in C, then the resulting graph contains
an isometric subgraph K;’é, while adding the three such edges turns C into K3 3.

4

Fig. 6 1

The above arguments imply the following statement (here we also use the fact that

adding to K;,é an edge connecting the nodes at distance three in it makes K3 3).

Statement 3.4. If H is bipartite and has a subgraph isomorphic to Ka—,:; or Cg,
then H is not minimizable. .

Remark 3.5. If H contains an isometric 2k-circuit with k > 3 or subgraph K;’é, then
problem (2) has “infinite fractionality”, in the sense that for any ¢ € Z, there is an
H-primitive metric m with the denominator of some component of m at least g. This
follows from the fact that the graph G in the proof of Lemma 3.1 (see Fig. 4) has
an isometric Ky é Therefore, we can recursively “expand” such subgraphs by metrics
proportional to d©, obtaining H-primitive metrics with increasing denominators. In
contrast, as mentioned in the Introduction, the graphs K, and K, , (p,r > 3), though
not minimizable, have the property that the denominators of every primitive exten-
sion are at most two.

Next we examine the last bad case in (ii) of Theorem 1. Here we apply slightly
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different techniques. By a dual path of H we mean a sequence D = (eg, F1,é€1,..., Fk,
ekx), where e, ..., e are edges and Fy,..., F 4-circuits in H, and e;_1,e; are opposite
edges in F;. When ey = e, D is a dual cycle.

Lemma 3.6. Let H be bipartite and non-orientable. Then H is not minimizable.

Proof. Recall that H has no parallel edges. Consider a dual path D = (e, Fy, €3,.
Fr,e) in H. For 1 = 1,...,k, let F; = z,_1y;i—1¥iTiTi—1, €i_1 = Ti_1¥i—1 and

.oy

e; = z;y;, see Fig. 7.

Yo i Y3 Yik—1 Yk = To
eo] 1 e Fy e2 ex—1| Frk—1 | ek = €0
Fig. 7 Zo zy z3 Tk—1 Tk = Yo

One can see that the fact that H is non-orientable means the existence of D as
above such that eq = ex, T = yo and yx = zo, an orientation reversing dual cycle. We
assume that D is chosen so that its length |D| = k is as small as possible. We consider
D up to shifting cyclically, take indices modulo k and let Fy = F.

Note that the minimality of D implies that all ey,..., e, are different (while some
F; and F; may coincide). We observe that

(3.1) if z; = y, then |¢ — j| is odd, and if z; = z; or y; = y; then |7 — 7] is even;

else H is not bipartite. In view of Statement 3.4, we may assume that H contains no
subgraph K;é We observe that

(3.2) if z; = z,;4, for some 7, then all elements of Z = {z;, z,11,Ti43,y;, 7 =¢,...,t+3}
are different, and similarly if y; = y;42;

Yi+3

i = Ti42 Ti4+3

Fig. 8 (a) (b)

see Fig. 8a. Indeed, one can check that if z; = z,,, and some elements of Z coincide,
then H has parallel edges or a subgraph K:;,al or D is not minimal (the latter case
occurs when y;41 = y,4+3; then the part from F;1; to F;+3 in D can be replaced by the
4-circuit T;y;¥i+3Ti+3z;). To a similar reason,
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(3.3) fort =0,...,k— 1, z; # yiy3 and y; # Tiy+3;

see Fig. 8b. In particular, (3.1) and (3.3) show that k is odd and k > 3. We say that
F; and F;y, are squeezed if either z,_1 = ;41 or y;—1 = yi41 (then F;U Fiyy is K, 3).
By (3.2), in this case F;_; and F; are non-squeezed, and similarly for F;;; and Fi4,.
By (3.1}, if F; and F;y, are non-squeezed, then the six nodes z;,y;, j = ¢ — 1,7,1 + 1,
are different.

Form the graph G’ = (V', E’) by adding to H nodes 2; and edges connecting z; to
Ti—1, Z; Yi—1 and y; for i = 1,...,k (note that z; and z; are different even if F; = F}).
Next we transform G’ into G = (V, E) as follows. For ¢« = 1,...,k, if F; and F;;, are
squeezed, we identify z; and 2,1, (and identify multiple edges appeared). And if F;
and F;,, are non-squeezed, we add edge u; = z;2;4,. See Fig. 9.

in H

—

—

in G

Fig. 9
Claim 1. d€ is an extension of d¥.

Proof. Suppose that this is not so. Then G has a path P = vgv; ... v, with vg,v, € T
such that its length |P| = g is less than d" (vgvq). Choose P with |P| minimum under
this property. Then the intermediate nodes vy,...,v4_; of P are, obviously, not in 7.
Since none of the edges in £ — U connects elements of T, |P| > 1. If |P| = 2 then,
by the construction of G, there is ¢ for which at least one of the following is true: (i)
vy = z; and both vo,v2 are in Fj, or (ii) F; and F;;, are squeezed, v; = 2; = z;,, and
both vg, vy are in F; U Fyy; (~K>3). In both cases, d¥ (vovs) < 2.

Thus |P| > 3. Then the edge ¢ = vyvy is of the form z;z;,; for some i; we
may assume that v, = 2z;. If vg is z; (or y;), then vo and vy = 2;4; are connected
by an edge in G; therefore, replacing the part vov;ve by vovy makes a shorter Vo—Uq
path, contradicting the minimality of P. If vy is z;_; (case vo = y;_; is similar), then
replacing the part vov,v; by the path voz,v; makes an vo-v, path P’ with [P'| = |P|.

13



Now the part P” of P/ from z; to v, is a T-path satisfying
g
|P"|=|P'|-1< dH(vovq) -1< dH(:zivq),

contrary to the minimality of P. Finally, if F;_; and F; are squeezed, z; = z;_» say,
and vg is in Fy_; but F; (i.e., vo = y;—2), then voz,v, is again a path in G, and we get
a contradiction as above. )

Hence, d¢ € Pv,ir. Choose an H-primitive metric m’ on V that H-decomposes
d®. We now use the property that each geodesic of d€ is a geodesic of m' too. For

i=1,...,k, let oy = m'(z;_12), o} = m'(z;2), Bi = m'(yi-12;) and B! = m/(y;2).
Claim 2. Fort=1,...,k, a; — B; = oi4+1 — Bi+1.
Proof. Consider two possible cases.

(i) F; and F;;; are not squeezed. Then d¥ (z;_1y;4+1) = d¥ (yi—1zi41) = 3 (for if,
say, ;1 and y;4 are connected by an edge e in H, then adding € to F; U F;;; forms
Ka_é). Hence, both P = 1;_12;2;41y;4+1 and P’ = y;_12;2;412;,, are H-geodesics of
G. ’Then m!(P) = m/(P') = 3. This implies o; + 8}, = 8; + a} ;. This together with
the obvious relations a;43 +ﬁ1'-+1 =2 and B;4+1 +a§+1 = 2 implies a;—f; = ;41— Biv1-

(ii) F; and F;i; are squeezed, z;_; = z;41 say. Since the T-paths y,_zz,,
T;2;Y;+1 and y;_12;Y;4+; are shortest in G, we have §; = a;4, = ~£+1 = 1. Also
T;_12;Y; is shortest, whence a; + ;41 = 2. Hence, o — B; = (2 — Biy1) — 1 =
1= Biv1 = aiyr — Bita. .

Now we finish the proof of the lemma as follows. We derive from Claim 2 that
o1 — 1 = akt1—Pr+1. Since 2o = yk and yo = z, we have fx11 = a; and axy1 = f1.
Thus, m'(zgz1) = a; = f; = m'(yoz1). This implies that if a; is an integer, then the
m'-length of the circuit zoypz;zo is odd, so H is not minimizable, by Statement 2.4.

This completes the proof of (i}=ii) in Theorem 1.

