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set V 2 T which coincides with y within T, and m is said to be primitive if m(zy) # 0
for all distinct z,y € V and m is a vertex of the dominant of the polyhedron formed

by all extensions of p to V.

As the main result, we show that II(u) is finite if and only if, for some integer
A > 0, A is a submetric of the path metric d¥ of a so-called minimizable graph
H (such graphs come up in connection with a generalization of the minimum multi-
terminal cut problem and are exactly those graphs H whose metric d¥ has no primitive
extensions except itself). Moreover, we explicitly construct such an H, explain that
the finiteness of II(4) can be recognized efficiently, show that IT(u) is finite if and only
if the tight span of y is 2-dimensional, and give other results. Our results essentially
rely on properties of minimizable graphs described in [9].
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1. Introduction

‘This paper continues our study of finite metrics from the viewpoint of their primi-
tive extensions begun in [9] where necessary and sufficient conditions for a graph metric
that admits a-unique primitive extension are described. Here we give a complete char-
acterization of the set of finite metrics that may have more than one but a finite number
of primitive extensions, thus answering the question raised in [8].

Throughout by a metric on a set V/ we mean a nonnegative real-valued function m’
that establishes distances of the pairs of elements of V' satisfying (i) m/(z,z) = 0, (ii)
m/(z,y) = m/(y,z), and (iii) m'(z,y) + m'(y, z) > m'(x, z), for all z,y,z € V'. Unless
otherwise is said, we assume that V' is finite, allow zero distances between different
elements (i.e., m’ is, in fact, a semimetric), and call a metric m' positive if m/(z,y) > 0
for all distinct z,y € V'. We do not distinguish between the metric m’ and metric
space (V/,m'); elements of V' are called points of this space. Because of (i) and (ii),
it suffices to define m’ on the set Ey of unordered pairs of distinct elements of V', or,
equivalently, on the edge set of the complete (undirected) graph Ky = (V', Ey:). We
write zy and m/(zy) in place of {z,y} and m’(z,y), respectively.

- We deal with a positive rational-valued metric p on a set T. A metricmonV O T
satisfying m(st) = p(st) for all s,¢ € T is called an extension of p to V. In other words,
m is an extension of g if p is a submetric of m, denoted as p = m.. If m admits no
other extensions m’,m” such that m > Am’ + (1 — A)m” for some 0 < A <1, then
m is called extreme. In other words, the extreme extensions of p to V' are exactly the
vertices of the dominant D(u, V) of the polyhedron ”P(l;u,‘ V) formed by the extensions
of w to V. (The dominant of a set X CR™ is {z € R™ : 2 > 2/ for some 2’ € X}.) A

positive extreme extcnsion is called primitive.

Clearly if m(zy) = 0 for some z,y € V, then m(zz) = m(yz) for all z € V.
Therefore, shrinking each maximal subset of points with zero distances between them
into a single point makes a positive metric m’ on the factor set; moreover, it is easy
to see that m is an extreme extension of w if and only if m’ is a primitive extension
of 1. We call an extension m of 1 a 0-extension if each point of V' is at zero distance
from some point of T'; in other words, the above shrinking for m produces p. So every -

0-extension 18 extreme.

Let II(x) denote the set of primitive extensions of p (regarding all finite sets V 2
T). Note that some metrics 4 have infinitely many primitive extensions. We are
interested in the case when II(y) is finite. Our description of such metrics involves
so-called minimizable grdphs.

Orbiginally the concept of minimizability came up in connection with some gener-
alization of the multi-terminal cut problem (a special case of the latter problem is the
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classical minimum cut problem in network theory). For a connected graph H = (W, U),

let d¥ denote its distance function, or path metric (regarding the all-unit lengths of
edges), i.e., d(zy) is the minimum number of edges of a path in G connecting nodes

z and y. Following [10], H is called minimizable if for any set V O W and func-

tion ¢ : By — Z.4, the minimum objective value in the problem min{cm : m is a

0-extension of d to V'} is equal to that in its relaxation min{em : m is an extension
of dH to V}. In our terms, this is equivalent to saying that H is minimizable if d¥ has

no primitive extensions except dff itself.

Our main result in this paper is the following.

Theorem 1.1.  Let p be a rational positive metric on a finite set T. Then II(p) is
finite if and only if there exist a minimizable graph H and a positive integer \ such
that Ay is a submetric of df.

The class of metrics x with II(p) finite can be characterized more explicitly by use
of a construction that we now describe. For a metric m on V', a point v € V is called
a median of a triple {sg, 1,52} in V' if

(1.1) - m(s;v) + m(vs;) =m(s;s;)  forall 0<i<j<2.

We construct a certain extension m of y by the following process. Initially set
V := T and m := pu. Choose in V a triple {so, 51, s2} without a median, add a new
point v to V and define the distances from v to the s;’s so as to satisfy (1.1) (such
distances exist and are unique). Then we define distances from v to the other points in-
V as follows. Let V' C V be the set of points of which distances from v have already
been defined; initially V' = {s, s1, 2, v}. Choose an arbitrary u € V — V' and put

(1.2) m(uv) = max{m(ux) —m(zv) : z € V' — {v}}.