4. Embedding in a surface

In this section we show that if H = (T,U) satisfies (ii) in Theorem 1, then H
is embeddable in a 2-dimensional space S = S¥ with a special metric on it so that
every positive minimal extension (V,m) of H admits a unique isometric embedding in
S (Theorem 4.1). Reversely, every finite subset V D T of S determines a minimal
extension (V,m) of H. We then explain that for such a (V,m) each point in V can
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be “shifted” along S into one of the closest points in T so as to preserve the length of
every shortest T-path for m (Lemma 4.2). This will prove (ii}=>(i) in Theorem 1.

As before, we assume that H is connected and has no multiple edges. Also it will
be convenient to assume that H is 2-edge-connected (which does not lead to loss of
generality, in view of Example 4 in the Introduction). Then each edge of H belongs to
a 4-circuit (as H is bipartite and has no isometric 2k-circuit with k > 3).

The set S that we are now constructing is defined uniquely by the 2-cliques of H
(in particular, by its 4-circuits).

First, we expand each 4-circuit C = vov;v5v39, (considered up to reversing and/or
shifting cyclically) to a 2-dimentional disc D = DC. Formally, D is homeomorphic to
[0,1] x [0,1] C RZ, nodes vg,vq,vs,vs are identified with points (0,0),(0,1),(1,1),(1,0),
respectively, and the edges of C with the corresponding straight line segments in the
boundary of D (e.g., viv; is identified with {(£,1) : 0 < € < 1}). In what follows we
do not differ a node (edge) of C from the corresponding point (segment) in D¢.

Second, if 4-circaits C and C' have a single common node (edge), we identify the
corresponding points (segments) in D€ and D°'.

Third, suppose that 4-circuits C = vovv3v3v9 and C’ = ugujuugug have two
common edges, say, v; = u; for 1 = 0,1,2. Then we identify corresponding halves of D¢
and D€'. More precisely, if, for definiteness, vo,v;,v; correspond to (0,0),(0,1),(1,1) in
D€, and similarly for C’, then each point (£,7) with 0 < ¢ <7 < 1in D€ is identified
with (¢,7) in DC".

The resulting space is just S = S¥ | called the H-surface. For a 4-circuit C of
H, we call D¢ the (2-dimensional) cell of S induced by C. [This notion of a cell is
somewhat different from what is usually meant by “closed cells” in a cell partition of
a topological space (see, e.g., [15]); standard cells will appear if we subdivide each cell
D€ in folders (defined below) into two triangles.]

S2 t3

Fig. 10 $1 becomes 81

We observe that if H' is a 2-clique of H with node parts {s;,s2} and {t{,...,t,},
then by the above rule the region FH' of S into which H' is expanded is homeomorphic
to the space obtained from r copies of the “triangle” {(¢,n) : 0 < £ < 7y < 1} by
sticking them along the “diagonal” {(a,a)} : 0 < a < 1}, see Fig. 10 (for r = 5).
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We call FH' the folder in S induced by H'. Each 4-circuit s1t;s2t;s; forms a cell in
FH'. Note that no interior point of FH belongs to another folder (in particular, a cell
not in FH'). Otherwise for some 1 < 7 < j < r, there is a path P = t,vt; in H' with
v # 8;,89; then H' U P contains a subgraph K:;"al, and therefore, H is non-orientable.

Remark 1. One can show that the orientability of H implies that S is an orientable
space. Also from the non-existence of “big” isometric circuits and K, ;-subgraphs one
can deduce that S is contractable, i.e., there is a continuous mapping ¢ : $ x[0,1] = S
such that ¥(z,0) = z and ¢(z,1) = v for all z € S and a fixed point v € S. In
particular, S contains no compact 2-dimentional surface. Using these facts, one can
give alternative, sometimes simpler, proofs of some of statements later on. However,

we prefer more combinatorial proving methods here, without appealling to the above
facts.

C within each cell DY in a natural way. More

precisely, the above representation of D¢ establishes cartesian coordinates (&,7) in
D€, and we assign the ¢;-distance € between points z = (¢',7') and y = (¢",n")
of DY, ie., 0%(zy) = |¢ — £"| + |0’ — n"|. We assume that these local metrics are

assigned to be compatible on common edges of cells and common parts of cells in

Next, we assign an £;-metric ¢

folders. We extend these metrics to the global metric 0 = 6 on S, where for z,y € S,
o(zy) is the infinum of values 6! (zoz,) + ... + 0¥ (zx_1zy) among all sequences
= Z0,Z1,...,ZNn = y of points of S such that each pair z;_;,z; belongs to the same
cell, namely, D¢ . Obviously, o satisfies the symmetry and triangle inequalities. Also
we can see that for each 4-circuit C, o coincides with ¢ within D¢.

o)t
LF

RF

Fig. 11 (a) Tas (a) T

A simple example of graphs H as in (ii) of Theorem 1 is a grid I'p ,, or a p x r-grid,
defined in the Introduction (see Fig. 1la where p = 4,r = 3). In what follows an
important role will play a subgraph I' of I',; induced by the nodes (,)) satisfying
a; <1 < b; for two sequences 0 =ap <a; <...<a, <pand0< by <bh; <... < b, =
p with a; <b;, 7=0,...,7r. Wecall T a net, or an s—t net, with origin s = (0,0) and
endt = (p,r), and denote the rightmost (leftmost) path from s to ¢t in T by RT (resp.

LT); see Fig. 11b. A node of H that belongs to I' and has coordinates (¢,7) in it is
denoted by (&,n)r.
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For a u-v path P and nodes z,y € P, P(z,y) denotes the part from z to y in P;
P! denotes the path reverse to P; and P - Q denotes the concatenation of P and a
v—w path Q.

Theorem 4.1.  Let H satisfy (ii) in Theorem 1, and let (V,m) be a minimal extension
of H. Then there exists a mapping w : V — S¥ such that w(v) =v for allv € T and
m(zy) = o¥(w(z)w(y)) for all z,y € V. Moreover, such a mapping is unique, i.e.,
(V,m) admits a unique isometric embedding in (SH,0H).

Proof. It falls into several claims. Claims 1-4 refine the structure of shortest paths in H
and reveal important facts concerning nets in H; these auxiliary claims will then enable
us to locate the elements of V on S and prove the theorem (Claims 5-8). Throughout
the proof, d stands for d¥. We will use many times the fact that H does not contain
the “forbidden configurations” Ky 31 and C; . It is convenient to state this property in
the following form:

(4.1) if H' is a subgraph of H that is the union of two 4-circuits with an only common
edge as in Fig. 12, then no node ¥ € T different from y is adjacent to both Z and

zZ.

Fig. 12 z 7] z

Indeed, the existence of such a ¥ leads to the existence of C{ (when ¥ is different from
all nodes in H') or Ka—,:}, (otherwise), taking into account that H is bipartite.

We start this the following basic fact.

Claim 1. Fors,t € T let P and P’ be shortest s—t paths in H. Then there is an st
net T in H with RT = P and LT = P'.

Proof. Let P = zox; ...z and P/ = yoy;...Yk; 80 8 = Zg = Yo, t = T = Yk and
d(st) = k. We use induction on |P| = k. If k < 2, the result is obvious; so assume
that k > 3. Also we assume that P and P’ have no common inner node, else the result
easily follows by induction.

Let P; stand for P(zo,z;) and P/ stand for P'(yo,y;). Since H has no isometric
2k-circuit, there are 0 < 7,7 < k such that both ¢ + j and (k — 1) + (k — j) are greater
than ¢ = d(z;y,). Let such ¢, j be chosen so that ¢+ j is minimum. Also we may assume
that j < ¢. Let B = 2p21...24 be a shortest path from zo = y; to 2z, = z;. By the
minimality of ¢ + j, (i) no inner node of B meets P; U P/, and (ii) ¢ =1+ 7 — 2 (since
d(z:y;-1) =t+j — 1 and H is bipartite).
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Let ' = y;—1. By (ii), both &'-z; paths @ = (P/_;)"!- P; and Q' = ¢'2021 ... 2
are shortest; also |Q’| = ¢+ 1 < k = |P|. By induction there is an s'-z; net I'' in H
with BT = Q and L™ = Q’. Since the path (P]f)'1 - P;_; is shortest (by the minimality
of 4 + j) and contains s’ = (0,0)rs, we have y; = (0,1)r and z;_; = (g,0)rs. This
implies s = (a,0)r/ for some 0 < a < ¢ and z; = (¢,1)r’ (as the y;—z; path B in I'" has
length g). Therefore, I is the grid ['y,;.

Let P; be the s—z; path in I passing through (a,0), (e,1),(a+1,1),...,(g,1), and
F;- the s-y; path passing through (a,0),(a,1),(a — 1,1),...,(0,1). Since |P;| = |P|
and ]?g\ = \PJ’-}, the s-t paths P = P; - P(z;,z«) and P = ‘15;;- Pi(yj,yk) are shortest.
Also s = (a,1)r’ is a common node in these paths. Let P (P') be the part of P
(resp. P') from s” to t. Then |P| = |P'| < k, so by induction there is an s”—t net
I with RT" = P and L™ = P’. Let y; and z; have coordinates (a, ) and (v,6) in
I'", respectively. Note that j < ¢ implies z; # s" (otherwise 1 = j = 1 and ¢ = 0,
l.e., z; = y; is a common node in P and P’). The fact that the above shortest path B
contains s” implies o+ f +~v+ 6 = |a — | + |8 — 6|. This is possible only if either (i)
a=0f=0((e,y; =s"and s’ =s),0r (ii) 6>0,y>0and a =6 =0.

In case (ii), the subgraph of T’ induced by the nodes (p,r) for p = a — 1,a,a + 1
and r = 0,1 together with the path ((0,1),(1,1),(1,0)) in T'” forms the forbidden
configuration as in (4.1). Thus, this case is impossible.

In case (i), we assume that, among all possible net representations for ' (when
I'" is not 2-edge-connected), the net is chosen so that the coordinate 6 is as small as
possible. If § = 0 then the union of I/ and I'” is just the desired s—t net I' with Rl = P
and L' = P’. Finally, suppose that 6 > 0. Then I'/ contains nodes v = (h,0),v =
(h +1,0),w = (h + 1,1) and z = (h,1) such that u,v,w belong to RT" . But the two
4-circuits in I’ that contain v together with the path uzw in I'" form the forbidden
configuration as in (4.1); a contradiction. .

Remark 2. In general, the subgraph H, ; of H that is the union of all shortest s—¢ paths
may have a somewhat more complicated structure than a net; Figure 13 illustrates an
instance of H, ;. One can describe the structure of H, : in terms of unions of nets. Also
one can show that for any 0 < ¢ < d(st), the set of points z € S with o(sz) = ¢ and

o(zt) = d(st) — € is homeomorphic to a tree. However, we do not use these facts in the
sequel.

Remark 3. For a fixed v € T, let V; be the set of nodes of H at distance : from v.
From Claim 1 one can derive that if z € V; is adjacent to distinct y,z € V;_,, then
there is a unique w € V;_; adjacent to both y, z. Using this fact, one can easily arrange
a homotopy ¥ mentioned in Remark 1 to show that S is contractable.
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Fig. 13 S s

Claim 2. Every 2-connected net in H is isometric.

Proof. Suppose this is not so for some 2-connected s—t net I'. Then there are z =
(p,q)r and y = (p/,¢')r for which A := |p—p'| + |¢ — ¢'| > d(zy). In addition, let z,y
be chosen so that A is minimum. Since H is bipartite, A > 2.

From the facts that I' is 2-connected and A > 2 one can see that there exists an
z—y path of length A in T, Q = zoz; ... A say, such that at least one of |pg — p2|, |90 —
920, 1pa — Pa-2|,l9a — ga_2| equals two, where z; = (p;,¢;)r. We may assume that
g2 = go +2. Let Q' be the part of Q from z, to za = y, and P’ the concatenation of
zr1zo and a shortest z—y path. Since H is bipartite, the minimal choice of z,y implies
that both P’ and Q' are shortest z, —y paths.

By Claim 1, there is an z; —y net I with RF = P’ and LT' = Q'. Then z, =
(1,0)r+, z1 = (0,0)r’ and z2 = (0,1)rs. Next, by the above assumption, po = p; = p
and go+1 = ¢q; = g2 —1. Moreover, since T is 2-connected, I' contains nodes v = (p, q0),
v = (P,q1) and w = (P, q2), where P is either py — 1 or py + 1. But the subgraph of
I' induced by {zq, 1, z2,u,v,w} together with the path ((1,0),(1,1),(0,1)) in I’ forms
the forbidden configuration as in (4.1); a contradiction. )

This claim is strengthened as follows.

Claim 3. Let T be a 2-connected 5—1f net and t = (p, )7
andt = (p— 1, — 1);. Let ,¥ € T be such that d(zs')
d(yt) + 2. Then d(zy) = d(z3) + d(yt) + P + 1.

# (0,0)r. Let 3 = (1,1)§
= d(T3) + 2 and d(¥t') =
Proof. Choose a shortest T—35 path Q; and a shortest {—y path Q; in H. We have
to show that P = Q, - @ @2 is shortest, where 5 is an 5—1f path of length 5+ gin T.
Suppose this is false and choose a part P! = zoz;...zx of P with |P!| = k minimum
provided that |P’| > d(zozk). In addition, we assume that |P’| is minimum among all
possible P (when é varies). Let P = z;z;,...z; be the common part of P’ and the
corresponding é In view of Claim 2, P’ is not entirely in I'; so we may assume that
0 <1 < k and z; = 5 (whereas P’ may not contain ¢). W.l.o.g. we may assume that P"
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is the leftmost shortest path between z; =5 and z; in T; in particular, ;41 = (0,1)¢

We consider the path P = z;z,...z; and the concatenation B of r1z; and a
shortest £o—z) path. By the minimality of P’, both P and B are shortest and openly
disjoint (moreover, obviously, no inner node of B belongs to T). By Claim 1, there is
an r;—zx net I’ with LT = B and RU = P. For f =0,...,J let z; have coordinates
(¢f,n7) inT and (py,qs) in T (when f > 7). Then (é1,71) = (0,0) and (§o,70) = (0,1);
also both ¢;,n, are nonzero. The fact that d(Zs') = d(Z3) + 2 implies that the path
Q = zoZ1 ... T;T;4 18 is shortest; in particular, & =1'—1and ny = 0fors’ =1,...,4+1
(as o = (0,1)r and z; = (0,0)r). Let o be the maximum index for which no = 0;
then t < a < J.

We observe that pg = 0 for § = 1,...,a. For if pg = 1 for some 8 < a, and 3 is
minimum under this property, then 8 > 1+ 1 (as p;+; = 0) and zg = (0,8 — 1)r =
(1,8 — ¢ — 1)i. Therefore, ' contains (¢,n) for € = —-3,—2,~1and n =0,1,
and the subgraph of T induced by these nodes together with the path ((0,8 — ¢ —
2),(1,8 —1—2),(1,8 —i— 1)) in T contradicts (4.1). To a similar reason, pa+1 = 1.
For if pa+1 = O, then the subgraph of T induced by the nodes (p,g) for p = 0,1 and
g=a—1i—1,a—1,a—1+1 and the path ((«—2,0),(«—2,1),(ae—1,1)) in T contradict
(4.1) (the above nodes (p, g) exist as T is 2-connected).

Finally, the node z,41 cannot coincide with 3’ (as the above path Q is shortest,
while the distance in T between zo and zo41 is @ — 1). Therefore, a > 1 + 2. Let
y=(a—3,1)randy = (¢—2,1)r. Let z=(L,a—7—-2)gand 2’ = (l,a — ¢ - 1)
Note that y is different from z (otherwise the path zoz; ...z,_22 is not shortest and its
length is less than | P’|, contrary to the choice of P’). Similarly, y’ # 2’. Therefore, the
nodes y',y,Ta—2,2,2 ,Tas1 are different (taking into account that H is bipartite, the
nodes in T are different, and similarly for T'). Moreover, these nodes form a 6-circuit in
H (in the above order). But z,_; is adjacent to each of y',z4_3,2’. Hence, H contains
Cq ; a contradiction. .