Set V' := V' U {u} and iterate until V' = V. One can check that m remains a metric
and an extension of u. Repeat the procedure for a next medianless triple {sp, s1, 52}
for the current V and m, and so on. When the process terminates, the resulting (V, m)
has a median for each triple and is the desired extension of u. We call m (or (V,m))
obtained this way a median closure of u. Note that m depends on the order in which
triples in T are treated, so median closures corresponding to different orders may a
priori differ. '

One shows that for a rational metric 4 the above process does terminate in a finite
number of steps (Statement 2.1). Let G = (V, E) be the graph obtained from Ky by
deleting all edges zy such that there is a node z € V — {z,y} between z and y, i.e.,
satistying m(zz)+m(2y) = m(zy). Then m coincides with the path metric in (G, m, ),
i.e., for any z,y € V, m(zy) is equal to the minimum length of a path conneqting x
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and y in G, letting the length of an edge e € E be m(e). Such a G is called the least -
graph generating m. We prove the following.

Theorem 1.2.  Let pu be a rational positive metric on a finite set T Let (V,m) be
a median closure of ui, and let G = (V, FE) be the least graph generating m. Then the
following are equivalent: ' -

(1) TI(p) is finite;
(ii) G is a hereditary modular graph without induced subgraphs Ky ;.

" Hereinafter we use the following terminology and notations. A subgraph G' =
(V' E") of G is induced if any two nodes z,y € V' are adjacent (i.e., connected by an
edge) in G’ when they are so in G, and isometric if d¥ (zy) = dG(xy) forall z,y € V".
A graph G is called modular if every triple of nodes of G has a median (w.r.t. the
metric d%), and hereditary modular if every isometric subgraph of G is modular, cf. [3].
It is easy to see that any modular graph is bipartite. K34 is the graph obtained by
deleting one edge from K33 (where K, , is the complete bipartite graph whose parts
consist of p and ¢ nodes); see Fig. 1. We call a graph G as in (ii)-of Theorem 1.2 a
semiframe (the meaning of this term w111 be clearer later).

K X

Fig. 1 (a) K33 A (b) K34

The next result concerns so-called tight spans of metrics (also known in literature
as injective envelopes, Tx-spaces, universal tight extensions). An extension m' of g
to a set V' is called tight if there is no m” € P(u, V') — {m'} such that m” < m/.
Isbell [7] and Dress [6] showed that any metric space (X, d) can be uniquely extended
to a minimal metric space (X,4) such that any tight extension (X', d’) of (X,d) can
be isometrically embedded in (X, ), i.e., there exists a mapping v : X' — X satisfying
v(x) = x for all x € X and d(y(z)y(y)) = d'(zy) for all z,y € X'. Such an (X,46) is
just the tight span of (X,d). When X is finite, X can be represented as a simplicial
complex of dimension < |X|/2. We prove the following.

Theorem 1.3.  II(u) is finite if and only if the dimension of the tight span T () of
[ is at most two.

The method of proof of the above theorems gssentially relies on several results on
minimizable graphs established in [9]. Two of them, exhibited in the next theorem, are



most important for us.

Theorem 1.4 [9]. Let H be a connected graph.

(i) H is minimizable if and only if H is bipartite, orientable and contains no
isometric k-cycle with k > 6. '

(ii) If H contains an isometric 6-cycle or an induced K3 4, then there exists a non-
. ) .
integral primitive extension m’ of d¥; moreover, m’ has a submetric m" on six points
fosa
such that m" = $d"ss.

Here a k-cycle is a (simple) circuit Cx on k nodes (considered as a closed path or
as a graph depending on the context). A graph H is orientable if the edges of H can
be oriented so that for any 4-cycle C' = (vg, e1, v1, ..., €4, v4 = vg), the orientation of the
opposite edges e, and e3 are opposite along the cycle, and similarly for e; and e4 (a
feasible orientation is depicted in Fig. 2).

U1 V2

Fig. 2 o v3

Bandelt [3] showed that the bipartite graphs without isometric k-cycles with k£ >
6 are exactly the hereditary modular graphs (see Theorem 1.9 below). Thus, H is
minimizable if and only if it is hereditary modular and orientable. [9] refers to such
~an H as a frame. Note that the graph K7 5 is non-orientable. Hence, every frame is a
semiframe (defined above); the converse is not, in general, true.

Statement (i) in Theorem 1.4 will enable us to recursively construct an unbounded
sequence of primitive extensions of y in the case when G as above is not a semiframe,
thus proving part (i)—(ii) in Theorem 1.2. The reverse part (ii)—(i) is more involved
and it is based on statement (i) in Theorem 1.4 and a so-called “orbit splitting method”
elaborated in Section 4. The idea is roughly as follows.

First of all note that if ' is a metric on T such that p' = Au for some A > 0,
then m is a primitive extension of. y if and only if Am is a primitive extension of u'.
Thus, we can consider p up to proportionality (with a positive factor) without affecting
the problem in question. We call u cyclically even if the u-length of any cycle on T is
an even integer (or, equivalently, u(zy) + p(yz) + p(zz) is even for all z,y,z € T'); in
particular, u(zy) is an integer for all z,y € T (since u(zy) + p(yy) + p(yz) is even). In
what follows we assume w.l.o.g. that p is cyclically even.

If G is already a frame and m(e) = 1 for all e € E, then m is just d, and the
fact that d® has a unique primitive extension (namely, d€ itself) provides that every
primitive extension of x corresponds to a submetric-of d¥, implying the finiteness of



I(p). In a general case, we consecutively split orbits of G (where an orbit is meant
to be a component of the graph whose nodes correspond to the edges of G and the
edges correspond to the pairs of edges of G which are opposite in 4-cycles of G). A
finite number of orbit splittings transforms G into a larger graph G’ such that G' is a
frame and %dG’ is a tight extension of p. This provides the finiteness of II(y), yielding
(ii)—(i) in Theorem 1.2. Also this construction together with Theorem 1.2 will imply
Theorem 1.1. Furthermore, as a by-product of our approach we obtain the following.

Corollary 1.5. If u is cyclically even and I1(u) is finite, then every primitive exten-
sion of p is half-integer.

* Next, [9] gives an explicit combinatorial construction of the tight span 7(d¥) when
H is a frame, showing that 7(d) is 2-dimensional (unless.H is a tree). This fact is
used as the main ingredient in the proof of Theorem 1.3. Moreover, we obtain the
following result, which seems to be interesting in its own right.

Corollary 1.6.  Let u be a rational finite metric whose tight span has the dimension
at most two. Then there are a frame H and an integer A > 0 such that T(Au) is
isomorphic to T(d¥). In other words, up to proportionality, the set of 2-dimensional
tight spans of rational metrics is exactly the set of tight spans of path metrics of frames
(different from trees). | ‘ -

It turns out that the metrics p with ITI(1)| < oo can also be characterized in local
terms. More precisely, Dress found two interesting local properties of metrics.

Theorem 1.7 [6]. For a metric space (X, d),

(i) if T(d) is k-dimensional (k < o), then there is a submetric d' of d on Qk-pojnts
such that T(d') is k-dimensional; ‘

(ii) if | X | = 2k, then T (d) is k-dimensional if and only if there is a perfect matching
M in Kx such that Y (d(e) : e € M) > > (d(e) : e € M’) holds for all other perfect

matchings M’ in Kx.

As an immediate consequence of (i) and Theorem 1.3, we have the following local
criterion. '

Corollary 1.8. II(p) is finite if and only if II(y') is finite for every submetric p/ of
{4 on six points.

In its turn, (ii) in Theorem 1.7 shows that, given a p, the problem of deciding
whether TI(y) is finite or not is solvable in strongly polynomial time. Indeed, we can .
simply enumerate all six-element subsets 7" of T, and for each such T”, enumerate all
three-edge matchings in K7+ and check whether the u-length of one of these is strictly
greater than the p-length of each of the others. '
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Among other tools in our proofs we use results of Bandelt on hereditary modular
graphs. In particular, he proved the following facts important to us. _

‘Theorem 1.9. [3]. Let H = (T,U) be a graph.

(i) H is hereditary modular if and only if H is bipartite and contains no isometric
k-circuit with k > 6.

(ii) If H is modular but not hereditary modular, then H contains an isometric
6-circuit, which, in its turn, is contained in a (not necessarily induced) cube in H (see
Fig. 3). '

(iii) If H is bipartite but not modular, then H contains a medianless triple {so, s1,
82} with dH(5051) = dH(S()Sz) > 2 and dH(Slsz) :.2.

Fig. 3

This paper is organized as follows. Section 2 justifies the process of constructing
a median closure m of 4 and demonstrate a relationship between shortest pafhs for m
and for G. The main goal of Section 3 is to prove part (i)—(ii) of Theorem 1.2. Section
4 describes the orbit splitting method, shows how te prove, with its help, the reverse
part (ii)—(i) of Theorem 1.2, and explains how to obtain Theorems 1.1 and 1.3 and
Corollaries 1.5 and 1.6.

2. Backgrounds

As mentioned in the Introduction, we may assume that p be a positive cyclically
even metric on T. For an extension m of u to V, a sequence P = (xg,21,...,Zx) of
points of V is called a path on V, and a T-path if zo,zx € T. For brevity we write
P = 2021 ...25. A closed path (i.e., with o = zx) is a cycle. The length of P with
respect to m, or the m-length, is m(P) = m(zox1) + ... + m(Tr_17%), and P is called
shortest w.r.t. m, or m-shortest, if m(P) = m(zozy). The set of shortest T-paths is
denoted by G(m). : '

For m,m' € P(u,V), we say that m’ decomposes m if m > Am’ + (1 — A)m”
for some m” € P(u,V) and 0 < A < 1; so m is extreme if and only if no m’ # m
decomposes m. It is easy to see that m’ decomposes m if and only if G(m) C G(m').



We will also use a simple characterization of tight extensions in terms of shortest paths
(see, e.g., [7]): an extension m of p to V is tight if and only if

- (2.1) for any z,y € V, there are s,t € T such that m(sz) + m(zy) + m(yt) = m(st)
(= u(st)), i-e., z,y are contained in an m-shortest T-path.

First of all we have to show that the construction of a median closure (V, m) for p
described in the Introduction is correct. ’

Statement 2.1.  The process of constructing a median closure (V, m) terminates in
a finite number of iterations. Moreover, m is cyclically even-and primitive.