U2

Q

Uo
Fig. 14 P '3

Claim 4. Let ug,u;,us € T, and let P be a shortest uo—u; path in H. Then there
are a ug—u, net I' and a path Q from u, to some node w € P such that: (i) Rl = P;
(i) w = (0,r)r, assuming that u; = (p,r)r; (iil) no inner node of Q belongs to I'; and
(iv) T U Q is isometric.
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(See Fig. 14)

Proof. Choose w € T and u;,—w paths B;, ¢ = 0,1,2, such that each of Q; = Bg ~B2—1,
Qs = Bo- By' and Qo = By - B;' (they exist as H is 3-closed). In addition, we
assume that the B;’s are chosen so that the number of common edges in P and Q; is as
large as possible. The desired Q is just Bz. If P and Q2 coincide, the desired net T is
P (assuming that the sequence of nodes of P is (0,0),(0,1),...,(0,7),(1,7),..., (p,7),
where r = |By| and p = |By|).

Suppose that P and Q are different. The choice of B;’s implies that there are
nodes z € By and y € B, different from w and such that the parts of P and @, from
uo to z, as well as from y to u;, coincide, while their parts from z to y are openly
disjoint. The paths P’ = P(z,y) and Q' = Q2(z,y) are shortest; therefore, by Claim
1, there is an r—y net I'' with RY = P'and LY = Q'. Moreover, if y = (p',7')r
then w = (0,7')p (for if w = (a,B8)r’ and « > O say, then the shortest uo—w path
that follows By from ug to z, then follows RT' from z to a node (e, ') and then passes
(a,8' +1),...,(a,8) in T’ has more common edges with P than By does} It is easy to
see that adding to I’ the paths P(uq,z) and P(y,u;) forms a net I' as required. )

Next we consider a minimal extension (V,m) of H and fix an element z € V.. By
(2.1), for each s € T there exists t € T such that m(sz) + m(zt) = d(st). Claims 3 and

4 enable us to prove the following important property.

Claim 5. At least one of the following is true:
(i) m(voz) = O for some node vy of H;
(ii) m(voz) + m(zvy) = 1 for some edge vov, of H;

(iii) m(voz) + m(zvy) = 2 for some 4-circuit C = vov1vzv3v of H.

Proof. Assume that (i) is not true and choose s,t € T such that d(st) is minimum
provided that m(sz)+m(zt) = d(st). Then d(st) > 1. Let P = 292, ... 2k be a shortest
s—t path in H. Choose v € T such that m(z,z) + m(zv) = d(z;v). Consider I', p,r and
Q@ as in Claim 4 for ug = s, u; =t, u; = v and P. Let LT = yoy; ... yx; then w = y,
and d(st) =k =p+r.

Suppose that r = 0 (i.e., w = s). Since I' U Q is isometric, the path B =Q - P is
shortest. Therefore, m{vz)+m(zt) > |Q|+|P|. This together with m(sz)+m(zt) = |P|
and m(vz) +m(zz;) = |Q|+1 (as 2, is in B and d(sz;) = 1) yields m(sz) +m(zz;) < 1.
This implies (ii).

Next suppose that r > 1 and 2, = y;. Let P = yoy;...yr and D = P' - Q1.
Since T U Q is isometric, D is shortest. Therefore, m(sz) + m(zv) > |P'| + |Q|. Also
m(zyz) + m(zv) = |P'| +|Q| — 1 (as 2z, is in D) and m(sz) + m(zt) = |P|. These
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relations imply m(z,z) + m(zt) < |P| — 1 = d(21t). Since P is shortest, the latter
inequality holds with equality, contradicting the minimal choice of s,t.

Now suppose that r > 1 but z; # y;. Then z; = (1,0)r (whereas y; = (0,1)r).
W.l.o.g. we may assume that for s = 1,...,7+ 1, z; = (1, — 1)p. Then z; = y; =
(j—r,r)r for j = r +1,...,k, i.e,, T is the union of a 1 x r grid T'! and the path
2 412y42...2k. Choose v’ € T such that m(z;z) + m(zv') = d(z2v’) and consider
I',p',r" and Q' as in Claim 4 for ug = s, u; =t, uy = v’ and P. Let LY = 2071 ... 2.
If 7' = 0, the argument as above (for r = 0) shows that m(sz) + m(zz2;) = 2, yielding
(iii). Let r' > 1. We may assume that I'' is chosen so that the number of common
edges in P = RT and LT is as large as possible. Then z; = z; for ¢t = 2 or 1 = 7’ would
imply P = L', in which case, arguing as above (for z; and T'), we easily obtain that
either m(sz) + m(zzz) = 2 (when r’ = 1) or m(2,z) + m(zt) = d(2t) {when r’ > 2).

Thus, it remains to consider the situation when r > 1, 2o # 7o and 2z, # z,.
Three cases are possible.

Case 1. r' = 1. Then z; = (2,0)r/ (since 2, = (1,1)rs would imply z; = (0,1)r =
zp as [P N LF'| is maximum). Hence, I/ contains the nodes (£,n) for £ = 0,1,2 and
n = 0,1, and their induced subgraph together with the s—z, path ((0,0),(0,1),(1,1))
in T contradicts (4.1).

Case 2. r' > 2 and z; # z,. Then z; = (2,0)r/, and we get a contradiction in a
similar way as in Case 1.

Case 3. ' > 2 and 2; = r;. Then z; = (0,1) and z; = (1,1)rs. Let ¢ be the
maximal index for which z; = ( — 1,1)r/; then 2 < ¢ < k — 1 since 2z, = (p’,r')r’ and
r' > 2. If i < r (where r was defined above for I'), then I contains the nodes (a, 3) for
a=0,1and f =1—2,7— 1,1, and their induced subgraph together with the z;,_;—2z;,,
path ((1,7 —2),(2,7 — 2),(2,7 — 1)) in I’ contradicts (4.1).

Hence, 1 > r + 1, and we may assume, w.l.0o.g., that P passes through the nodes
(r,1),(r,2),...,(r,r") of ', i.e., T is the union of an r x (r' — 1) grid I'? and the paths
20z1 and 2,17 2p 4y 41 ... 2k. We observe that the union T of I'! and T2 is again a grid
(of size r x r'). Indeed, suppose that a node (0,7) of T coincides with a node («, )
of I/, where 0 < n < r,0 < a < rand 2 < 8 < r’. Then the nodes (e, ) and (n,1)
of T’ are connected by an edge (corresponding to the edge in I' between (0,n) and
(1,n)). This is possible only if @ = n and 8 = 2 (otherwise I'' is not isometric). But
a+ > n + 0 implies that I' UT’ has an s—t path shorter than k; a contradiction.

Finally, we assign the origin and end of T at wand w' = (0,7")r, respectively. Let

z=(L1l)zandy=(r—1,r"—1)x ie,T=(l,r—1)r and § = (1,7 — 1)rs. Then

d(vZ) = d(vw) + 2 and d(v'y) = d(v'w') + 2; therefore, by Claim 3,
(4.2) d(vv’) = [Q[+ Q| +r + 1"
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Recall that

(4.3) m(sz) + m(zt) = k,
m(z1z) + m(zv) = Q|+ + 1,
m(zez) + m(zv') = 1Q'| + 1/,

We can combine the distances in the left hand sides of these equalities in another way.
More precisely, observe that

(4.4) m(sz) + m(zzz) > 2,
m(z1z) + m(zt) > k-1

m(vz) +m(zv') > Q| +1Q'| +r + 7,

(in view of (4.2) and the fact that T is isometric). Now comparing (4.3) and (4.4) we
conclude that the inequalities in (4.4) turn into equalities. Hence, m(sz) +m(zz22) = 2,
yielding (iii). °

We call z a O-point (1-point; 2-point) if it satisfies (i) (resp. (ii) but (i); (iii) and
neither (i) nor (ii)) in Claim 5. If z is a O-point or 1-point, then the point w(z) of
S where z should be located is defined in a natural way. Namely, if m(vz) = O for
some v € T, we assign w(z) = v, and if m(uz) + m(zv) = 1 for some e = uv € U, we
assign w(z) to be the point z' on e such that o(uz’) = m(uz) (and o(vz') = m(vz)).
Note that the choice of v (resp. uv) is unique for a O-point (resp. 1l-point) z; e.g., if
m(u'z) + m(zv') = 1 for another edge u'v’, then assuming, w.l.o.g., that d(uu’) > 2,
we have m(vz) + m(v'z) = 2 — m(uz) — m(u'z) < 0, whence m(vz) = 0. Furthermore,
it is easy to see that there is no z'’ € S different from w(z) for which o(vz") = 0 (resp.
o(uz") = m(uz) and o(vz") = m(vz)).

The next claim points out a cell where z should be located when z is a 2-point.
For p,q € T let V(p,q) denote the set of nodes of H neighbouring both p and ¢.

Claim 6. Let = be a 2-point, and let p,q be opposite nodes of a 4-circuit such

that m(pz) + m(zq) = 2. Let z € V(p,q). Then there is v € V(p,q) — {2} such that
m(zz) + m(zv) = 2.

Proof. Choose u' € T such that m(zz) + m(zu') = d(zu’) =: k. Since H is bipartite,
d(pu') is k—1or k+1. If d(pu’) = k+1, then m(pz)+m(zv’) > k+1, m(zz)+m(zu’) = k
and m(pz) + m(zq) = 2 imply 1 > m(zz) + m(zg), which is impossible as z is a 2-point.
Hence, d(pu'}) = k — 1. Similarly, d(qu’) = k — 1. Applying Claim 1 to two shortest
z—u' paths, one passing through p and the other through ¢, we observe that there is
v € V(p, q) with d(vu') = k — 2 (v is the node (1,1) of the corresponding z—u' net).
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Next, choose v’ € T such that m(vz) + m(zv') = d(vv') =: £. Arguing as above,
we get d(pv') = d(qv') = £ — 1, and there is u € V(p,g) for which d(uv’) = £-2. In
particular, u # v (while, possibly, u = z). Clearly d(uu') € {k,k — 2}. We assert that
d(uu') = k. Indeed, suppose that d(uu') = k —2; then v # z. Applying Claim 1 to two
shortest p—u’ paths, one passing through v and the other through u, we obtain that
there is w € T neighbouring both u,v and different from p,q. One can see that the
subgraph induced by {p, ¢, z,v,u,w} contains K:,:é; a contradiction. Thus,

(4.5) d(uu') =d(vu') +2 and d(vv') =d(uv') + 2.

The 4-circuit T on u,p, v, q can be considered as a 2-connected v—v net. So (4.5)
enables us to apply Claim 3 and conclude that d(u'v’) = k + £ — 2. Hence,

m(u'z) + m(zv') > k+ £ - 2.

This together with m(zz)+m(zu') = k and m(vz)+m(zv’) = L yields m(zz)+m(zv) <
2, whence the result follows. .

By Claim 6, if z is a 2-point, then there is a 4-circuit C = vov vv3vg such that
m(viz) + m(zvit12) = 2 for 1 = 0,1. We say that C surrounds z. Define w(z) to be the
point (£,1) in D€ with £ + n = m(voz) and £ + 1 — n = m(v;z). We have to show
that such a location of z on S is well-defined.

Claim 7. (i) If C' = uoujugusuo is another 4-circuit surrounding z, and w'(z)
is defined as above with respect to C’, then C and C' belong to the same 2-clique,
and W'(z) = w(z). (ii) 2’ = w(z) is the only point on S for which o(v;z') = m(v.z),
i=0,...,3.

Proof. Denote m(u;z) by a; and m(v;z) by B;. Let {T',T"} be the partition of T
into stable sets of H.

First, suppose that C and C’ are disjoint. One may assume that ug,vo € T".
Then uz,v2 € T' and uy,us,v;,v3 € T". This implies that for : = 0,...,3, o; + 8; >
d(u;v;) > 2; moreover, equality must hold throughout since the sum of all a,’s and 3; ’s
equals eight. Similarly, o; + 8,42 = 2 (taking indices modulo 4). This gives o; = f§; = 1,
i =0,...,3 (in view of 8; + Biy2 = 2). Therefore, d(u;v,;) < a; + 8; = 2 for all 1,7,
which implies that H contains a subgraph homeomorphic to Ky 4; a contradiction.

Second, suppose that C and C’ have an only common node, ug = vg € T' say.
We may assume that d(usv;) = d{u;vs) = 3; for if, say, d(usv,) = d(uzvz) = 1, then
H contains K;; Therefore, ay + 81 > 3 and o7 + B2 > 3. Also ag + fo > 0 and

asz + B3 > 2. So we have equality throughout. But 8o = 0 means that z is a 0-point; a
contradiction.
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Third, suppose that C and C’ have exactly two common edge and these nodes are
adjacent, ug = vo and u; = v; say. Since u; and v3 are not adjacent (otherwise H would
contain K:,:é), we have d(uzvz) = 3. Similarly, d(ugvy) = 3, Therefore, a; + 83 > 3,
az+ B2 >3, 00+ a; > 1and Bg+ B > 1. This implies §o + f; = 1, i.e., T is a 1-point;
a contradiction.

Thus, C and C’ have a pair of opposite nodes in common, ug = vo and ug = vy,
say. If the other nodes are different, then oy + a3 = ) + 3 = 2 and a; + 3; > 2 for
1,7 = 1,3 imply ag = B = 1 for ¢ = 1,3. And if u; = v; say, then we get a3 = 83 > L.
In both cases, w(z) and w'(z) are the same point in the folder involving D€ and D"

To see (ii), recall that ¢ coincides with 0|, and note that there is an only point
t' € D€ with 6% (v;z') = B;,1=0,...,3. On the other hand, from the construction of
S and o one can see that, for a point 2" € S not in D, at least one of o(voz") +0(z"vs)
and o(v,z") + o(z"v3) is greater than two. .

For a 2-point z let H(z) denote the subgraph of H that is the union of all 4-
circuits surrounding z, and let V(z) denote the node set of H(z). From Claims 6 and
7 it follows that H(z) is a 2-clique (so w(z) is an interior point of the folder FH(=)),
If z is a 0-point (1-point), we define V(z) to be {w(z)} (resp. the pair of ends of the
edge that contains w(z)). We know that o coincides with ¥  within each folder F¥'.
An easy consequence of Claim 6 is that

(4.6) if z is a 2-point and {Ty,T,} is the partition of V(z) into stable sets, then
o(vw(z)) = m(vz) for each v € V(z), and for 1 = 1,2, there is 0 < ¢ < 1/2
such that m(uz) = ¢ for some u € T; and m(vz) = 2 — ¢ for all other v € T}.

Note also that o(vw(z)) = m(vz) holds for each 0- or 1-point z and v € V(z). Our
final claim is as follows.

Claim 8. Letz,y€V,z' =w(z) and ¥y’ = w(y). Then o(z'y’) = m(zy).

Proof. TFirst we prove that m(zy) > o(z'y’). This is obvious if both z,y are O-points.
We consider the case when both z,y are 2-points; if some of z,y (or both) is a 0- or
1-point, the proof is based on similar ideas but is technically simpler, and we leave it
to the reader.

Choose s,t € T such that m(sz) + m(zy) + m(yt) = d(st). We show that
(4.7) there is a 4-circuit C = upvqu in H(z) surrounding z and such that m(sz) =

d(su) + m(uz) and m(tz) = d(tv) + m(vz), i.e., the path suzvt on V is shortest
for m.
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To see this, choose a 4-circuit B = ugujuguzuo surrounding = and assume that
¢ := d(sus) = max{d(sw;) : 1=0,...,3}. Then d(su;) = £—1for¢=1,3 and d(suo) €
{€—2,£}. W.lo.g. we may assume that d(suo) = £ — 2. Indeed, if d(sup) = £ then
there exists z € V (u;,us) with d(sz) = £— 2 (by Claim 1 applied to two corresponding
s—u, paths), and at least one of the 4-circuits zuyususz and zujuguzz surrounds z (by
(4.6)); so we can replace B by this circuit. The equalities d(suo) = £~ 2, d(sug) =1¢
and m(uoz) + m(zus) = 2 imply that the path sugzuz on V is shortest, whence

(4.8) m(sz) = d(sug) + m(uoz).
Similarly, there exists a 4-circuit B’ = vov1v2v3vo that surrounds z and satisfies
(4.9) m(tz) = d(svo) + m(voz).