Proof. Suppose that after a number of iterations we have obtained a cyclically even
primitive extension m on a current set V and that the next iteration chooses a median-
less triple {sg, 51,52} and add a median v for it. We observe from (1.1) that m(sov) is
uniquely determined to be %(m(5081~) + m(sps2) — m(s152)), and similarly for m(s;v)
and m(ssv); so the numbers m(s;v) are positive integers. Moreover, the submetric of
m on VO = {sq, s1, $2, v} is; obviously, cyclically even. '

Let V — V0 consist of the points-ss, ..., s, which are chosen in this order when the
distances from v to these points are determined. By rule (1.2), for each i = 3,...,n,
_there is j < 4 such that m(s;v) + m(vs;) = m(sis;), i.e., the path P; = s;vs; is m-
shortest. Then (by induction on ) m(s;v) is an integer and the m-length of the cycle
5;05;8; 1s even. This easily implies that the m-length of any cycle of the form spvsysy,
p,¢=1,...,nis even, and now the fact that the metric on {sg,...,sn,v} is cyclically
even follows from a similar pro‘perty for its submetric 7 on V = {s0y- -, sﬁ }. Note also
that the new m is positive (otherwise m(vs;) = 0 for some ¢, whence s; is a median for

{s0, 51, $2})-

To see that the new m is primitive, consider the paths P;, ¢ = 3,...,n as above
and the paths Py = sgusy, P = sjvsg and Py = spvs;. Since the previous metric m
is primitive (and therefore, tight), the ends s; and.s; of each F; are contained in an
m-shortest T-path ss;s;t (cf. (2.1)), whence P} = ss;vs;t is also an m-shortest T-path.
Let an extension m' of u to {sq,...,Sn,v} decompose m. Since i is primitive, m
and m’ coincide within V. Also each P/ is m/-shortest (since G (m) C G(m')), whence
each P, is m/'-shortest. But the system {Py, ..., P,} of shortest paths determine the
distances on vsg, ..., vs, uniquely; so m and m’ coincide on these pairs. Therefore,

m’ = m, yielding the primitivity of m.

Finally, since each iteration results in a tight metric m on a current V, any s € T
and z € V —T belong to an m-shortest T-path szt. This implies m(sz) < max{p(s't’) :
s',#' € T} =: a. Also m is integer-valued and any two different z,y € V — T belong to
an m-shortest T-path szyt, whence m(sz) # m(sy). Thus, the number of elements of
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V — T (i.e., the number of iterations) cannot exceed alTl. .

Next we demonstrate some properties of the least generating graph G = (V, E) for
a median closure (V,m) of p ((2.2) and Statement 2.2 below). Such properties have
been known for modular spaces [2] (see also [4] for a more general case); however, to
make our paper more self-contained, we give their direct proofs. A path P = zgz; ...z
onVisapathinGitzr; jx; € Efori=1,...,k; Pisa cycle in G if 1o = z; and all
edges z;_1z; are different. The number & of edges of P is denoted by |P| and called
the G-length of P. A shortest path in G is called G-shortest. An s—t path is a path
with ends s, t. First of all we observe that

(2.2) every simple path P with |P| < 2 in G is simultaneously m-shortest and G-shortest.

Indeed, this is obvious if |[P| = 1. Let |P| = 2 and P = zyz. Take a median v
(w.r.t.' m) for {z,y,z}. If v = y then P is m-shortest, whence P is G-shortest too
(since y is between x and y for m). And if v # y then, letting for definiteness that
v # 1, the equality m(zv) + m(vy) = m(zy) shows that the edge zy is redundant in G;
a contradiction.

Statement 2.2. A path in G is m-shortest if and only if it is G-shortest.

Proof. Consider two paths P = sz ...zt and Q = sy; ... y,t in G with the same ends
such that P is G-shortest and @ is m-shortest. It suffices to show that m(P) = m(Q)
and |P| = |Q|. We use induction on |P|. Case |P|=1 is obvious.

(i) Let |P| = 2, i.e., k = 1. By (2.2), m(P) = m(Q). Suppose that |Q| > 3.
Since no edge in G is redundant, each of yi,.. -y Yq is different from z = z;. Take a
median v for {s,z,y,}. Then v = s. Indeed, if v # s,a:' then the edge sz is redundant,
while if v = z then the edge zt is redundant (taking into account that the path svy,t
is, obviously, m-shortest). Now v = s implies that the path zsy; ...y, is m-shortest,
whence m(zy,) > m(zy1) (as y; # y1 and m is positive). Arguing similarly for the triple
{t,z,y1}, we obtain that the path zty,...y; is m-shortest, whence m(zy;) > m(zy,);
a contradiction. Thus, |Q| = 2.

(ii) Let |P| > 3 (and therefore, |@Q| > 3). If some z; belongs to ), the result imme-
diately follows by induction. So assume that P and () have no common intermediate
nodes. Take a median v for {s,zk,yq}. Then v belongs to some m-shortest s—z path
L’ and some m-shortest s-y, path L"” in G. One may assume that the part L from
s to v is the same in these paths; let L = sz;...2v. By induction |P’| = |L/| and

“m(P’") = m(L'), where P’ is the part of P from s to zx. Next, let D be the m-shortest
path in L’ U L” that connects zg,y, and passes v. Since the path zxty, is G-shortest
(by (2.2)), we have |D| = 2, by (i).



Observe that v cannot coincide with either of z, y,. For if v = z, consider the
concatenation R of L and y,t. Since L” and @ are m-shortest, R is m-shortest too.
But R passes zz; hence, 2t is redundant. And if v = y, then replace in L' the part from
Yq to xx by ythk, forming the s—z; path L which is again m-shortest. By induction
IL| = |P'], ie., L is G-shortest, whence d€(sxzy) > d®(st). This is impossible because
s, Zx,t follow in this order in the G-shortest path P.

Thus, L' = sz1...zvxg and LY = s21...2p0yq. This implies |P'| = |L'| =
|L"|, whence the s—t path R = sz1...2zpvyqt satisfies |R| = |P]|, i.e., R is G-shortest.
‘Therefore, L' is also G-shortest. Applying induction to L" and the part Q' of @ from
s to yq, we have |L”| = |Q'|, whence |Q| = |P|. Finally, to see that P is m-shortest,
notice that the paths vzgt and vy,t are m-shortest. Then '

m(P) =m(P") + m(wét) = m(L) + m(vzg) +m(zgt) = 'fﬁ(L) + m(vyg) + m(y,t)
= m(L") + m(ygt) = m(Q) + m(yqt) = m(Q),

as required. ' °

This statement provides that G is modular. Indeed, for any so,s1,52 € V, there
are so—s1, S1—s2 and s2—so paths in G which are m- -shortest and share a common node
v. Then these paths are G-shortest, therefore, v is a median for {so, s1,s2} w.r.t. d’.
Another corollary from Statement 2.2 is that every isometric subgraph (or cycle) G' in
G is m-isometric, i.e., any two nodes in G’ are connected by an m-shortest path which
is entirely contained in G’. Moreover, the tightness of m enables us to sharpen this
property as follows:

(2.3) if G’ = (V', E’) is an isometric subgraph (or cycle) in G, then for any =,y € V'
there is an m-shortest T-path which passes z and y and whose part between, these
nodes is contained in G'.

3. Infinite sets of primitive extensions

Suppose that the graph G = (V, E) as above is not a semiframe, l.e., it is not
hereditary modular or contains an induced subgraph Ky 5. We show that p has infinitely
many primitive extensions, utilizing some results from [9]. One of them demonstrates
a situation when extreme (or primitive) extensions can be constructed recursively.

Statement 3.1 [9]. Let m’ be an extreme extension of a metric y1 to a set V'. Let
i be a submetric of m' on some T' C V'. Let m" be an extreme extension of p' to
a set V' such that V' N V" = T'. Then there exists an extreme extension m of p to
W = V' U V" such that m coincides with m' on V' and with m" on V".
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As mentioned in the previous section, the graph G is modular; in particular, G
is bipartite and, therefore, any 4-cycle in it is isometric. Counsider an isometric cycle
C =wgvy...v9_1vp in G. By the argument in the previous section, C' is m-isometric.
Moreover, by (2.3) (for G’ = C), for each i = 0,...,k — 1, there exists an m-shortest
T-path which passes opposite nodes v; and Vi+k, and its subpath P between these nodes
is a G-shortest path in C, i.e., P is one of the two halves of C separated by v; and Vit k-
Then )

) (31) Z(m(vi+jv,—+j+1) . ] = O, ey k— ].) = Z(m(vi+jvi+j+1) . _] = IC, ey 2k — 1),

taking indices modulo 2k. Putting together such equalities for ¢ =0, ...,k — 1, one can
deduce that the distances of any two opposite edges in C are the same, i.e.,

(3.2) m(viviy1) = M(VipkViyks+1) forall i=0,... k- 1.

It should be noted that relations as in (3.1) and (3.2) occurred in [1,11]) and were
used to prove the primitivity of certain metrics of graphs. We apply a similar approach
to construct needed primitive extensions. Following [11], edges e,e’ in G are called
dependent if there is a sequence e = eg, ey,...,e, = €' of which each two consecutive
edges ¢;, e;41 are opposite in some (even) isometric cycle in G. Then the distances of
such e, e’ are the same (m(e) = m(e’)), by (3.2). Clearly the dependency relation is
symmetric and transitive. -

Now suppose that G contains an induced subgraph H' = (T",U’) isomorphic to
K3 ; (notation H'~Kj ;). Note that H' is isometric since G is bipartite. Moreover, it
is easy to check that all edges of H' are dependent (via 4-cycles), therefore,

(3.3) the submetric p' of m to T” is Ad¥' for some A > 0.

" As shown in [9], the distance function d = d®# has a nontrivial primitive extension
(i.e., different from d). Moreover, the primitive extension constructed there has a
submetric proportional to d. Then this submetric can again be extended in a similar
way, and one can repeat such a procedure as many times as one wishes, every time
obtaining a new primitive extension of the initial metric due to Statement 3.1. Such a
~construction is based on the following fact (a sharper version is given in [9]).

Statement 3.2. Let i/ be a metric on a set T, and let G" = (V",E") be a graph -
with V" O T' such that: (i) for some o > 0, m" = ad®" is a tight extension of yi/, and
(ii) all edges of G are dependent. Then m" is a primitive extension of .

Proof.” Since m” is tight, any two opposite nodes z,y in an (éven) isometric cycle C
satisfy m”(sz) + m” (zy) + m"(yt) = m"(st) for some s,t € T'. Hence, z,y are in
some shortest 7’-path in G” whose part between z and y is a corresponding path in
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C. Arguing as above, we observe that relations similar to those in (3.1)-(3.2) are valid,

whence m”(e) is a constant S for all e € E’ (by (ii)). Considering a shortest T-path
P in G", we have # = y/(st)/|P|, where s,t are the ends of P. Now the fact that m”
is tight implies that any u,v € V" satisfy m”(uv) = B|Q|, where Q is a shortest u—v
path in G”. Thus, m” is determined uniquely by its m”-shortest T”-paths, whence m"
is primitive (taking into account that m” is, obviously, positive). | .

Return to consideration of the subgraph H' = (T",U )~Kj;; in G and the corre-

sponding submetric i/ = Ad¥’ of m.