Since m(sz)+m(zt) = d(st), (4.8) and (4.9) show that the path suozvot is shortest;
therefore, m(uoz) + m(zvo) equals d(ugvo). The case d(ugvo) € {0,1} is impossible,
otherwise £ would be a 0- or 1-point. Hence, d(uovo) = 2. Next, if {ug,u2} # {vo,v2},
then {u;,uz} = {v1,vs} (as B and B’ are in the same 2-clique H(z)), and the circuit
UoU1VoUslo is as required in (4.7). And if {uy,uz} # {v1,vs}, then uo = vs and
vo = u2, and we also have (4.7).

Similarly to (4.7), there is a 4-circuit C’ = u’p’v’q’u’ that surrounds y and satisfies
m(ty) = d(tv') + m(u'y) and m(sy) = m(sv') + m(v'y).

Next, since the paths suzvt, sv'yu’t and szyt are shortest, the path uzyu’ is
shortest as well, i.e.,

(4.10) m(uz) + m(zy) + m(yu') = d(uu').

Let k = d(uu'). Since we can repeat the above arguments for u,u’ in place of s,t,
we may assume that d(uv’) = d(vu') = k — 2. Then d(vv') € {k,k — 2,k — 4} (as
d(u'v') = 2). Consider these cases.

Case 1. d{vv') = k — 4. Then the path P = uzvv'yu' is shortest. Therefore,
m(zy) = m(zv)+d(vv')+m(v'y) > o(z'y’) (since m(zv) = o(z'v) and m(v'y) = o(v'y’),
by (4.6), and, obviously, d(vv’) > o(vv')).

Case 2. d(vv') = k. If k = 2 then we may assume that C = C’, whence m(zy) =
0C(z'y'). Let k > 3. Then u # v’ and v # u'. By Claim 1, there is a u—u' net
T with RT passing through v' and p’ and LT passing through p and v. Note that
d(uu') = d(vv') = k is possible only if v = (0,2)r and v’ = (k — 2,0)r. Now the
subgraph of I' induced by (£,n) for £ = 0,1 and n = 0,1, 2 together with the path uqv
contradicts (4.1).
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Case 8. d(vv') = k — 2. Define I as in Case 2. In addition, we assume that T is
represented so that « is as small as possible, where v’ = (a,k — a)r. Then p = (0,1)r
and p’ = (e, k — a@ — 1)r. One can see that d(vv’) = k — 2 and d(uv) = d(v'u') = 2 are
possible only if the second coordinate of v’ is less by one than the second coordinate
of v. Therefore, either (i) v = (0,2)r and v’ = (k — 3,1)r, or (ii) v = (1,1)r and
v = (k — 2,0)p. Note that in case (i) we can remove from I' the nodes (£,0) with
¢ > 0 (if any) and add the node ¢ and edges sq and gv, which results in a correct
u—1u' net I' with LT containing ¢ and v. Also we can transform I' with respect to
v’ and v’ in a similar way. Thus, w.l.o.g. we may assume that T is a (k — 1) x 1 grid
in which p,v,v’,p’,u' have the coordinates (0,1),(1,1), (k — 2,0),(k — 1,0),(k — 1,1),
respectively.

Next, let § = (1,0)r. If § # ¢ and m(pz) + m(zq) > 2, we can replace in I the node
p by g (as m(qz) + m(zq) = 2, by (4.6)) and rename p,q,q as g, p, g, respectively. So we
may assume that p,q,p’, ¢’ are the nodes (0,1),(1,0), (k —1,0),(k — 2,1) of I'; see Fig.
15. Then z' and y’ are points in the cells D€ and D€’ (respectively) of the subspace
ST of S. We have o(uz’) = m(uz) and o(y'v’) = m(yu'). Also o(uz') + o(y'u’) <
o(pz') + o(y'p') (in view of (4.10) and m(pz) + m(zy) + m(yp') > d(pp') = k), whence
ol (uv!) = o(uz') + 0T (2'y’) + o(y'v’). Now (4.10) and o' (uu') = k = d(uu’) imply
m(zy) = of (z'y’) > o(z'y’), as required.

p v q u'

Fig. 15 u q o v’ p'

We now prove the reverse inequality m(zy) < o(z'y’). We use the fact, revealed
in the above analysis (cf. (4.10)), that

(4.11) there are v € V(z) and v’ € V(y) such that m(uz) + m(zy) + m(yu') = d(uv’).

(Although it was shown in the case when both z and y are 2-points, one can check that
it remains true in a general case.)

Consider a sequence P = zpz;...zn With 2o = =’ and zy = ', where z,,...,
zpn_1 are points on the boundaries of some cells in S, and for: = 1,...,N, z;_; and
z; belong to the same cell D; = D Let |P|:= N and ¢ = ¢(P) := (0P (zi_1z4) :
t=1,...,N). We have to show that

(4.12) ¢(P) = m(z'y).

This is true when z’ and y’ lie on the same edge. Suppose that (4.12) is false in
general, and let P be a counterexample with ¢ = ¢(P) := |P| - |{z’,y’'} N T| minimum
among all corresponding z’,y’ and P. Then P has the following properties.
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Case 3. d(vv') = k — 2. Define I as in Case 2. In addition, we assume that T is
represented so that o is as small as possible, where v’ = (a,k — a)r. Then p = (0,1)r
and p’ = (e, k — @ — 1)r. One can see that d(vv') = k — 2 and d(uv) = d(v'v') = 2 are
possible only if the second coordinate of v’ is less by one than the second coordinate
of v. Therefore, either (i) v = (0,2)r and v’ = (k — 3,1)r, or (ii) v = (1,1)r and
v = (k — 2,0)r. Note that in case (i) we can remove from I' the nodes (£,0) with
¢ > 0 (if any) and add the node ¢ and edges sq and gv, which results in a correct
u—1u' net I' with LT containing ¢ and v. Also we can transform T' with respect to
v’ and v’ in a similar way. Thus, w.l.o.g. we may assume that T is a (k — 1) x 1 grid
in which p,v,v’,p’, v’ have the coordinates (0,1),(1,1),(k — 2,0),(k — 1,0),(k — 1,1),
respectively.

Next, let § = (1,0)r. If § # ¢ and m(pz) +m(zq) > 2, we can replace in I the node
p by g (as m(qz) + m(zq) = 2, by (4.6)) and rename p, q,q as @, p, g, respectively. So we
may assume that p,q,p’,q’ are the nodes (0,1),(1,0), (k — 1,0}, (k — 2,1) of I'; see Fig.
15. Then z' and y' are points in the cells D€ and D€' (respectively) of the subspace
ST of S. We have o(uz') = m(uz) and o(y'v') = m(yu’). Also o(uz’) + o(y'u’) <
o(pz') + o(y'p') (in view of (4.10) and m(pz) + m(zy) + m(yp’) > d(pp’) = k), whence
ol (uu') = o(uz') + 0" (z'y’) + o(y'v’). Now (4.10) and o' (vu') = k = d(uu') imply
m(zy) = o' (z'y’) > o(z'y’), as required.

p v q u

Fig. 15 u q o v’ p'

We now prove the reverse inequality m(zy) < o(z'y’). We use the fact, revealed
in the above analysis (cf. (4.10)), that

(4.11) there are v € V(z) and v’ € V(y) such that m(uz) + m(zy) + m(yu') = d(uv’).

(Although it was shown in the case when both z and y are 2-points, one can check that
it remains true in a general case.)