Statement 3.3 [9]. For H' = (T'",U")=Kj 3, there exists a bipartite graph G =
(V",E") with V" O T’ such that: (i) m" = 1d" is a primitive extension of d¥', and
(ii) G” contains an induced subgraph K3, ‘ :

(The desired graph G” is drawn in Fig. 4b where for convenience the nodes of
H' are labelled by 1,...,6 as indicated in Fig. 4a. This G” is obtained by splitting
each edge_e = ij of H' into two edges iz, and z.j in series, and adding: (a) two extra
nodes z and Y, (b) edges. zz, for all e = ij € U’ with 4,5 < 5, and (c) edges yz. for all
e = ij € U’ with 7,5 > 2. One can check that m” = %dG” is a tight extension of d#’
(e.g., z and y belong to a shortest path of length 6 which connects nodes 1 and 4), and
that all edges in G” are dependent. So m” is d¥ -primitive, by Statement 3.2. Also
G” has an induced sugraph K7 5; such a subgraph is drawn in bold in Fig. 4b).

Fig. 4 (a) H'=Kj, , (b) G”

Now taking the primitive extension Am” of u/ (where g/, A are as in (3.3) and m”
is as in Statement 3.3) and applying Statement 3.1 to g, m and our g/ and Am”, we
obtain an extreme extension of y on VUV" coinciding with Am” on V. Since G” itself

~ contains an induced subgraph H” = (T”,U") isomorphic to K34, we can extend the

submetric p" = /\m’l’T , using again the construction involving a copy of the graph G”,

which results in a new primitive extension of x, and so on. Obviously, all the primitive
extensions constructed this way are different, and we conclude that x has infinitely
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many primitive extensions, as required.

Next we suppose that G is not hereditary modular. Since G is modular, G contains -
an isometric 6-cycle C' = vgv; ... vsvg, by Bandelt’s theorem ((ii) in Theorem 1.9). By
(3.2), ‘

m(vov1) = m(vavg) =1 @, m(v1ve) = m(vgvs) =: B, m(vavz) = mvsvg) =: 4.

Let i be the submetric of m on T = {vo,...,vs}. Our goal is to find a primitive
extension m of & such that m has a submetric u' of the form ad¥ss. Then one can
apply to p’ the above construction which provides infinitely many primitive extensions
for the initial L.

The desired m is easy to construct when a = 8 = 4. More precisely, let u; = v;,
1=0,...,5, and let I" be the graph on eight nodes uy, ..., us,z,y as drawn in Fig. 5a.
One can see that dT is a tight extension of d¢ and that the edges of I' are dependent.
Therefore, d¥ is a primitive extension of d©, whence there is an extreme extension of
p1 50 V U {z,y} whose submetric on the node set of I' is ad”. Since I' contains K35 as
an induced subgraph (drawn in bold in Fig. 5a), the result follows.

()] Vs

p-

Uy

Ug = Vg . Us Vs
Fig. 5 (a) T (b)
Now suppose that the @, (3, v are not the same, o < B < «ysay. Let p be the distance
function on a set W of ten points ug = vg, u; = v1,2,...., Vs, Us, ..., us, defined by
(3.4) p(viv;) = m(vv;)  for 4,5=0,...,5,

p(uwuj) = O!mll’l{{’l, _j|16 - !1' —'.7|} - for 7’1.7 = 0‘: ceey 9,

p(u;v;) = mvov;) —op(i) for 4,5=0,...,5,
where indices are taken modulo 6 and ¢(7) is the distance in G between vo and v; (so
0 < (1) < 3). One can check that p is indeed a metric on W (Fig. 5b illustrates the
least generating graph for p). Moreover, we observe from (3.4) that for eachi =0,...,5,
the p-length of the path P; = v;u;u;41%;4+2Ui+3Vi+3 1s equal to
p(viui) + p(uittits) + p(uitsviss)

= (m(vow;) — (i) + 3a + (m(voviys) — (i + 3))
= m(viviys) + 3a — a(p(i) + (i +3)) = m(viviys) (=a+B+7),
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i.e., P; is a p-shortest f—path. Since each two points of W occur in some P;, we conclude
that p is a tight extension of p.

Note that p is not primitive for . Nevertheless, we can use the fact that the
submetric p’ of p on {ug,...,us} is @ times the distance function of Cs. We further
extend p by use of the metric ad”, where I is the above-mentioned graph (that depicted
in Fig. 5a). Then the resulting metric ﬁori W U {z,y} is already a primitive extension
of . This follows from the observation that the collection of the above p-shortest paths
P; together with the shortest paths between u; and ;.3 in I', i = 0,1, 2, determines p
uniquely. '

Again, p has a primitive extension of which some submetric is proportional to d%s.a,
providing the existence of infinitely many primitive extensions for p. This completes
the proof of part (i)—(ii) in Theorem 1.2. '

4. Embedding in a minimizable graph

Let the graph G = (V, E) as above be a semiframe. We show that in this case
there exists a frame H such that p is a submetric of d¥. This will provide part (ii)— (i)
in Theorem 1.2 and other results. ‘

A maximal complete bipartite subgraph K in G is called a bi-’clique if |A], |B] > 2,
where A, B are the maximal stable sets in K; we often denote K by (4; B). First of
all we observe the following.

Statement 4.1. Let K = (A;B) and K’ = (A'; B') be two different bi-cliques such
that the graph K N K’ is nonempty. Then K N K' is connected and contains at most
one edge. In particular, every 4-cycle of G is contained in exactly one bi-clique.

Proof. Let for definiteness AN A’ # (. Suppose that AN A’ contains two different
nodes z,y. Since K and K' are different, w.l.o.g. we may assume that there are u € A
and v € B’ which are not adjacent in G. Choose two different nodes z, 2’ in B (existing
because |B| > 2). Then the subgraph induced by {z,y,u,v, 2, 2’} is K33, contradicting
the fact that G is a semiframe. Thus, |A N A’| = 1. By a similar reason, |BN B/| < 1,
and the result follows. : ‘ : .

A maximal set of dependent edges in G is called an orbit. "The core of our con-
struction of the desired minimizable graph involves orbit splitting operations that we
now describe.

Note that each edge e which is not a bridge of G belorigs to a cycle; moreover,
¢ belongs to a 4-cycle and, therefore, to a bi-clique (since any minimum length cycle
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containing e is isometric, and G has no isometric k-cycle with k > 4).

Consider an orbit Q. Let (Q) be the set of bi-cliques whose edge sets meet Q).
Note that an edge of a 4-cycle belongs to @ if and only if the opposite edge does. This
implies that all edges of each bi-clique K = (4;B) € K(Q) with |A| + |B] > 5 are
contained in @. On the other hand, if |A| = |B| = 2, it is possible that K and @ have
only two edges in common; in this case the bi-clique K is called simple.

The orbit splitting operation for @ transforms G into G’ = (V', E') as follows.

(4.1) (i) Split each edge e = zy € @ into two edges zz. and yz. in series.
(ii) IfK € K(Q) is simple and K N Q = {e, €'}, then z, and 2. are connected by
an edge (see Fig. 6a). :
(iii) If K = (A4; B) € K(Q) is not simple, then a new node vk is added and vk is

connected by an edge with z. for each edge e of K (see Fig. 6b where |A| = 2
and |B| = 3).

Fig. 6 | (a)

~ One can see that the resulting graph G’ is bipartite as well. We call edges zz.
and yz. in (i) split-edges, edges z.ze in (ii) bridge-edges, and edges z.vx in (iii) star-
edges. Let us say that an orbit Q of G is orientable if there exists a feasible orientation
of the edges of this orbit (i.e., that matches the definition of the orientability in the
Introduction). Note that @) may be orientable while the whole G is not. The graph G’
has important properties exhibited in the following three lemmas. |

Lemma 4.2. - G’ is a semiframe.

" Lemma 4.3. Let (q,. ., Qr be the orbits of G, and let G’ = (V', E’) be obtained
from G by the orbit splitting operation applied to Q1. Then G’ has r or r + 1 orbits.
Moreover, '

(i) for i = 2,...,7r, @Q; induces an orbit Q. in G’ formed by the edges of Q; and all
bridge-edges z.z. such that the 4-cycle in G containing e,e’ has the other two
- edges in Q);; also Q) is orientable if and only if Q; is s0;

(i) ifQq is non-orientable, then Q; induces only one orbit Q] in G', which is orientable
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and formed by all split- and star-edges;

(iii) if Qy is.orientable, then @, induces two orbits Q7 and Q7 in G', and the set QL uQY
‘consists of all. split- and star-edges; also both Q) and QY are orientable, and for each
e = zy € Q1, one of the edges zz.,yze belongs to Q) while the other to Q7.

Lemma 4.4.  Let p be the length function on the edges of G defined as follows (using
notation from the previous lemma):

(4.2) (i) fori=2,...,r, the p-length of each edge in Q; is equal to the distance m(e)
of an edge e € Q;;

(i) if Q is non-orientable, then the p-length of each edge in @} is equal to m(e)/2
for e € Qq;

(iii) if Q, is orientable and e € Q1, then choose an arbitrary number 0 < A < m(e)
and put p(e/) = X for all ¢’ € Q' and p(e") = m(e) — A for all " € Q7.

Then the metric m? on V' generated by (G',p) coincides with p on E' and is a
tight extension of p.

- These lemmas will be proved later, and now we explain how, with their help, to
prove that II(u) is finite.

First we apply the orbit splitting operation consecutively to the orbits Q1,...,Qr
of G (more precisely, to the images of ();’s appeared in the current ggaphs). This results
in a semiframe G = (V, E) and a function 5 on E such that i = m? is a tight extension
of pu (using induction on 7 and repeatedly applying Lemmas 4.2-4.4). One can see that
G can be directly constructed from G as follows (cf. (4.1)).

(4.3) (i) Split each edge e € E into two edges zz. and yz. in series.

(ii) For each bi-clique K of G, add a new node vk and edges z.vg for all edges e
of K.

This fact enables us to show the following important property, which makes clear
 why we split the orbits of G.

Statement 4.5. G is a frame.

Proof. One can see from (4.3) that each 4-cycle C of G is of the form z2,vk ze: T, where
e and €' are edges in a bi-clique K of G which are incident to a node z. Therefore,
we can orient each split-edge zz. from z to z. and each star- edge ZeVK from z. to vy,
obtaining a feasible orientation for all 4-cycles of G. Thus, G is orientable, and now
the fact that G is a semiframe (by Lemma 4.2) implies that G is a frame. .
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Remark. In fact, in the above method we do not need to split all orbits of G to
transform it into a frame. It suffices to split only those orbits which are non-orientable.

Next, since p can be considered up to proportionality, we may assume that all
numbers m(e), e € E, are even integers. We also may assume that for each orientable
~orbit of G the number X figured in (iii) of Lemma 4.4 is chosen to be an integer. Then
the function p (as well as metric m) is integer-valued. We now repeatedly split each
orbit of G so as to get a frame with unit lengths of all edges.