Consider a sequence P = zpz;...zn With 2o = =’ and zy = ', where z,,...,
zpn_1 are points on the boundaries of some cells in S, and for: = 1,...,N, z;_; and
z; belong to the same cell D; = D%, Let |P|:= N and ¢ = ¢(P) := Y (0P (zi17:) :
t=1,...,N). We have to show that

(4.12) ¢(P) > m(z'y).

This is true when z’/ and y' lie on the same edge. Suppose that (4.12) is false in
general, and let P be a counterexample with ¢ = ¢(P) := |P|— |{z’,y'} N T| minimum
among all corresponding =’,y’ and P. Then P has the following properties.
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(i) None of zy,...,zy_1isin T. Forif z; € T for some 0 < 1 < N, then at least one
of zg...z; and z; ...z is a smaller counterexample (in view of m(zoz;) + m(z;zn) >
m(zozy)).

(i) zi—1 and z; do not belong to the same edge e unless N = 1. Otherwise we
may assume that 0 < 7 < N and z; is an interior point of e. Then removing z; does
not increase ¢ and decreases ¢.

(iii) ;_, and z; do not belong to adjacent edges of a cell. For otherwise insert the
common end z of these edges in P between z;_; and z;. This does not change ¢, and
after splitting the new P as in (i) and, possibly, removing a point as in (ii), we get a
smaller counterexample.

(iv) C; and C;4; do not belong to the same 2-clique. For otherwise removing z;
decreases both ¢ and ¢.

From these properties one can conclude that there are nodes yo,y;,...,yn and
20,21,...,2n such that each circuit C; is y;—12;_12;¥:¥i—1, and for : = 1,..., N — 1,
z; is an interior point of the edge e; = y;2; (so z;_; and z; lie on opposite edges of C;
when 2 < ¢ < N — 1). Moreover, all y;’s are different and all 2;’s are different. Indeed,
if y; = y; for ¢ < j say, then |¢ — 7| > 2 and it is easy to see that replacing in P the
elements z;1,Z;111,...,Z; by y; decreases both ¢ and ¢, where s’ =7 ifi > 0and ¢’ = 1
otherwise, and 3’ = 7 if j < N and ' = N — 1 otherwise. To a similar reason, y; # z;
for all 2, 7. Hence, the union of C;’s is an N x 1 grid T’ with the origin yo and end zy,
z' belongs to the first cell Dy, and y’ to the last cell Dy of ST

Obviously, ¢(P) > o7 (z'y’). We show that oF (z'y’) > m(zy), whence P is not a
counterexample. For any s € {yo, z0,¥1,21} and t € {yn, 2N, YN-1,2N—1}, We have

(4.13) o(sz') + 0¥ (z'y') + o(y't) > oF (st) = d(st).
In particular, if both z and y are O-points, then o¥ (z'y’) = d(z'y’) = m(zy).

Suppose that both z,y are 2-points. Then o(sz') = m(sz) for s = yo, 20,1, 2
and o(ty’') = m(ty) fort = yn,2N,YN-1,2N-1. Consider u and »’ as in (4.11). Denote
by T(u) (T(u')) the maximal stable set of H(z) (resp. H(y)) that contains u (resp.
u’). Let for definiteness yo,21 € T(u). If m(uz) > m(yoz), put s := yo. Otherwise
we have u = 2z; (in view of (4.6)) and put s := z;. Similarly, if yy,2nv_1 € T(u'),
we put t := yn if m(uv'y) > m(yny), and put ¢t := 2ny_; otherwise. Symmetrically,
if zv,ynv—1 € T(u'), put t := zy if m(u'y) > m(zny), and put t := yy_; otherwise.
Suppose that N > 2. Then it is easy to see that d(uu’) < d(st). Comparing (4.11) and
(4.13) and using the facts that m(uz) > m(sz) and m(u'y) > m(ty), we conclude that
m(zy) < of (z'y’). Now let N = 1. Then H(z) = H(y), whence u,u’ are opposite
nodes of a 4-circuit C surrounding both z and y, and m(uz) + m(zy) + m(yu’) = 2. In
this case the inequality m(zy) < of ('y’) is trivial.
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Finally, if z is a 0-point (1-point), then z’ is yo or zo (resp. z’ lies on the edge
YoZo0), and similarly if y is a 0- or 1-point. For these remaining cases the proof of
m(zy) < o™ (z'y") specializes (and simplifies) corresponding arguments above. o

This completes the proof of Theorem 4.1. )

It remains to explain how, given a finite set V 2 T on S, to construct a mapping
v :V — T with the desired property. For z € S let D(z) be the cell of S where x
is located (or one of such cells if many) and let (£(z),n(z)) be the coordinates of z
in D(x). Since V is finite, there exists 0 < € < 1 such that, for any = € V, one has
£(z) #e,1—cand n(z) #e,1 —¢.

Choose an orientation of the edges of H as in Definition 4 in the Introduction.
Consider a 4-circuit C = vov vev3vg of H. W.l.o.g. we may assume that the edges of
C are directed as (vo,v1), (v1,v2), (va,v2), (vo,v3). Define the following regions in D"

Do = {{&,n} : &,n <e},

Dy ={{&n}: £ <e<n}

Dy = {{&,n} : &,n > e},

D3z ={{&n} :n<e<{}
see Fig. 16.

Fig. 16

By the choice of &, each element of VD€ is contained in exactly one of Dg, ..., Da,
and each D; contains one node of C, denoted by h; (so h; = v, for the above orientation
of the edges of C). Fori = 0,...,3 and z € Dy, define y°(z) = h,;. Taking the 4 ’s
together for all 4-circuits C, we get a mapping ~ of the union of all regions as above to
T which is identical on T. One can see that v is well-defined (in particular, considering
a feasible orientation of edges of a 2-clique H’, one can see that 4v“’s are compatible
on common parts of cells C in the folder FH'). Also v is monotone in the sense that
if £,y € D€ are such that either ¢£(z) < £(y) < £(y(z)) or &(z) > £(v) > £(x(x)),

then £(v(y)) = &€(~(z)), and similarly for the second coordinate n. This « determines
a O-extension m’ of H to V, and we show that m’ H-decomposes m = oy

For a sequence P = zpz; ...k of points of S (a path on S), its length > (o(zi—1
z;) : 1 =1,...,k) is denoted by o(P); P is shortest if 6(P) = o(zozk). In view of (2.3)
and Theorem 4.1, it suffices to prove the following.
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Lemma 4.2. Let P = zoz, ...z be a shortest path on S with zo,zx € T, and for

i =0,...,k, let £(z;),n(zi) # €,1 — e. Then the path y(P) = y(zo)¥(z1) ... v(zk) is
also shortest.

Proof. Suppose that this is false and choose a counterexample P = zoz; ...z, with
o(P) minimum. Then none of zy,...,zxk-1 is in T. We show that there exists a
counterexample P’ with o(P') < o(P), which leads to a contradiction because the
lemma is obvious when o(P) is 0 or 1.

We may assume that for 2 = 1,...,k, z;,—; and z; belong to the same cell. This is
because by the definition of o there is a shortest path @ = yoy; ...y, from yo = z,_4
to y, = z; in S such that each pair y;_;,y; is in the same cell. Moreover, Q can be
chosen so that £(y;),n(y;) #e,1—€efor j =0,...,r. So we can insert @ in P in place
of z;_1z;, obtaining again a minimal counterexample.

Consider a maximal part £ = zoz; ...z of P such that all zo,...,z, belong to
the same cell, D say. We may assume that C = vov,v,v3v0, that zo = vg, that T is a
point on the edge v v2, and that vo and v; have the coordinates (0,0) and (0,1) in D¢,
respectively. Let (&;,7;) be the coordinates of v; in D€,7 =0,...,q (so £ = no = 0 and
¢ = 1). Since L is shortest, § < & < ... < §gand ng < n; < ... < ng. Obviously,
Y(zo) = vo, Y(zq) € {vy,v2} and 4(z;) € {vo,v1,v2,v3} for i =1,...,¢ — 1. Moreover,
it follows from the monotone property that £ < ] <... < E('I and ng <0} <... <y,
where &, = £(v(z;)) and 5! = n(v(z;)). Therefore, the path (L) is shortest. This
implies that removing z,,...,z4_ from P makes again a minimal counterexample. So
we may assume that ¢ = 1.

Let P’ be the path obtained from P by inserting v; between zo and z;. Since
o = 0 < & and ng < 1 = ny, the path zgv;z; is shortest, whence P’ is shortest as
well. Therefore, P’ is a minimal counterexample. But P’ has an intermediate element

(namely, vy) in T, so P’ can be split into two paths one of which gives a smaller
counterexample; a contradiction. )

Thus, the 0-extension of H to V induced by v H-decomposes oy This implies
that H is minimizable and completes the proof of (ii}={i) in Theorem 1.

5. Relation to the multiflow locking problem

There is a wide subclass of graphs H = (T,U) as in (ii) of Theorem 1 for which

the minimizability can be proved much simpler by use of a so-called multiflow locking
theorem.

In the input of the multiflow locking problem, there are a graph G = (V, E) (with
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possible multiple edges), a subset T C V and a collection A = {A1,...,Ap} of subsets
of T. By a multiflow (multicommodity flow) f we mean a set of T-paths Py,..., P
along with nonnegative rational weights Aq,..., Ak such that for each e € E, the sum of
weights A; of the paths P; going through e is at most one. For A C T let ¢/(A) denote
S (A st =1,...,k, P; has exactly one end in A), and A(A) denote the minimum
cardinality of a cut §(X) of G with X NT = A. (For X C V, 6(X) is the set of edges
of G with one end in X and the other in V — X.) Obviously, ¢/(A4) < A(A), and
is said to lock A if this inequality holds with equality. The multiflow locking problem
is to find a multiflow that locks simultaneously each A; € A. If such a problem has a
solution for any graph G, A is called lockable. It is relatively easy to show that A is
not lockable if it contains three pairwisely crossing members (A4, B C T are crossing if
none of AN B,T — (AU B),A— B,B — A is empty). It turned out that the reverse
property is also valid, due to the following multiflow locking theorem.

Theorem 5.1 [10] (see also [7,13]). Let A be 3-cross-free, i.e., no three members of
A are pairwisely crossing. Then A is lockable. Moreover, if G is inner Eulerian, i.e., if
|6(X)| is even for every X C V — T, then a multifiow f in G that locks each A; € A
can be chosen integer-valued (i.e., with all \;’s integral).

Among various applications of the locking problem, one application, occurred in
[10], is important to us. It concerns the dual of the minimum extension problem (2)
defined in the Introduction. Given a metric ¢ on T, the u-value of a multiflow f as
above is Y (u(sit;)A; : 1=1,...,k, P; connects s; and t;); the maximum p-value of a
multifiow is denoted by v* = v*(G, ). It is easy to see that (2) (with x instead of d¥)
and:

(5.1) minimize the u-value of a multiflow for G, T,

form, in essense, a pair of dual linear programs, and therefore, v* = 7*(G,pu) (cf.
[12]). Now suppose that u is a nonnegative linear combination aju; + ... + oppp,
where each p; is the cut metric p4/ on T induced by some A; C T (i.e., uj(st) =1 if
[{s,t}NA;| =1, and 0 otherwise). Moreover, suppose that the locking problem for these
G and A = {A4,,...,Ap} has a solution f. One can see (cf. [10]) that f gives an optimal
solution to (5.1) and that, taking sets X; C V with X; N T = A4, and |6(X)| = A(4,),
i =1,...,p, an optimal solution m to (2) is formed as m = a1p** + ... + a,p*>.

Next, it is not difficult to prove the following result (we omit its proof here).

Theorem 5.2. Let

(5.2) H satisfy (ii) in Theorem 1 and contain no subgraph K, , with r > 3.
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Let Uy,...,U, be the orbits of H (defined in Section 2). Then:
(i) each U, is a cut 6(A;) of H;
(i) the set A = {Ay,...,Ap} is 3-cross-free;

(iii) for any s,t € T, d¥(st) equals the number of cuts 6(A,) separating s and t;
in other words, d = pA1 + ... + p4»r.

Summing up the above-mentioned facts, we observe that if H satisfies (5.2) then,
taking for each j = 1,...,p a minimum cardinality cut 6(X;) in G with X; N T = A;,
we get an optimal solution m to (2) by putting m = pX' + ... + pXr. Moreover, these
cuts can be chosen so that X; and X/ are crossing only if A; and A;/ are crossing.
Using the latter property, one can show that each maximal subset Z C V not separated
by any cut 6(X;) (i.e., ZNX; € {B, Z}) contains exactly one element of T'. This implies
that m is a O-extension, and we obtain 7(G, H) = v*(G,d") = 7*(G, H). Thus, we
have an alternative proof of the minimizability of the graphs as in (5.2) (e.g., for each
bipartite planar graph without inner nodes of degree < 3 and inner faces with more
than four nodes).

Note also that from Theorem 5.1 it follows that for H as in (5.2) problem (5.1)
has an integer optimal solution whenever G is inner Eulerian. A similar property for
H = K, , was shown in [11]. However, one can show that such a property is not true

for the minimizable graph H formed from K3 3 in the way described in Example 3 in
the Introduction.

We conclude this paper with the open question: is problem (1) NP-hard for each
non-mimimizable H?

REFERENCES

1. D. Avis, On the extreme rays of the metric cone, Canadian J. Math. 32 (1980)
126-144.

2. B.V. Cherkassky, A solution of a problem on multicommodity flows in a network,
Ekonomika i Matematicheskie Metody 13 (1)(1977) 143-151, in Russian.

3. E. Dalhaus, D.S. Johnson, C. Papadimitriou, P. Seymour, M. Yannakakis, The

complexity of the multiway cuts, Proc. of the 1992 ACM Symposium on Theory
of Computing, pp. 241-251.

4. L.R. Ford and D.R. Fulkerson, Flows in networks (Princeton Univ. Press, Princ-
eton, NJ, 1962).

5. A.V. Goldberg, E. Tardos, and R.E. Tarjan, Network flow algorithms, in: B. Korte,
L. Lovasz, H.J. Promel, and A. Schrijver, eds., Paths, Flows, and VLSI-Layout

32



10.

11.

12.

13.

14.

15.

16.

(Springer, Berlin et al, 1990) pp. 101-164.

. M. Grétshel, L. Lovéasz, and A. Schrijver, Geometric algorithms and combinatorial

optimization (Springer, Berlin et al, 1988).

A.V. Karzanov, A generalized MFMC-prorerty and multicommodity cut problems,
in: Finite and Infinite Sets (Proc. 6th Hungar. Comb. Coll. (Eger,1981)) (North-
Holland, Amsterdam, 1984), v. 2, 443-486.

A.V. Karzanov, Half-integral five-terminus flows, Discrete Applied Math. 18 (3)
(1987) 263-278.

A.V. Karzanov, Polyhedra related to undirected multicommodity flows, Linear
Algebra and its Applications 114-115 (1989) 293-328.

A.V. Karzanov and M.V. Lomonosov, Systems of flows in undirected networks, in:
Mathematical Programming etc. (Inst. for System Studies, Moscow, 1978, iss. 1)
59-66, in Russian.

A.V. Karzanov and Y. Manoussakis, Minimum (2, r)-metrics, graph partitions and
multiflows, Research Report N 958 (LRI, Université Paris-XI, Orsay, 1995) 16p.

M.V. Lomonosov, On a system of flows in a network, Problemy Peredatchi Inform-
acii 14 (1978) 60-73, in Russian.

M.V. Lomonosov, Combinatorial approaches to multiflow problems, Discrete App-
lied Math. 11 (1) (1985) 1-94.

L. Lovész, On some connectivity properties of Eulerian graphs, Acta Math. Acad.
Sci. Hungaricae 28 (1976) 129-138.

V.A. Rokhlin and D.B. Fuks, Introductory Course of Topology (Nauka, Moscow,
1977).

E. Tardos, A strongly polynomial algorithm to solve combinatorial linear progr-
ams, Operations Research 34 (1986) 250-256.

33