More precisely, starting from G = G and 7 = p, choose an orbit Q of the current
graph G such that the current length a(e) =: J of an edge e € Q is still greater than
one. Split  with an arbitrary integer A (0 < A < 6); this transforms Q into two orbits
Q' and Q" with length X of all edges in Q' and length § — A of all edges in Q" (taking
into account that () is orientable, in view of Lemma 4.3). Choose an appropriate orbit
in the new current graph, and so on. Eventually, we obtain a frame G = (V E‘) with
unit length of each edge (as before, this 1mmed1ate1y follows by induction, in view of
Lemmas 4.2-4.4). The resulting metric m on Vis just dG (by Lemma 4.4), and m is a
tight extension of u. In particular, uis a submetric of dG

Consider a primitive extension m’ of 1 to a set V', Since p is a submetric of dG
‘there exists an extreme extension m” of dG to V UV’ such that m” and m' coincide
within V' (by a weakened version of Statement 3.1). Shrmkmg the zero distance sets
for m' makes a primitive extension d of dG to a set Z. Since G’ is a frame, Z = V and
d = do. Furthermore, the submetric of d on (the image of) V' is exactly m’. Thus, the
number of primitive extensions of p does not exceed the number of sets V' such that
T C V' CV, whence II(y) is finite. This gives part (ii)—(i) in Theorem 1.2. |

The above construction and Theorem 1.2 give rise to other results mentioned in
the Introduction. In particular, the finiteness of the set of submetrics of d¢ implies part
“if” in Theorem 1.1. On the other hand, part “only if” of Theorem 1.1 is provided by
(i)—(ii) of Theorem 1.2 and the above construction of the frame H = G. Furthermore,
observe that the tight spans of u and d = d are the same. Indeed, since d is a tight
extension of 'y, it is easy to see that any tight extension of d is simultaneously a tight
extension of u. Conversely, since u is a submetric of d, any tight extension of y can
be expanded to a tight extension of d. As mentioned in the Introduction, the tight
span of the path metric of any frame is 1- or 2-dimensional; so is the tight span of d%.
This gives Theorem 1.3 and Corollary 1.6, taking into account that the tight spans of
d%s.s and d% are 3-dimensional, e.g., by Dress’ result (Theorem 1.7(ii)). Finally, if s
is cyclically even and IT(y) is finite, then a median closure m of y is cyclically even (by
Statement 2.1). If we apply the above  construction to the metric 2m (whose all values
are even), then 2m is a submetric of d€ for the resulting frame G. Thls gives Corollary
1.5. ‘
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It remains to prove Lemmas 4.2-4.4. Let Q1,...,Q, be the orbits of G, let G’ =
(V',E") be formed by the orbit splitting operation apphed to Q = Q1. We call nodes
of G' of the form z. and vk split- and star-nodes, respectively.

Prooj’ of Lemma 4.8. (1) in this lemma is easy.

To see (iii), fix an orientation of the edges of Q and form Q" and Q" as follows. If
e =y € (@ is oriented as (z,y), then we orient zz. as (z, z.) and make it be a member
of ', and orient 32, as (ze,y) and make it be the member of Q”..

To assigh membership for the star-edges, consider a non-simple bi-clique K =
(A; B) € K(Q), and choose a 4-cycle C' = vgv1vav3vp in K. One may assume that the
edges of C are oriented as drawn in Fig. 2, and let vg, v € A. Then 2 = |A| < |B| (for
if |A| > 3, then K has no feasible orientation), and for each z € B, the edges voz and
vz must be oriented as (vg, z) and (x,vy). For each z € B and e = voz, orient z,vx as
(ze,vEk) and include it in Q’, while for €' = vyz, orient zovg as (v, zer) and include
it in Q".

One can check that each of Q’, Q" is indeed an orbit of G’ and that the orientation
we constructed is feasible for both Q" and Q. ‘

To see (ii), orient each split-edge zz. as (z, z.) and each star-edge z.vk as (z., vk).
This gives a feasible orientation of the split- and star-edges in all 4-cycles of G' where
such edges occur (compare with the orientation in the proof of Statement 4.5). Next,
since () is non-orientable, for any edge e € @, there exists a sequence (orientation- -

reversing dual cycle). D = (e, F1 el ... F% %) consisting of edges ¢ = z'y* and
4-cycles F* of the form z?~lyi~ 1J’:B’:U"“ Lin G such that e = €%, 2% = y? and y° = z%.
One can see that the edges 2%z.0,7'2.1,...,2%. of G’ are dependent, and now the

fact that 29204 = y%z.0 (as ¢ = y?) shows that all split-edges generated by the edges of
D are dependent. This easily implies that all split- and star-edges in G’ are dependent,
and hence, they constitute a single orbit of G’. °

It is more convenient to prove the other two lemmas together because their proofs
involve some common arguments.

Proof of Lemmas 4.2 and 4.4. Tt falls into several claims. Let m’ = m?. We call

nodes of G’ of the form z. and vk split- and star-nodes, respectively.

Claim 1. m’ is an extension of m (and therefore, m' is an extension of ).

Proof. Consider a V-path P = xq...z in G'. We have to show that p(P) > m(zoxyk).
Apply induction on |P|. One may assume that P is simple and |P| > 3 (for if ¥ = 1
then ¢ = xozy € £ and p(P) = m(e), and if k = 2 then e = 20w € F and 71 = 2,
whence p(P) = m(e), by the hypotheses in (ii) and (iii) of Lemma 4.4). Also one may
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